
A geometric Ramsey theorem of Suk

The IMOTC has apart from interesting problem solving sessions for the students in the camp, also
included sessions that include what I would call modules featuring interesting theorems that usually
aren’t, but (in my opinion, certainly) can be introduced to gifted high school kids. These notes
feature one such result - or at least, a simplified version, of a theorem of Andrew Suk which made
a remarkable improvement on an old standing conjecture of Erdős and Szekeres. I was supposed to
deliver 4 lectures to the participants of the IMOTC 2020 and I had intended to go over this result in
those lectures, but the current COVID-19 situation has made physical lecturing impossible, hence
these notes.

These notes are self-contained, and do not assume much from the students, other than a brief
acquaintance with calculus (which they all have in plenty!). I have resorted to a conversational
mode of transcribing so as to suggest a lecturing style. I have also cut the material into chapters
with each chapter roughly containing what i would have done in the corresponding lecture.

Mathematics as is practiced by its practitioners (the mathematicians) is both similar to one’s
thinking process in competition exams, such as the IMO, and also opposite to it in the way one
works with what one can, as an artist would. These lectures are MY attempt to deconstruct Suk’s
proof; if you were to discover this proof, could you have done it? Here is one way you could have
- thats the perspective of these lectures (and notes).

I hope the kids at the IMOTC find the notes interesting, and get a sense of what a fantastic
result this is.

Niranjan Balachandran,
IIT Bombay.
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IMOTC 2020

For starters: Stirling’s formula

This lecture will appear as a bit of a digression, not completely related to the main objective of
these lectures; I will get to them later. But as the title of this chapter suggests, this is a good round
of mathematical houvre d’oeuvres. The only thing I will assume here is a very brief acquaintance
with basic calculus.

The main purpose of this lecture is to prove

Theorem 1. (Stirling’s formula): There is an absolute constant C > 0 such that

lim
n→∞

n!en

nn+ 1
2

= C.

To put it somwewhat differently, a good ‘approximation’ to n! would be C
(
n
e

)n√
n. Actually,

one can compute this C to be
√
2π. But that needs more work, and would not be necessary for our

needs later (so this is not entirely a digression - it is more like preparatory work), so we will prove
it in the form stated above.

I am assuming here that you are all familiar with the notion of limits. I will only assume one
result regarding the existence of a limit, viz., the following

Theorem 2. If {an}n≥1 is a monotone increasing sequence, i.e., an ≤ an=1 for all n, and if the
sequence is bounded above, i.e., an ≤ M for all n, then limn→∞ an exists.

An analogous statement with monotone decreasing sequences bounded below follows by consid-
ering the negation of such a sequence.

So, how does one go about proving Stirling’s formula?

Anyone moderately familiar with how one might approach this, is naturally drawn to consider-

ing log n! so that log n! =
n∑

k=1

log k.

One of the first important ideas we derive from calculus is that (Riemann) integrals are finite
sums in the limit, so finite sums can be approximated by integrals. Now it is easy to see that since∫ n

1
log x dx ≤

n∑
k=1

log k ≤
∫ n+1

0
log x dx (1)

and since
∫ n
1 log x dx = n log n−n (this is a simple calculus exercise - integration by parts!), a good

starting point for an approximation to n! is

n! ≈
(n
e

)n
.
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Important remark: Stirling’s approximation is a multiplicative approximation, not an additive one.

From (1) it is easy to see that limn→∞
logn!

log(n/e)n = 1 but how about

lim
n→∞

n!

(n/e)n
?

Let’s go back to (1). Calculating the integrals gives

n(log n− 1) ≤ log n! ≤ (n+ 1)(log(n+ 1)− 1) (2)

= n(log n− 1) + log n+ (n+ 1) log

(
1 +

1

n

)
(3)

and this suggests that we look at xn := n!
(n/e)n .

Let bn := xn−1

xn
with x0 = 1. Write

x−1
n = b1 · · · bn

= x−1
1

n∏
j=2

1

e

(
1 +

1

j − 1

)j−1

=
1

e2

n−1∏
j=1

(
1 +

1

j

)j

Since

lim
n→∞

(
1 +

1

n

)n

= e

we write

x−1
n+1 =

1

e

n∏
j=1

(1 + εj)

where

εj :=
1

e

(
1 +

1

j

)j

− 1.

This changes our focus to a question of the following general type: When does
∏n

k=1(1 + εk)
have a finite limit as n → ∞? Here, in this more general question (with an abuse of notation where
I have used the same expression εk) we shall think of εj as small positive quantities. Basic calculus
again tells us that this limit exists if and only if the sum

∑n
k=1 log(1+εj) has a finite limit as n → ∞.

Okay. So how do we estimate/approx the last sum? Again, calculus comes to help us. The
buzzword now is ‘Taylor series expansion’. If you don’t know this well, don’t worry too much; you
have all seen some ‘series expansions’ of functions - sinx, cosx, ex etc. - those are infinite series
expansions, but the general Taylor series is a finite summation, with an ‘error’ term. A general
caveat here: It is very important in the branch of mathematics called Analysis to examine the rules
for manipulating infinite sums/products, but the general principle of thinking is based on the same
intuitive principles you use while working with finite sums. If this is a bit fuzzy, then it is meant
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to be, since I am not going to get into the details in Analysis - you may learn that later sometime.
But for now, what we do with these is of greater importance.

I shall also need another very useful notation - called the asymptotic Big-Oh notation. Given
functions f, g we say that f(x) = O(g(x)) for ‘small’ x (which means in a small vicinity of 0) if
|f(x)| ≤ C|g(x)| for some fixed constant C > 0 and all x ∈ (−a, a) for some small fixed a > 0.
We could also have this only for x ∈ [0, a) but the overall utility remains teh same. One of the
main advantages of using this notation is that it allows us to think of inequalities as if they were
equalities. As you will see, there are many utilities of this notation but for now, this is one for
starters.

Right! So we all know

log(1 + x) = x− x2

2
+

x3

3
− · · ·

Indeed, start with
1

1 + x
= 1− x+ x2 − · · ·

and integrate term-by-term. Again, there are many things here that need justification. For in-
stance, the geometric series expansion only works when |x| < 1 and integrating an infinite series
term-by-term needs a lot of justification, along with knowing when one can do so! But, as I said
before, let us gloss over that for now.

A Taylor series expansion for log(1 + x) is

log(1 + x) = x− x2

2
+R1(x) (4)

where the error function R(x) satisfies |R1(x)| = O(x3) whenever |x| < 1/2, say. We sometimes
write this more tersely as

log(1 + x) = x− x2

2
+O(x3).

Similarly, we have

ex = 1 + x+O(x2). (5)

You may treat the above statements facts, if you are troubled by my lack of explanation.

Now, let us use this to get back to the previous expression. Recall εj = 1
e

(
1 + 1

j

)j
− 1, so by

(4)

log

(
1 +

1

j

)j

= j log

(
1 +

1

j

)
= j

(
1

j
− 1

2j2
+O

(
1

j3

))
= 1− 1

2j
+O

(
1

j2

)
.
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Using (4) and (5) we have(
1 +

1

j

)j

= exp

(
1− 1

2j
+O

(
1

j2

))
= e

(
1− 1

2j
+O

(
1

j2

))
so that

εj :=
1

e

(
1 +

1

j

)j

− 1 = − 1

2j
+O(

1

j2
).

Unfortunately, this is of little help to our earlier observation on when the product
∏n

k=1(1+ εk)
has a limit, since

∑
j≥1

1
2j has an infinite sum (Why?! This is a good exercise to think about in

case you haven’t seen this before). So, all our work now hasn’t cut anything of value...

Or maybe it has. Recall that what we were considering was to try to show if x−1
n has a limit

and our calculations have only shown that xn → 0 as n → ∞ (Why? Follow the trail of arguments
here). But that is not really Stirling’s formula; in fact, all this shows is, n! is much larger than
(ne )

n for n large. How much larger is it?

To see if we can make a better estimate, let yn = n!
e−nnn+s for some positive s >. This is basi-

cally an attempt to see if we can improve on our first approximation by a polynomial bit. At the
moment, we haven’t committed to the precise value of s, but as we will see, our analysis will tell
us, that if we are to make some headway in this analysis, then the correct value of s will pop out
as a byproduct.

Let us again proceed as before. Let

cj =
yj−1

yj
= e

(
j

j − 1

)j+s−1

= e2bj

(
j

j − 1

)s

with y0 = 1. Let us go the whole nine yards again:

y−1
n = c1 · · · cn =

1

y1

n−1∏
j=2

bj

(
j + 1

j

)s

=
1

y1

n−1∏
j=2

bj

(
1 +

1

j

)s

Since (
1 +

1

j

)s

= 1 + s
1

j
+O(

1

j2
)

from the Newton binomial formula if you wish. This, again is its corresponding Taylor series.
Plugging this back, we have

bj

(
1 +

1

j

)s

=

(
1− 1

2j
+O(

1

j2
)

)(
1 +

s

j
+O(

1

j2
)

)
=

(
1 + (s− 1

2
)
1

j
+O(

1

j2
)

)
so, setting s = 1

2 gives

lim y−1
n = lim

n→∞

n∏
j=1

cj = e−1 lim
n→∞

n∏
j=1

(
1 +O(

1

j2
)

)
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and now, this last term has limit as n → ∞ by the exact same reason as elucidated earlier. This
establishes the theorem. It would be a good exercise to fill in the details that I have not mentioned
(and by that I mean, going over the calculations, not the proofs of the slightly harder statements
of analysis).

As we mentioned earlier this does not establish the value of the limit, which is also part of the
statement of Stirling’s theorem. But that will not be necessary for us.
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IMOTC 2020
LECTURE 2: The Erdős-Szekeres appetizer and the Pór-Valtr salad

Let us get into ‘where it all started’ - what Erdős called the ‘Happy Ending Theorem’. Esther Klein
had made the following two observations:

1. For any set of 5 points in general position (no three points are collinear) in the plane, some
four of these points are the vertices of a convex quadrilateral. (Almost trivial)

2. For any set of 9 points in general position in the plane, some five of these points are the
vertices of a convex pentagon. (needs some work)

Both these are also best possible, in the sense, that there are configurations with fewer points than
the ones of the respective statements where the conclusion does not hold.

The Erdős-Szekeres theorem is the following:

Theorem 3. For any n ≥ 4, there exists N(n) such that the following holds. For any set of N(n)
points in the plane in general position, one can locate n among these points that form the vertices
of a convex n-gon. Moreover,

2n−2 < N(n) ≤
(
2n− 4

n− 2

)
.

By Stirling’s formula, the upper bound above is of the order 4n√
n
, so the upper bound is almost

as large as the square of the lower bound.

There are many proofs of this theorem, but we shall see the one that is based on a latter paper
of the same authors. To get there, we make the following definition (as they do).

Definition 4. Suppose P1, . . . , Pk are in general position in the plane. By xi := x(Pi) (resp.
yi := y(Pi)) we mean the x-coordinate (resp. y-coordinate) of Pi. Without loss of generality,
suppose x1 ≤ · · · ≤ xk. We say that the ordered set (P1, . . . , Pk) is a k-cup if for all 2 ≤ i ≤ k − 1,

yi − yi−1

xi − xi−1
≤ yi+1 − yi

xi+1 − xi
.

We say that the points form a k-cap, if for all 2 ≤ i ≤ k − 1

yi − yi−1

xi − xi−1
≥ yi+1 − yi

xi+1 − xi
.

For simplicity, we shall refer to the ratio yi−yi−1

xi−xi−1
by s(Pi−1, Pi).

The motivation for these definitions is quite self-explanatory. An n-cup or an n cap form the
vertices of a convex n-gon, and it is natural to think of coordinatising the points. The theorem of
Erdős and Szekeres that establishes the upper bound in the aforementioned theorem is

Theorem 5. Suppose k, ℓ ≥ 2. Let f(k, ℓ) denote the least integer such that any set of f(k, ℓ points
in the plane either contains a k-cup or an ℓ-cap. Then

f(k, ℓ) =

(
k + ℓ− 4

k − 2

)
+ 1.

7



b

b
b

b

b

5-cup

b

b

b b

b

5-cap

Figure 1: Examples of a 5-cup and a 5-cap.

The theorem consists of two parts: the upper bound and the lower bound (to establish equality).

The proof of the upper bound is now a classic, so I will do it rather quickly. We’ll denote the
binomial coefficient by ϕ(k, ℓ) for simplicity. We shall induct on k + ℓ. If k or ℓ equals 2 then the
statement is trivial, so suppose k, ℓ ≥ 3. Suppose we have a set P of ϕ(k, ℓ) + 1 points in general
position with no k-cups or ℓ-caps. Since ϕ(k, ℓ) > ϕ(k−1, ℓ), ϕ(k, ℓ−1), there are k−1-cups, as well
as ℓ−1 caps, by induction. Let A denote the set of all the last points from all possible (k−1)-cups
in P. Then P \ A has no k − 1-cups or ℓ caps, so again, by induction, |P \ A| ≤ ϕ(k − 1, ℓ) which
means that |A| ≥ ϕ(k, ℓ) = 1− ϕ(k− 1, ℓ) = ϕ(k, ℓ− 1) + 1. So it follows that there is an ℓ− 1 cap
C = (P1, . . . , Pℓ−1) in this order, contained in A. But since each point of A is the end point of a
(k − 1)-cup, there is a (k − 1)-cup C′ = (Q1, . . . , Qk−1 = P1) in this order.

Now we are through; if s(Qk−2, Qk−1) ≤ s(P1, P2) then (Q1, . . . , Qk−1, P2) is a k-cup, otherwise
(Qk−2, P1, . . . , Pℓ−1) is an ℓ-cap.

The lower bound requires the construction of a set of ϕ(k, ℓ) points with neither a k-cup, nor an
ℓ-cap, and this is again constructed inductively. The crux of the proof lies in the observation that
since ϕ(k, ℓ) = ϕ(k − 1, ℓ) + ϕ(k, ℓ− 1), one can imagine sets P1,P2 of sizes ϕ(k − 1, ℓ), ϕ(k, ℓ− 1)
respectively without either k−1-cups or ℓ-caps (resp. k-caps or ℓ−1-cups). Without loss of general-

ity, assume that the points of P1 and P2 are {(i, y(1)i )} and {(i, y(2)i )} respectively. Then for a large

enough m and ε > 0 small enough, the setP consisting of the points (i, εy
(1)
i ) and (m+ i,m+εy

(2)
i )

will do the job. I leave it as a simple exercise for you guys to see why it is the case.

Clearly, this theorem establishes the upper bound in theorem ??. What about the lower bound?
This again follows the idea of the inductive construction of the lower bound in theorem ??, but it
is a little more involved, so I will not get into that for now.
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This leads us to the statement of the Erdős-Szekeres conjecture:

Conjecture 6. N(n) = 2n−2+1 where N(n) is the function described in the statement of theorem
??.

In other words, they believed that the lower bound that they obtained was just short of the
correct value for N(n).

This conjecture was made in 1935, and it still remains unproven. But what was more drastic
is that the upper bound remained unshaken until in 2017 when Andrew Suk proved a remarkable
result which is the main focus of the next course of lectures. I will not show you a proof of his
exact result since it is a little more laborious, but I will show you a version that will still make you
appreciate what a huge improvement it is, on the known results till that point. Indeed, suppose
ε > 0 be small. Then Suk’s theorem shows

Theorem 7. For n sufficiently large,

N(n) ≤ 2(1+ε)n.

The exact statement has a slightly more messy expression in the exponent rather than (1+ ε)n
which makes it somewhat stronger than the version stated here, but the proof of the exact result
only needs sharper estimates and not newer ideas than the ones we shall see. Also note, this does
not get us actually closer to the original conjecture of Erdős and Szekeres, but this is already a
huge leap in that direction.

As we seek to improve upon the upper bound, we reframe the Erdős-Szekeres theorem in the
following manner. Suppose n ≥ 4 is a fixed integer. Given a configuration P of N points in the
plane in general position, determine cn(P), the number of convex n-gons that occur with vertices
amongst the points of P. The Erdős-Szekeres theorem states that if N ≥

(
2n−4
n−2

)
, then cn(P) ≥ 1.

Can we get a better lower bound in general?

As I remarked earlier, the upper bound has remained unshakeable for a long time, so one of the
approaches of mathematicians is to look at what they can do instead with techniques they know1.
Let us now try and address the aforementioned question, and towards that end, we’ll need a couple
of definitions.

A triple of points (P1, P2, P3) is said to have positive orientation if the clockwise ordering of the
vertices of the triangle formed by these points is (P1, P2, P3), otherwise we say that the orientation
of the triple is negative.

Definition 8. The tuples P1 = (P1, . . . , Pt) and P2 = (P ′
1, . . . , P

′
t) of points in general position are

said to be of the same order type if for any 1 ≤ i < j < k ≤ t, the triples of points (Pi, Pj , Pk)
and (P ′

i , P
′
j , P

′
k) have the same orientation.

The objective of this definition is to get to the following more general notion.

1This is best captured by the words of John Pierce, the father of modern satellite communication technology, ‘We
do what we can do, not what we think we should or what we want to do.’ (emphases, mine).

9



b

b

b b

b

b
P1

P2

P3P4

P5

P6

T1

T2

T3

T4

T5

T6

Figure 2: The regions Ti, for i = 1, . . . , 6. It is important to remark that the regions Ti are not
necessarily triangles.

Definition 9. Suppose P is a finite set of points in general position in the plane. A partition
P = X1 ∪ · · · ∪Xn is called a n-clustering if

• |X1| = · · · = |Xn|.

• All n-tuples (x1, . . . , xn) with xi ∈ Xi have the same order type.

If all the n-tuples form convex n-gons, then we call this a convex n-clustering.

In other words, if we have a convex n-clustering inside of a point set P, then we have at least∏k
i=1 |Xi| different convex n-gons in P.

So how do we manage to locate a convex n-clustering in P? Towards this end, Pór & Valtr
(2002) start with a simple but very useful observation. Suppose k is even, and let X be a set of k
points in convex position. Let Y be a subset of X of size k/2 consisting of every alternate point of
X, so that there are two choices for the set Y . Let us give this kind of set a name; following Pór
and Valtr, we shall say that Y supports X in the aforementioned scenario. The following is the key
observation.

Observation 0.1. Suppose Y = {P1, . . . , Pk} are points (forming a convex k-gon) in clockwise
order. Denote by Ti, the region outside the convex hull of Y bound by the lines determined by
Pi−1Pi, PiPi+1, and Pi+1Pi+2 (see figure 2 for an illustration with k = 6). If Y supports a 2k-gon
whose remaining points (apart from the points of Y ) are P ′

1, . . . , P
′
k, then each of the regions Ti

contains exactly one of the P ′
i .
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Suppose P is a set of N points in general position in the plane. The upper bound of the Erdős-
Szekeres theorem says that among any 4k points of P there is at least one convex k-gon. This gives
us a basic idea; each set of 4k points counts at least one towards cn(P). This is a basic double
counting method, but it is much better perceived when put in a probabilistic language.

Suppose we pick a random (uniformly random) set S of 4k points from the points of P, and
let c(S) denote the number of convex k-gons in S. One of the most useful things to do with any
random variable (integral valued, for instance) is to compute its expected value. Erdős-Szekeres
tells us that C := c(S) ≥ 1 for all S, so in particular E(C) ≥ 1. Let C denote the set of convex
k-gons in P. Then

1 ≤ E(C) =
∑
X∈C

P(X ⊂ S) = |C|
(
N−k
4k−k

)(
N
4k

) ⇒ |C| ≥
(
N
4k

)(
N−k
4k−k

) ≥
(
N
4k

)(
4k

k

) .

There are
(
N
k/2

)
different subsets of P of size k/2, and at least

(N
4k)

(4
k

k )
k-subsets of P in convex

position, so by a simple double count argument, there is some (k/2)-subset Y such that Y supports
at least

(
N
4k

)(
4k

k

)(
N
k/2

) >
(N − k)k/2 · (k/2)!(

4k

k

)
· k!

>
(N − k)k/2

4k2

convex k-subsets of P.

To keep things from getting uglier notationally, let us write k = 2ℓ. Let Y = (P1, . . . , Pℓ) in
clockwise order. By observation ??, if the regions Ti determined by the points Pi contains ti points
of P, then each 2ℓ-gon supported by Y must have its remaining points coming one each from each
of the Ti, so the number of such 2ℓ-gons supported by Y is at most

∏ℓ
i=1 ti.

Hence,

ℓ∏
i=1

ti >
(N − 2ℓ)ℓ

44ℓ2
.

Now, to get hold of a convex clustering, if ti ≥ t0 then we have a lower bound on the number of
convex ℓ-gons. Now, it is not possible to prove that all the ti are all large. But, here is another

computational idea: If t0 denotes the (ℓ/2)th largest among the ti then
∏ℓ

i=1 ti ≤ t
ℓ/2
0 N ℓ/2. What

this suggests is: Set n = ℓ/2, and this analysis gets us a bound on the number of convex n-gons.
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Piecing all these together, (writing n = 2ℓ), we have

t0 >

(
N − 4n)2n

232n2 ·Nn

) 1
n

>
N − 8k

232n

>
N

232n
− 1.

So what have we done so far? If we collect those indices i such that ti ≥ t0, and pick subsets
Si ⊂ Ti ∩P for those i, then these sets, along with the corresponding Pi (from the set Y ) together
describe a convex n-clustering with each of the clusters containing ⌈ N

232n
⌉ points of P. This is the

Pór-Valtr theorem:

Theorem 10. (Pór-Valtr, 2002) ‘Positive Fraction Erdős-Szekeres theorem’) For an n ≥ 3 if P is
a set of N points in general position in the plane, then it contains a convex n-clustering of size at
least k·N

232n
.
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IMOTC 2020
LECTURE 3: Main course - Preparations towards Suk’s proof

Before we get to the main course, let me make one small comment regarding the result from the
previous lecture. The definition of cups and caps is actually a ‘local’ definition, i.e., it is determined
by two consecutive pairs of points (consecutive is determined by the ordering of the points accord-
ing to their x-coordinate). This suggests a more combinatorial rephrasing of the aforementioned
theorem.

Imagine coloring triangles formed by these points by the following rule. If P1, P2, P3 are three
points with x1 < x2 < x3 (x1 = x(P1), etc.) then let us color the triangle P1P2P3 red if P1, P2, P3

form a 3-cup and blue otherwise. What characterizes the cups-and-caps theorem is the following
transitivity property: If P1P2P3, P2P3P4 are both red (resp. blue) then P1P2P4 and P2P3P4 are also
red (resp. blue). The proof of the cups-and-caps theorem can then be recast into the following
purely combinatorial theorem (which absorbs the geometric nature of the setting). Here’s a bit of
terminology first; a coloring of triples of a set [n] is said to be it transitive if whenever xyz, yzw
have the same color then xyw, yzw also have the same color as xyz. By a monochromatic k-clique
we mean a set x1, . . . , xk such that all the triples xixjxk have the same color.

Theorem 11. Suppose k, ℓ ≥ 3 are integers. Denote by N = g(k, ℓ) the smallest integer such that
for any transitive 2-coloring of the triples of [N ], Red and Blue, say, there is either a red k-clique
or a blue ℓ-clique. Then

g(k, ℓ) =

(
k + ℓ− 4

k − 2

)
+ 1.

I leave it to you guys to make this translation of language. The same proof works - just verify
it yourselves.

Before we launch into our unpacking of Suk’s proof, I shall set some terminology, which should
not be difficult to formalize for the non-litigiously minded. I shall henceforth refer to points lying
above and below a line. With that notion, let us make a more geometric definition of cups and
caps. A k-cap is a set of k points P1, . . . , Pk such that for each Pi there is some line ℓi such that
Pi ∈ ℓi and all the other Pj lie on or below (resp. above) ℓi. This description is more a local one
in the sense that to check if a set if a cap, one needs to associate a reference line to each of these
points such that this property is satisfied.

Let us now attempt to improve upon the Erdős-Szekeres bound. Suppose for a suitable k (which
we shall determine later), we use the Pór-Valtr theorem to get a convex k-clustering with each of
the parts having several points. We will attempt to pick subsets P1, . . . ,Pr such that hopefully,
∪iPi will describe the vertices of a convex n-gon.

A k-gon admits a subset of at least k/2 which is either a cup or cap, so without loss of generality,
we assume that (for the set P of size N) there is a convex k-clustering Y forming a k-cap, with
each set of the cluster having size at least N

264k
. If our purported P is a union of Pi, then the

most natural thing would be that to get each Pi as a cap, of a suitable size t, say. But the more
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Figure 3: The regions Ti and the associated line segment ℓi. In this example, we illustrate it with
k = 6 and ℓ3 = P2P5.
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Figure 4: The line joining two of the points in Ti does not meet the line segment ℓi.

immediate question is: How does one guarantee that the union of these Pi is also a cap? At this
juncture come Suk’s (in my opinion) first real breakthrough observations:

• Restrict attention to the line segments Pi−1Pi+2. If we can pick a subset Ti ⊂ Ti such that for
any Q,Q′ ∈ Ti, QQ′Pi+2Pi−1 is a convex quadrilateral, then the line QQ′ does not intersect
the line segment ℓi := Pi−1Pi+2.

• Suppose Pi ⊂ Ti,Pj ⊂ Tj are caps in the regions Ti, Tj respectively. Let Q,Q′ be distinct
points in Pj . Then if the line QQ′ intersects the region Ti, we must have |i − j| = 1. This
is easily seen once by observing that if say i < j − 1, then the region Ti lies below the line
Pi−1Pi. A similar remark is applicable for i > j + 1.

How large a set Ti can we get? First, one can imagine doing this greedily, i.e., picking points
sequentially so that the desired property is not destroyed by the addition of the next point. But a

14



more theoretic way of looking at this would be: when do points Q,Q′ along with Pi−1, Pi+2 NOT
form a convex quadrilateral? This is precisely when one of the points (say Q′) lines inside the
triangle QPi−1Pi+2.

This suggests a relation among the points of Ti. For points Q ̸= Q′ write Q′ ≺ Q if Q′ lies
inside the triangle QPi−1Pi+2. This relation makes Ti into a poset, and what we want for Ti is an
antichain in this poset.

So, with these preparatory ideas, we make the first stab. We will call the regions Ti, Ti+1 as
successive sets. Suppose there are non-consecutive regions Ti1 , . . . , , Tir (for some r; we will tie them
all together later) with each of these regions admitting antichains Ti of size L (again, TBDL - to
be determined). Then within these antichains we can find caps Pi of size t each then our preceding
observations tell us that the union ∪r

i=1Pi is also a cap. Indeed, for each point P ∈ Pi, since Pi is a
cap, there is some line passing through P such that all the other points of Pi lie below it. We may
choose this line to be the one passing through P and one of its adjacent points in the cap (within
Ti). But since the line joining any two of the points here must lie above the regions Tj for all the
other j, it follows that all the other points of ∪Pi also lie below this line. And that establishes that
we have a cap on our hands now.

How about size? And also, how do we guarantee that each of these sets Pi is a cap? That is
easily gotten again through the Erdős-Szekeres result. Indeed, if |Ti| > ϕ(n, t) - where ϕ(n, t) is the
binomial coefficient in the bound (see lecture 2) - then either we have an n-cup, which means we
are done, or we have a t-cap Pi ⊂ Ti.

And how does one get this large a Ti? We know that each Ti has size at least N
264k

. But how do
we guarantee a large antichain in Ti? In fact, you cannot guarantee it. What if all the points of Ti

form a chain in Ti?

But at this point, we are reminded of Dilworth’s theorem:

Theorem 12. (Dilworth) If (P,≺) is a finite poset then either there is an antichain of size t or a

chain of size |P|
t

2.

This is a highly nontrivial theorem in extremal combinatorics, and while you must have seen
the statement before, I am not sure if you have seen its proof. I’ll come back to it later.

Let us tentatively set the size of Ti to be |Ti|α for some α > 0, and k = nβ + 2 with 0 < β < 1.
If (

N

264k

)α

>

(
t+ n− 4

n− 2

)
(6)

nβt ≥ n, (7)

then we have the following statement: If there are non-consecutive regions Ti such that the cor-
responding posets admits ‘large’ antichains (here the notion of large is, an antichain of size |Ti|α)

2Technically, one should keep floor and ceilings everywhere for this to read exactly but I shall routinely ignore
them for convenience.
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then in that case, if the numerics above work out well, then we have a possible improvement of the
Erdős-Szekeres bound!

That sounds like a huge wish list, so let us see if at least the numerics work out. The second
inequality suggests that we take t = n1−β. Now Stirling’s formula gives us that the RHS of the
first inequality is approximately(

n+ n1−β − 4

n− 2

)
=

(n+ n1−β − 4)!

(n− 2)!(n1−β − 2)!

≈ (n+ n1−β − 4)n+n1−β−4 ·
√
n+ n1−β − 4

(n− 2)n−2 ·
√
n− 2 · (n1−β − 2)n1−β−2 ·

√
n1−β − 2

≈ nn+n1−β−4 ·
√
n

n(n−2)+(1−β)(n1−β−2) · n1−β/2

= 2K

where

K =
(
n+ n1−β − 4 + 1/2− (n− 2)− (1− β)n1−β + 2(1− β)− 1 + β/2

)
log2 n

≤ βn1−β log2 n.

But on the LHS of the first inequality of our wish list, we have
(

N
264k

)α
, so if we set N = 2(1+ε)n,

this gives us (
N

264k

)α

≥ 2(1+ε)αn−64αnβ

so that if
(1 + ε)αn− 64αnβ > βn1−β log2 n

we are through. But this holds for n sufficiently large, so indeed what we were trying will work!

Of course, before we all start patting our backs, let me remind you that all we have done is,
under a certain situation, our scheme will get us through. But what do we do if the dream situa-
tion does not happen? Let us write that out more explicitly: Let us color the region Ti Red if the
corresponding poset admits an antichain of size |Ti|α and Blue if the poset admits a chain of order
|Ti|1−α. Our dream scenario was, the presence of at least n1−β non adjacent Red Ti’s.

At this juncture, it is necessary that t is smaller than k, and since our computation earlier did
not need any specific value for α or β, this forces us to make one commitment; let us set β = 2

3 , so

that t = n1/3.

So, what if this dream scenario does not pan out? Then we can conclude that there are at least
n1/3 consecutive Tj , Tj+1, . . . such that in each of these sets, there is a chain Qi of size at least

2(1+ε)n−65n2/3
.

This is a good place to stop.
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IMOTC 2020
LECTURE 4: Dessert - The cherry on the cake à la Suk

So, a quick recap on where we are perched currently. We are now in the situation where there are

n1/3 consecutive regions with each of these having chains of size at least |Ti|1−α ≥
(
2(1+ε)n

265n
2/3

)1−α
.

Let us call these chains Q1,Q2, . . . for convenience and let us label the points inside Qi according

to ≺ as Q
(i)
1 , Q

(i)
2 , . . ..

Following Suk, let us call a subset Y ⊂ Qi a right cap if Pi ∪ Y is in convex position, and
Y ⊂ Qi−1 a left cap if Pi ∪ Y is in convex position. Figure 2 illustrates this for convenience. If the
line Pi−1Pi is a vertical line, then a left cap in Qi−1 is precisely a cap, and a right cap in Qi is a
cup in the usual sense. There are two important consequences to note following this definition:

• Since each Qi is a chain, by the definition of the poset, every triple of points in Qi is either
a left-cap or a right-cap, but cannot be both.

• If Q
(i)
y ≺ Q

(i)
u ≺ Q

(i)
v ≺ Q

(i)
w are distinct points in Qi, and if Q

(i)
y , Q

(i)
u , Q

(i)
v form a left

(right) cap, and Q
(i)
u , Q

(i)
v , Q

(i)
w also form a left (resp. right) cap, then Q

(i)
y , Q

(i)
u , Q

(i)
w and

Q
(i)
y , Q

(i)
v , Q

(i)
w also are left (resp. right) caps. Consequently, by the combinatorial version of

the Erdős-Szekeres bound, it follows that if |Qi| > ϕ(k, ℓ) then Qi has either a k-left cap or
an ℓ-right cap.

Consider the chains Qi−1 and Qi. Here, is Suk’s second critical observation:

Observation 0.2. If P ⊂ Qi−1 is a k-left cap, and P ′ ⊂ Qi is an ℓ-right cap, then P ∪P ′ is a set
of k + ℓ points in convex position.

Figure 2 gives an illustration of this with a 3-left cap and a 3-right cap in consecutive regions.

To prove this observation, we shall show that every four points in this union forms a convex
quadrilateral. It is an easy and well-known fact that if a set of points has the property that every
four among them are the vertices of a convex quadrilateral, then the points are in convex position.

Consider a set Q1, Q2, Q3, Q4. If all of these are in P or all in P ′ then by assumption they are
in convex position. So, suppose that, without loss of generality, that Q1, Q2 ∈ P and Q3, Q4 ∈ P ′.

Since the sets Qi are chains with respect to ≺, a moment’s reflection3 will tell you that the line
Q1Q2 does not meet Ti and similarly, the line Q3Q4 does not meet the region Ti−1. Note that while
in general the regions Ti are not necessarily triangles, the ones in the ‘middle’ like the ones we are
dealing with currently, are triangular. Consequently, these lines do the requisite job, i.e., for each
of these points, these lines have the property that the other points are all on the same side of this
line.

3Many authors from the sixties and seventies have used this phrase rather nonchalantly, but the ambiguousness
that comes from this phrase has led to its disuse in recent times. This is sometimes referred to, maybe with a hint
of derision, as the ‘Reflection Principle’.
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Figure 5: Points Q1 ≺ Q2 ≺ Q3 in Qi.

Now, the other case. Suppose Q1, Q2, Q3 ∈ Qi−1 and Q4 ∈ Qi. Assume that Q1 ≺ Q2 ≺ Q3.
Note that the line parallel to Pi+1Pi+2 passing through Q4 has all the other Qi on one side of this
line. Since Qi for 1 ≤ i ≤ 3 are in the chain Qi−1, the lines formed by a pair of these three all
touch the line segment ℓi−1. In particular, both the points Pi and Q4 lie on the same side of the
region bounded by the lines formed by these three pairs. This establishes the observation.

Let us see where this takes us. Start with Q1. By assumption, |Q1| ≥
(

N
264k

)1−α
. If this is

greater than ϕ(K,n) for some K, then without loss of generality, Q1 contains a K-left cap. Now,
Suk’s ingenious idea is this: Consider Q2; by the previous observation, if there is an (n − K)-
right cap here, then the union of this along with the K-left cap in Q1 gives us n points in convex
position. So, if we wish to build upon this, then we should force a larger left cap in Q2. So, the
natural formulation is: If |Q2| > ϕ(2K,n−K) then either we are done or there is a 2K-left cap inQ2.

Let us now continue this a little longer. For the sth chain Qs, we wish to force |Qs| >
ϕ(sK, n − (s − 1)K) then either we are done, by having n points in convex position coming from
the union of the (s−1)K-left cap in Qs and the n− (s−1)K-right cap in Qs, or there is an sK-left
cap in Qs. We can continue this till n1/3 times, so if K ≳ n2/3, and all the inequalities we have
imposed hold, then we are through!

But again, let us get to work. We need(
2(1+ε)n

265n
2/3

)1−α

>

(
sK + (n− (s− 1)K)− 4

sK − 2

)
=

(
n+K − 4

sK − 2

)
for all 1 ≤ s ≤ n1/3. (8)

Let us simplify things again for computations’ sake. Set K = nγ for some 2
3 ≤ γ < 1. Since(

n+K − 4

sK − 2

)
< 2n+K−4

we may as well require that (
2(1+ε)n

265n
2/3

)1−α

≥ 2n+n2/3−4.

We are just setting K = n2/3. Note that so far, our choice for α has been uncommitted.
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Figure 6: A 3-left cap and a 3-right cap in consecutive regions. The union of these two forms a
convex 6-gon.

Now, the final assault. Let us take log2 on both sides to simplify our requirement. We need

(1− α)
(
(1 + ε)n− 65n2/3

)
≥ n+ n2/3 − 4.

Here, we think of ε > 0 as fixed, but arbitrarily small (less than 1/2, say). But now, we get to
pick α! Choose α > 0 small (for instance α = ε/10, say); then it suffices to show

n

(
1 +

9ε

10
− ε2

10

)
− 64n2/3 ≥ n+ n2/3

or more simplistically, if we have
4εn

5
> 65n2/3

then we are through. But this certainly holds for all large enough n, so we are through with room
to spare!

Actually, our choices here were quite arbitrary. In a sense, asymptotics works best when
you choose values that are easy to work with. But, even with that caveat, there was an abun-
dance of room here, and indeed, Suk proves (with some more care in making the estimates) that

N(n) = 2n+6n2/3 logn works for the same proof. This is stronger than what we have in our calcula-
tions.

That finishes the proof of Suk’s theorem.

How good a result is this? It is interesting to know that before this result, the best known
bound was

N(n) ≤ 7

16

(
2n− 4

n− 2

)
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which barely makes a dent on the original bound. This one brings the exponent very close to n.

But then, how close is this to proving the Erdős-Szekeres conjecture? There, we are still
‘infinitely’ far off. But maybe some day...
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