Some Select Topics in Extremal Graph Theory
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here are not mine; in fact Conlon’s course material contains the first two ‘chapters’ of these notes.
The part on the Regularity lemma are by now pretty standard material, and the applications are
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claim either. This is simply the way I taught these topics in this course.

There is also likely ‘irregularity’ in the way the different topics are presented here, and that would
be owing to the fact that the scribes brought in their perspective in their writing. The students
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Graph Theory Fall 2018

Turdn Number for Odd Cycles: ex(n;Coriq) = L”TQJ for n >0
Scribe: S Deepak Mallya

In this lecture we will consider the extremal number for odd cycles. We use the Erdds-Stone-
Simonovits theorem and the result on extremal number for paths. Both are stated below.

Theorem 1 (Erdds-Stone-Simonovits). For any fized graph H and any fixed € > 0, there is ng =
no(H,€) such that, for any n > ng,

Theorem 2. If G satisfies

k—1
e(G) > “— 1G]

then G contains a path of length k.

Theorem 3 (Relative Density Theorem). For k > 2 and € > 0, there exists 6 = d(k,e) > 0 and
no = no(k,€) such that if G is Coky1 - free on n > ng vertices with at least (i — 5)n? edges, then
G may be made bipartite by removing at most en® edges.

Proof. Let us prove this result for § = %, with L > 0 and n sufficiently large. First, let us find
a subgraph G’ of G with large minimum degree, §(G’) > $(1 — 4v/5) |G’|. If G has vertices which
don’t satisfy the minimum degree requirements, we drop those vertices one by one, iteratively, till
the requirement is met on the induced subgraph of G. The number of vertices in the final subgraph
G’ must necessarily satisfy |G’| > (1 — 4v/§)n. Because for |G| = (1 — 4v/0)n we have,

|G|
(G > e(@)~ Y L1 4VE)i
i=|GY|+1
> (% —8)n? — %(1 —~ 4@(('0'; 1) - <‘G ‘; 1>) @)

> |a'f (% +1)

for some n > 0. This will contradict the assumption that Corr1 € G (from the Erdés - Stone
- Simonovits Theorem with y(H) = 3 for Coyy1). Therefore, we have a subgraph G’ € G with
|G| > (1 —4V6)n and 6(G") > 3(1 — 4V6) |G|

Since ex(n; Cox) = o(n?), we know that for n (and therefore for |G'|) sufficiently large, the graph
G’ must contain Cyi. Let vivg - - - v9y be such a cycle with vertices in that order. Note that, N(v;)
and N (v2) cannot intersect, else there will be a cycle of length 2k + 1. Let A and B be two induced
graphs such that, V(A) = N(v1) — {v1,...,v9t} and V(B) = N(va) — {v1, ..., vax }

For n > 0,

!
|A|,|B| > ‘(;2‘(1 —4V6) — 2k > 3(1 — 8V/6)
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Both A and B contains at most k |G| edges (by ex(n, Pay)).
Deleting all edges in A, in B and from both A and B to V(G) \ (AU B), we get a bipartite graph.
The number of edges deleted is at most,

2kn + 8V on?.

2

So given € > 0, n > 0 and § = ¢, we would have deleted at most en? edges to get the bipartite
graph. O

Using the Relative Density Theorem, now let us move on to the main theorem.

Theorem 4. Forn >0,
n2
ex(n, Copy1) = LlJ

Proof. Let G be a Cyx4q - free graph on n vertices with the maximum number of edges. It will
have atleast L";J edges (from e(K|z | 27) = L”TQJ and K|z 21 does not contain Copi1).

From the previous theorem, we may also assume that §(G) > 3(1—4+/e)n. If not, we can add more
edges to it without introducing Coy1.

Also, from the previous theorem, we know that G is approximately bipartite between two sets of
size roughly %. Consider a bipartition V(G) = AU B such that e(A) + e(B) is minimized. Then,
e(A) + e(B) < en? where ¢ > 0 may be taken to be arbitrarily small provided n >> 0. We may
assume that A and B have size (3 £ v/e)n. Else, e(G) < |A||B|+en® < %2 which is a contradiction
to the maximum size of G.

We claim that there are no vertices a € A such that [Na(a)| > 2y/en. If |[Na(a)| > 2+/en, then
INg(a)] > 2y/en. This is because, else we can find a better partition with less number of edges
in e(A) + e(B). Moreover, AN N(a) and BN N(a) span a bipartite graph with no path length of
2k — 1 and therefore there are at most kn edges between them. For sufficiently large n, this gives
the number of edges missing between A and B to be

4en? — kn > en? > e(A) + e(B).

In that case, e(G) < |A||B| — 3en? < %2 again a contradiction to the number of edges in maximal
G. Therefore, for a € A, |[Na(a)| < 2y/en. Similarly, for b € B, |[Np(b)| < 2\/en. Now suppose
there is an edge in A say aa’. Then,

|Np(a) N Ni(@)| > N(a) - 2v/en + N(d') — 2v/en — |B| > (% 9y

. Let A" = A—{a,d'} and B’ = Np(a) N Ng(a'). There is no path of length 2k - 1 of the form
bia — 1bsas...by_1a,_1bx between A’ and B’. But this implies there is no path of length 2k. This
implies that e(A’, B") < kn, which in turn says,

2
e(G) = e(A, B') + e(A — A, V(G)) +e(V(G), B — B') > kn + 2n + "Z — 8len?.

This is also a contradiction for large n. Hence this shows, ther% can be no aa’ in A. Hence, graph
G with maximum number of edges is a bipartite graph with | %] edges. O



Graph Theory Fall 2018
Cycles of Even Lengths in Graphs

Scribe: Kunal Mittal

In the last lecture, we saw the following theorem:

Theorem 5. For every k > 1, ex(n,Copy1) = |n%/4] for sufficiently large n (depending on k),
where Copy1 means a simple cycle on 2k + 1 vertices.

This leads us to the next question, that of graphs without even cycles. The following result was
first conjectured by Erdés (1964) and then later proved by Bondy and Simonovits (1974):

Theorem 6. (Bondy-Simonovits) For all natural numbers k > 2, there exists a constant co = co(k),
such that ex(n, Cor) < con'TV*, for sufficiently large n (depending on k).

We see that this gives a better upper bound than that obtained by excluding Kj ., best known to be
O(n2_1/ k) from the Zarankiewicz problem. It is conjectured that this result by Bondy-Simonovits
is tight. For the special case of k = 2, that is Cy4, we have already seen tightness through the idea
of projective planes: ex(n,Cy) = (1/2 4 o(1))n®/2.

As for lower bounds, we’ll prove later in the course that ex(n,Cor) > Q(n'+1/(E=1) by using
a simple probabilistic method by Erdés. Explicit constructions are also known, as by Lazebnik,
Ustimenko and Woldar (1994) which give lower bounds of Q(n'+?/(3¢=3)) for odd values of k and
Q(nHz/ (3’“*4)) for even values of k, but these are outside the scope of this course.

The rest of this lecture will be devoted to the proof of Theorem 6.

Proof of Theorem 6

We first state a lemma (without proof):

Lemma 7. Every graph H has a subgraph whose minimum degree is at least half the average degree
of H.

Suppose that H is a Cyy free graph on n vertices (n sufficiently large) with e(H) > con' Tk Then
d(H) = 2e(H)/n > 2con'/*, where d(H) denotes ‘the average degree H. By Lemma 7, H must
contain a subgraph G' of minimum degree 6(G) > d/2 > con'/*.

Pick a vertex x € V(G) and perform breadth-first search (BFS) starting from x. Define Vp = {z}
and V; = {y € V(G) |d(z,y) =i} for 1 < i <k, where d(x,y) denotes the distance between = and
y in the BF'S tree.

For relevant values of i, denote by G[V;] the induced subgraph on the vertex set V; and by G[V;, Vj41]
the bipartite subgraph induced by partitions V; and V; 1. For clarity, we’ll denote their number of
edges by e(V;) and e(V;, Viy1), and their average degrees by d(V;, Vii1) and d(V;) respectively.
The main proof relies on the fact that both G[V;] and G[V;, V; 1] are sparse, for all valid i. This is
formalized in the following lemma, which we will prove in the next section.



Lemma 8. There exist constants ¢y = c1(k) and ca = ca(k) such that for 1 < i < k—1 the following
hold:

[ Cl(VZ) S Clki.

o d(Vi,Vit1) < k.
Using this Lemma, we next show that number of vertices in V; blows up as we increase i. Let
= |V;|. The following lemma captures this:

Lemma 9. For 0 <i<k-—1, nz“ 2mn1/’“.

Proof. We Induct on 4. In the base case i=0, ny/ng = d(x)/1 > §(G) > con'/*, where d(z) denotes
the degree of x. Thus if co > 1/2, we are through.
For 1 <i <k —1, we have that

(Vi Visr) = 3 (dly) = dily) = di1(w)) = (D dlw)) = 2¢(Vi) = e(Vir, Vi)

yeV; yeV;
_ 1.
> ((5(G)ni —d(Vi)n; — §d(VZ~_1, Vi)(ni—1 + nz)) > (conl/kni —c1kn; — czk:ni)

= (conl/k —c1k — cok)n; > %Onl/kni (for n > 0).
where the second inequality uses Lemma 8 and fact that n; > n;_; which comes by induction and
that n is large. Here d;(y) denotes the degree of y to vertices in V; and d;_1 ;(y) denotes its degree

to vertices in V;_1.

Also, by Lemma 8, we have that

1- cok
e(Vi,Viy1) = §d(‘/%, Vig1)(ni +nig1) < 7(7% +nig1)
Combining both equations, we get 3 n/kn; < CQk(nz + niy1), giving ”1 > C‘;Okn Vk_1> QCanl/k
(for n > 0). O

From Lemma 9, it is easy to prove the main theorem, i.e., Theorem 6.
Applying the lemma, we get that ng > (zgﬁnl/ k)k > (;Toz)kn which gives a contradiction in the
case when cg > 2c0k.

A note on the constant factors involved:

In the following sections, we’ll show that Lemma 8 holds for ¢; = 4 and ¢y = 2. This ¢y works in
the base case of Lemma 9, and shows that ¢y > 4k works.

Hence, we have proved ex(n, Coy) < (4k)n!*+1/k.

In fact, a careful analysis of this proof by Pikhurko (2012) shows that ex(n,Co) < (k — 1 +
o(1))n**1/k In our proof, at two places we say that n > 0 and relax by a factor of 2. This gives

the improvement of a factor of 4 on better analysis. Also, in Lemma 8, we choose c1k and cok as
2k and 4k, whereas 2(k — 1) and 4(k — 1) suffice.



Proof of Lemma 8

Before we go on to prove this lemma, we make note of some useful lemmas.

Lemma 10. Every graph G has a bipartite subgraph in which each vertex has degree at least half
of its degree in the original graph.

Proof. Done earlier. O

Lemma 11. Given a bipartite graph G, with 6(G) > d (d > 3), then G has a cycle of length at
least 2k with a chord.

Proof. Consider a longest path in the graph. Observe that the first vertex must have all its neigh-
bours in the path itself (since the path is longest). The rest comes from the fact that the degree of
the first vertex is at least d and that G is bipartite. O

The proof of the next lemma is quite non-trivial and will be dealt in a separate section.

Lemma 12. Suppose G is a cycle of size t with a chord, and suppose (A, B) is a non-trivial
partition of its vertex set. Then for any 1 < ¢ < t, there is a path of length £ starting in A and
terminating in B, unless of course G is bipartite with respect to the partition (A, B).

Now we go on to prove Lemma 8 (in two parts).

Lemma 13. For 1 <i<k—1,d(V;,Viy1) < cok

Proof. We prove the lemma for co = 2. Let d(V;, Viy1) > 2k. Then by Lemma 7, G[V;, Vi41] has
a subgraph F' with minimum degree as k. Since G|[V;, V;11] is bipartite, F' is also bipartite and by
Lemma 11, the graph F' and hence G[V;, V;11] has a cycle of length at least 2k with a chord. Call
this cycle + chord as the subgraph C'. Let XUY be the partition of V(C) with X € V; and Y € V4.

Consider the BFS tree starting at = and let y € V; (j < i) be a closest vertex to V; (j is max
possible) such that all vertices of X are descendants of y. Since y is closest, no child of y admits
all vertices of X as its descendants. Let z be a child of y which admits a non-trivial and non-entire
subset of X as its descendants. Let A = descendants of z in X, and B = (X UY) \ A. Clearly
(A, B) is not a valid bipartition of C, since B has vertices in both X and Y and has edges of C
among its vertices.

Then by Lemma 12, there is some ag € A and by € B and a path of length 2k — 2(i — j) starting
from ag and ending in by that lies in G[V;, Viy1]. Also, since ap € A C X and the path is of even
length, we have that by € X. Since by &€ A, the earliest common ancestor of ag and bg in the BFS
tree is y. But then y ~» by ~ ag ~» z — y is a cycle of length 2k (where by ~> ag is in C), giving a
contradiction. O

Lemma 14. For 1 <i<k—1,dV;) < a1k

Proof. We prove the lemma for ¢; = 4. Let d(V;) > 4k. Then by Lemma 10, G[V;] has a bipartite
subgraph T with d(T) > d(V;)/2 > 2k (since each vertex in T has degree at least half that in G[V]
the average degree of T is also atleast half of that of G[V;]).

The rest of the proof follows exactly as in Lemma 13, by replacing V; and V;41 by the two bipartitions
of T. O



Proof of Lemma 12

This Lemma is independent of our main theorem. We state it again and then give a proof.

Lemma 15. Suppose G is a cycle of size t with a chord, and suppose (A, B) is a non-trivial
partition of its vertex set. Then for any 1 < ¢ < t, there is a path of length £ starting in A and
terminating in B, unless of course G is bipartite with respect to the partition (A, B).

Proof. Let the vertex set of G be V. ={0,1,...,t — 1} and let the chord be between vertices 0 and
r. We can assume that r < ¢/2 by looking at the cycle clockwise or anti-clockwise. Also, r > 2
since r = 1 means that it is an edge and not a chord.

By a simple path, we mean a path starting in A, terminating in B and not using the chord. Let
BAD = {i| G has no simple path of length i}. If BAD = (), we are through. Suppose BAD # ().
Let s be the minimum element of BAD. We must have that s < ¢/2, since by symmetry s € BAD if
and only if t—s € BAD. Also, s > 2, since simple paths of length 1 (edges) from A to B must exist.

Let x = x4 be the characteristic function of A, that is x : V" — {0,1} is given by x(i) = 1 if
and only if © € A. Let z € V. We must have

x(z+ As) = x(z) for all A € Z (2)

where all additions are modulo t. This also gives that x(z) = x(z + As + ut) for all \,u € Z,
giving that x(z) = x(x + d) where d is the gcd of s and ¢t. This uses the fact that ged(s,t) can
be represented as As + ut for appropriate A, € Z. Since this is true for all z € V, we have that
d € BAD. But s is the minimum element of BAD giving that s = d and st.

The same argument shows that for any s; € BAD, s|s;.

What is remaining is to find paths of length is, for 1 < ¢ < t/s — 1, starting and ending in
different partitions. Consider the following cases:

1. s>r: Wehaveis <is+r—1< (i+1)s and hence there must exist a simple path of length
is+r —1 (s divides the length of all bad paths). We can assume by shifting (due to equation
2) that this path starts at —s < j7 < 0. This simple path ends at 7' = j+is+r—1>1r
giving that x(j) # x(j'). Since 1 <i < t/s—1, the path doesn’t wrap around and j' < t + j.
Consider the path j ~» 0 — r ~» j/. This is a path of length is beginning at j and ending at
3" with x(5) # x(J")-

2. s<r<t—s: Let —s < j <0 and consider the following paths (of length s):

(a) j~~>0~r—j—s+1

(b) if j#0thens+j~0—=r~r—j—1
elseif j =0then 0 - r~r+4+s—1

If either of these is a path starting in A and ending in B (or vice-versa) we have found the
required path of length s. Now we can extend it in both directions (using equation 2) to get
longer paths (multiples of s) until the number of vertices not in the path is less than s (and
non zero) on both sides of the chord. Then at this point we have t —2(s — 1) <is+ 1, giving



t/s —1 < i since s|t. Thus we have found all required paths.

In the remaining case, we must have that for all —s < j < 0 both the paths start and
end in the same partition. That is, for —s < j < 0, we have

X(r=j—1)=x(s+7j)=x() =x(r—j—s+1)=x(r—j+1)

using shifting as per equation 2 (works for j = 0 as well by appropriate shifts). The above
equation gives that x(i) = x(i+2) for r—1 < i < r+s—1. Since we have this for an interval
of length s, we can obtain it for all ¢ by shifting by s.

Hence we have that for all ¢ € V', x(i) = x(¢ +2). This gives that 2 € BAD and hence s = 2.
In this case we have an even cycle (s divides t) and vertices of the cycles alternate between
A and B. Now, if the chord is between the same partition, we have the required paths of all
lengths less than ¢. Otherwise, the graph is bipartite with respect to the partition (A, B),
completing the proof.

O]



Graph Theory 2018
Szemerédi’s Regularity Lemma
Scribe: Anand Radhakrishnan

Random Graphs

Suppose p € (0,1) is a fixed real. G(n,p), the Erdos-Renyl Random Graph is given as follows:

G(n,p): Suppose for each edge e € <[Z]>, X, is an i.i.d. sequence of Ber(p) random variables,
Xe ~ ( 11) ] Ep > and X, is independent i.e. for any e, € {0, 1}, P(Ae(Xe =€) = H P(X, = €.).
e

Suppose G = G(n,p), and for x € [n] define dg(z) := {y € [n] : 2y € E(G)} = Sum of n — 1
independent Ber(p) ~ Bin(n — 1,p). Then

Eldg(z)] = (n—1)p,

V(da(z)) (n —1)p(1 —p), and
e(X,Y) = Bin(|X|[Y] p)

for X, Y CV(G) with X NY = 0.

e-Regularity

Definition 16. Given 0 < € < 0.1, Suppose X,Y are disjoint subsets of V(G). We say that (X,Y")

is e-reqular if for any X' C X, Y' CY with %, % > €, we have |[d(X')Y) —d(X,Y)| < e, where

d(X,Y) = T%g//‘) denotes the density of pair (X,Y).

Regularity Lemma

Theorem 17. (The Regularity Lemma of Szemerédi): Given 0 < € < 0.1, there exists M = M/(e)

such that any graph G on n vertices admits a partition V = VoUViU---UVy such that the following
hold:

(i) Vol < en.
(11) Vil = |Vj| for all1 <i,j <k
(iii) k < M.
(iv) At most €k? of the pairs (Vi,V;) are not € regular.
Note that
e The regularity lemma of Szemerédi gives non trivial information only when e(G) = Q(n?).

e M(e€) turns out to be humongously large.



Suppose X,Y are both partitioned further by a partition P’. Pick z € X,y € Y uniformly
at random. Consider the random variable z = d(X’,Y”’) where X’ and Y’ are parts in P’ and
x e Xy eVY'. If (X,Y) is a disjoint pair, define ¢(X,Y) := pﬂ#dQ(X, Y). And if P’ is a
partition of X UY, define
Q(Pl) - Z Q(X/7Y/)'
X'CX

Y'CY
X'Y'ep!

q(P) is called the mean square density of the partition P.

Lemma 18. Suppose (X,Y) is a disjoint pair, and suppose P’ is a partition of X UY. Then
q(P") > q(P) where P = X,Y.

Proof. We claim that

P —q(P) = d(X,Y)—d( XY’ 2| XY
q(P') —q(P) = E (d(X,Y) —d(X",Y")) T
X'\ Y'eP'

Indeed, the RHS can be expressed as the sum of the following three terms:

1 1
= Y EEIXY| = (X, Y) =5 = a(P)

n
X'eX
Y'eY
X')Y'eP!

1 2 !/ / ! ! /
3 E d* (X YO)[X'|[Y'] = q(P").
X'eX
Y'ey
X' Y'ep!

-2 ! ! / ! -2 2

= > AL Y)XY| = X Y)IXIY] = ~2(P).
X'eX
Y'ey
X' )Y'eP!

Thus, the total summation, which is clearly positive as it is a sum of squares is equal to ¢(P')—q(P),
proves that ¢(P’) > q(P). O

Remark: By the Cauchy Schwartz inequality it can also be seen that ¢(P) < 1.

Lemma 19. Suppose (X,Y) is not € reqular, and consider P = {X*, X/X*}U{Y*,Y/Y*} where
(X*,Y™) witnesses the € irreqularity of the pair (X,Y). Then

XY
x|

a(P) = a(P) > 45
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| XY

Proof. By the definition of e-irregularity, =T 2 € and [d(X*,Y*) —d(X,Y)| > e. Then,
X'||Y’
dP)—aP) = Yy —dex )

X'e{X* X/X*}
Y'e{y*Y/Y*}

1
> EXHY| =
n
X|lY
SEWIESlN
n
and that completes the proof. ]

Now, we are in a position to complete the proof of the Regularity lemma.

Proof. Suppose we have a parition VoUV UVa. . .UV}, which is equitable, with |Vj| < en and suppose
P ={Vy,...,Vi} is not e- regular i.e. there are more than ek? pairs (V;,V;) such that these pairs
are not e-regular. For each irregular (V;,V}), get, as indicated in lemma 19 a partition (V;*, Vi/V;*)
and (V},Vj/V}) and consider the common refinement induced by all these irregular pairs. Call
this partition P;. By lemma 19 we have

4 K? €
q(P1) — q(P) > ¢! €n2 (1—e?> 5

Note that the V; is partitioned into at most 2¥~! parts in P. Cut each of these so that the Vj is
now partitioned into 4* parts and put the residual vertices into V;. Call this resulting Partition P’.
Then

£

(i) P"is equitable of size b = .

5

(ii) ¢(P') = q(P1) > q(P) + .
(iii) [Vo| < Vol + k2815 < |Vol + 2%

Note that

ap)= > e, <

1
— 2
1<i<j<k

Thus this suggests: Start with an arbitrary partition of V' into kg parts Wlth <5 " and ko >
so that initially, |Vp| < kﬂ < . Furthermore, if P is not e-regular, then as stated above, get a

refinement of P. Note that the refinement iterations must happen at most < % L times as q(P) < %
Also, eventually,

Vo™ < V™| + g5 5 < en
by the choice of the parameters. This completes the proof. ]
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Remarks

1. One may wonder if the size of M(e) may be reduced by a ‘better’ proof. But as was first
proved by Gowers (1996) and improved by several others since then, there exists graphs
for which a tower type bound for M(e) is in fact necessary, i.e. there exist graphs with
M (e) = Q(Tower(e)) for some constant ¢ > 0.

2. The definition of € regularity of a partition only requires that the number of irregular pairs
at most ek?. As it turns out, there are graphs for which the irregular pairs one will nonethe-
less get is of the order lo’;—ik where log*n is defined to be the least integer m such that
log(log---log)---)n < 1.

~
log appears m times

SRL Applications

Suppose e(Gy) > en? for some fixed € > 0. Let {Vp,...,Vi} be an § regular partition. Also, let
k> %. Now we begin a ‘purification’ process by deleting the following edges in the graph:

(i) Edges incident to Vp. This removes at most gn|Vp| < §n2 edges from G.

(ii) Edges within V; for each i. This removes at most % < gn? edges from G.
(iii) Edges between irregular pairs. This removes at most ek?c? < §n2 edges from G.
(iv) Edges between pairs having density less than §. This removes at most §n2 edges of G.

The ‘purified’ graph still has more than %nQ edges and is an (g,d) regular graph with density
between pairs at least 6 = 7. This essentially means that each pair (V;,Vj) is § regular with
density > 6 = i.

This leads us to define the ‘reduced’ graph Rs(IT) whose vertex set corresponds to the parts obtained
after the aforementioned purification process, with (V;,V;) being adjacent in R(II) iff the pair is
e-regular with density at least § for some prefixed § > 0. This is directly used in the counting
lemma (that we shall prove later) which says that if the reduced graph has a copy of a graph H,

then the original graph G has > nn!?| copies of H for some n = (e, H).

Lemma 20. (Counting Lemma): Let H be a fized graph. Suppose Rs(Il) is the reduced graph as
described above (from an e-regular partition of a graph G), and suppose H appears as a subgraph
of Rs(I). Then there exists n := (0, e, H) such that G contains at least nn¥| copies of H.

12



Graph Theory Year 2018
Regularity Lemma: Applications
Scribe: Anasuya Acharya

The Regularity Lemma for dense graphs basically states that there exists a partitioning of the
vertex set of the graph into almost equal parts s.t. between all pairs of vertex sets, for large enough
subsets the density of edges between them is close to density of edges between the vertex sets.

Definition 21. A random graph G, is a graph on n nodes and each edge is present with the
probability p.

For a graph G, p, let X,Y C V(G), then the number of edges between X and Y,

Ple€ E(G)) =p
E(X +Y) =EX +EY

E(e(X,Y)=E( Y Ifz,y))

zeX,yeYy

— Y Plefa,y)

zeX,yeY
= p|X|Y]

.. the number of edges between X and Y is very close to p|X||Y| with high probability.

Szemerédi’s Regularity Lemma

Some preliminary definitions:

Definition 22. For a graph G, let X, Y C V be two disjoint non-empty parts of the vertex set.
The density of (X,Y) is

e(X,Y)  # edges between X and Y
(XY (XY

Definition 23. For a graph G and € > 0, let A,B C V be two disjoint non-empty parts of the
vertex set. The pair (A, B) is e-regular if VX C A, |X| > €|A| and VY C B,|Y| > €|B|,

d(X,Y) =

|[d(X,Y) —d(A,B)| <e

Definition 24. A partition of the vertex set V(G) = VoUViU- - UV} is said to be an equipartition
if [Vi| = - = |Vi|, with Vi being an exceptional set.

Definition 25. For a graph G(V,E) and € > 0, an equipartition V(G) = Vo UVL U --- UV}, with
[Vo| < €|V is an e-regular partition if all but at most ek? pairs (V;,V;), 1 < i < j < k, are
e-reqular.

13



Theorem 26. (Regularity Lemma) Ve > 0,t € N, 3 integer T = T'(t,€), s.t. every graph G(V, E)
with |V| =T has an e-regular partition V(G) =V, U--- UV, t < KT

That is, Ve, t3T s.t. for every graph G on at least T vertices there is a Szemerédi Partition of
G, i.e. a partition with the properties:

e V(G)=ViU UV, t<k<T

o Vil == Vi +1

e all but ek? pairs are e-regular

Lemma 27. (Counting/Embedding Lemma) Let H be a graph and § > 0, then there exists an
e =€(H,d) > 0 sufficiently small and ng = no(€) € N sufficiently large such that:
If r=x(H), and G is a graph with V(G) = A1 U---U A, s.t.

o |[Al|=-=|A|=n>ng

(Ai, Aj) is e-reqular and 6-dense for all1 <i < j<r

then graph G contains > %5€(H)n”(H) copies of H.

Proof Outline using Regularity Lemma:

1.

Apply the Regularity Lemma on graph G with e sufficiently small. This gives us an
equipartition of V into k sets.

. Derive a Reduced Graph R with

V(R)={V1,-,Vi}
E(R) ={(V;,V;) : (V;,V}) is eregular and has density > ¢}

. Clean up the graph, removing edges from less dense sections. The edges removed are as

follows:

e edges meeting Vj: < en.n

e non e-regular pairs: < ek?.(n/k)? = en?

e non d-dense pairs: < dn?

e edges within single part: < k(”ék) < k.%z = "—; < "72 = en?
Therefore, total edges removed is at most (§ 4 3¢)n? < 20n? edges

Find the number of edges R has

. Apply the appropriate Standard Theorem in Graph Theory (e.g. Turan, Hall’s, etc) to R

. Apply the Embedding Lemma to find the subgraph H with desired property.

14



Application 1: Roth’s Theorem and Arithmetic Progressions

Theorem 28. (Roth’s Theorem) For every § > 0, there exists ng € N such that if n > no,
AcC {1, ---,n} with |A| > én, then A contains a 3-AP: {a,a + d,a + 2d}

The proof of Roth’s Theorem makes use of another lemma stated as follows:

Lemma 29. (Triangle-Removal Lemma) For every a > 0 there exists an 3 > 0 such that if graph
G on n vertices contains < Bn3 triangles, then all of them can be destroyed by removing an? edges.

Proof. Using Regularity Lemma Proof Outline:

1. Let o > 0 be small, suppose G has < An? triangles.
Let 0 = () > 0, and € = €(d) > 0 be small.
Apply Regularity Lemma to G with ¢ = 1

..
We obtain a Szemerédi Partition V(G) = V4 U--- UV} where 1 <k < T'(e, t)

2. Form reduced graph R with V(R) = {Vi,---,Vi} and
E(R) ={(V;,V}) : (V;,V}) is eregular and has density > §}.

Claim: R is triangle-free.

Proof. By contradiction following from the Embedding Lemma:
n

If R has a triangle, then 3V; ,V;,, Vi, of size 7 each, with edges between them being e-

regular and J-dense. By choosing 8 = §(«) sufficiently small, we ensure 7 is sufficiently

large. By Embedding Lemma, G contains > %53713 triangles, which contradicts the fact that
B <183 O

3. Count the edges not in e-regular and J§-dense pairs:

e non e-regular pairs: < en?
e non d-dense pairs: < dn?
e edges within single part: < en?

Clean up graph: Removes (§ + 2¢)n? edges. So, setting a@ = § + 2¢ destroys all edges not in
R.

4. Only edges left in G correspond to edges in R. As R is triangle-free, there are no triangles in

G.
O]

Proof. of Roth’s Theorem: Let § > 0, r be sufficiently large. Let A C {1,--- ,n} with |A| = in.
Claim: A contains a 3-AP.

Consider the tripartite graph G with V(G) = X UY U Z, X = [n], Y = [2n| and Z = [3n]. The
edge set F(G) ={zy:y=x+aforsomea € A}U{yz:z=y+aforsomea € Ay U{xz: 2=
x + 2a for some a € A}.

15



A triangle in G is {z,y,2} s.t. y=x+a, z =y +b, and z = x + 2¢, with a,b,c € A. So, a+b = 2¢
and (a,c,b) are a 3-AP.

Suppose A contains no 3-AP. This implies that G contains < n|A| triangles (only trivial ones with
a=b=c). |A| = on. Therefore, G contains < dn? < Bn3 triangles.

But all the triangles of the form {z,z + a,z + 2a} are edge-disjoint. This gives > dn? triangles.
Let @ = a(d) > 0 be small. The triangle Removal Lemma implies that 38 = () s.t. if there are
< pBn? triangles in G then they can be all destroyed by removing < an? edges. We take n to be
large and so An? >> én?, which implies that all triangles can be destroyed by removing an? edges.
This is a contradiction since G has at least én? edge disjoint triangles. O

Application 2: No-Corners Theorem (Ajtai-Szemerédi)

A lattice point is an element of N2 C R2.
Definition 30. A corner is a triple of lattice points of the form (x,y), (x,y +d), (z +d,y).

Theorem 31. Given § > 0, there exists Ng = No(6) s.t. for all N > Ny, if A C [N]? =
{1,--- ,n} x {1,--- ,n} s.t. A has no corners, then |A| < §N2.

Proof. Consider the graph G with vertex set partitions: H = [N],V = [N],S_1 = [2n — 1] repre-
senting lines that are horizontal, vertical, and having slope -1 respectively. An edge in G between
two vertices (representing lines) corresponds to an intersection between the lines in A.

Let A C [N]? be corner free and suppose |A| > dN2. A triangle in G would correspond to
intersections in a horizontal (H), a vertical (V), and a slope = -1 (S_1) line, i.e. either a corner in
R? or all three lines intersecting at a point: a ’trivial’ triangle.

Note that every point of A corresponds to a ’trivial’ triangle in G. But these trivial triangles are
edge disjoint. Then 3 > JN? edges that need to be deleted to make G triangle free. This, along
with the triangle removal lemma, further implies that G has > BN? triangles. Therefore, there
exists a non-trivial triangle and further, a corner in A.

Hence we have a contradiction. O

Application 3: Induced Matching Theorem

Definition 32. A maiching M in graph G is induced if the only edges of G connecting vertices
of M are those of M, i.e. the subgraph of G induced by the vertices of M is exactly M.

Theorem 33. (Induced Matching) If G, is the union of n induced matchings, then e(G,) = o(n?).

Let ¢ > 0 be arbitrary and n > 2M(e)/e?. If G,, is the union of k induced matchings, then
e(Gyp) < 2en? + ken for all large enough n

Proof. Applying the Regularity Lemma with density 6 = 2¢, let G” = G’ — Vj.

Claim: any induced matching in G” has at most en edges.

Let I; be an induced matching in G” with U = V(I);) as its vertex set and U; = U N'V;. Define
I ={i:|Uj| > €Vi|}, and set L = |J;c; U; and S = ¥. [S| < en. Hence, if |U| > 2en, then
|L| > |U|/2, and Ju,v € L that are vertices adjacent in ;. Let v € V; and v € V. We then have
an edge between V; and Vj in the reduced graph R of G”, and hence density > 2¢ between them.
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The sets U; and Uj, being of size larger than em each, would have density > € between them.
This means more than €|U;||U;| > min{|U;|, |U;|} edges, which is a contradiction with I being
induced. O
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Graph Theory 2018
The theorem of van der Waerden
Scribe: Shubhansu

In this part, we prove the van der Waerden Theorem which implies the existence of arbitrarily long
monochromatic arithmetic progressions in any coloring of natural numbers with a finite number of
colors.

Theorem 34. Given k,r € N, there exists W = W(k,r) € N such that every r-coloring x :
[1, W] — [r] admits a monochromatic A.P. of length k, i.e., there exist a,d € N and ¢ € [r] such
that x(a +id) = ¢ for alli € {0,...,k —1}.

Example 35. Note that W(1,7) =1 and W (k,1) = k trivially and W (2,7) = r + 1 by pigeon-hole
principle.

Proof Strategy

For [,m € N, we define m + 1 disjoint subsets of [0, ] (called I-equivalence classes) as follows.

Definition 36. The i"* equivalence class for 0 <i < m C; consists of all those elements of [0,1]™
where last i coordinates are all | and there is no | among the first m — i coordinates.

Example 37. For m =2, [ =4, the equivalence classes Cy, C1 and Ca can be represented as

Y

(0.4) T (4.4)

We shall prove the following:

Proposition 38. Given l,m,r € N, there exists N = N(I,m,r) such that for any x : [1, N] = [r],
3 a,di,...,dm € N such that a + ;" z;d; all have the same color on each (z1,...,xm) € C; for
each j € {0,1,...,m}, i.e each m + 1 of the l-equivalence classes of [0,1]™ are monochromatic (but
not necessarily the same color).

Note that in particular N = N(k,1,7) < oo implies there exists a monochromatic A.P. of length k
in any r-coloring of [N]. Hence, W (k,r) < N(k,1,7) < oo which proves Theorem 34.

18



Proof of Proposition

We use double induction on [ and m. Let S(I,m) denote the statement: N(I,m,r) < oo V 7.
Observe that N(1,1,r) =2 < oo V r € N. Hence S(1,1) is true. We break the induction argument
into two parts:

1. S(I,m) = S(I,m+1)

2. S(,m)VmeN= S(l+1,1)

Proof of 1

We need to prove that N(I,m +1,7) < ooV r € N.

Given an r, let N = N(I,m,r) and M = N(I,1,7"Y) and take N’ = N x M. For any r-
coloring x : [N'] — [r], divide the set {1,..., N’} into M blocks each of size N as {Bj, ..., By}
Consider an induced coloring on {Bjy,..., By} where the color of each block is the coloring se-
quence of its elements. Each block can be colored in one of 7V ways. Since M = N (i, 1,rN ) <
oo, there exists a one-dimensional [-length A.P., i.e., 3 ag,d such that the equivalence classes
{Bags Bag+d> Bag+2d-+» Bag+(1-1)a} and {Ba, 114} are monochromatic.

Since Bg, has N = N(l,m,r) elements, 3 a € By, di,....,d, € N and cg,c1,...,¢, € [r] such
that x(a + Y i, xid;) = ¢; for all (z1,...,2,) € C; and j € {0,..,m}, where Cy,C1,...,Cp, are
l-equivalence classes of [0,1]™. Define ' = a, dy = d x N, dy = dy, dy = da, ..., d, .| = dp,
o = €0, €} = Clyeney Cpy = Cpoand ¢, = x(d’ + S IdL). Now, it can be seen that x(a’ +
Z;Z{l z;d;) = ¢ holds for all (21, ...,27,,,) € C} and j € {0,..,m + 1}, where Cp, C1, ..., Cy, are
l-equivalence classes of [0,7]™ 1.

This implies N(I,m + 1,7) < N’ < oo since N = N(I,m,r) < oo and M = N(I,1,7V) < oo follow
from S(I,m) and S(I,1), both of which are true by induction hypothesis. Hence, S(I, m+1) is true.

Proof of 2

We need to prove N(1 4+ 1,1,7) < oo V r € N.

Given an r, let N = N(I,r,r). N < oo follows from S(I,r) which is true for all » € N by induction
hypothesis. Consider any r-coloring of [N], i.e., x : [N] — [r]. By definition of N, 3 ag, d1, ...,d, € N
and co, ..., ¢, € [r] such that x(ag + >_;_; xid;) = ¢; holds V (z1,...,z,) € Cj and j € {0, ..., 7}, i.e.,
each of the r+1 [-equivalence classes Cy, ..., C,. are monochromatic. By pigeon-hole principle, 3 0 <
p < q < rsuch that the classes C, and C; are colored the same (say ¢ € [r]), i.e., x(a+> i 7:d;) = ¢
V (21,...2r) € CpUCy. Then, x(ao + 23 1y i1 de +13 75, ;1 dk) =cV 2 €{0,1,..,1}, ie,
we get a monochromatic A.P. of length [ + 1.

Thus, in any 7-coloring of [N], we get a monochromatic A.P. of length [+1. Let this be {a+kd}, k €
{0,1,...,1}. Then d < N/l and hence a+ (I+1)d < N + N/I. Hence, we get monochromatic (I +1)-
equivalence classes, Cy and Cy of [0, + 1] in any r-coloring of [[N(1 + 3)|] ie. N(I+1,1,r) <

[N(1+14)] < o0 as N < oo by induction hypothesis. Hence, S(I +1,1) is true.
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The proof of Proposition 38 is now complete by double induction.

Observation 39. (Hilbert Cube Lemma): Substituting | = 2 and considering only the equivalence
class Cy in Proposition 38, we get the following result due to Hilbert -

Given n,r € N, there exists H = H(n,r) such that for any r-coloring x : [1, H] — [r], there exist
a,di,...d, € N and ¢ € [r] such that x(a+ Y ;" €d;) = ¢ for all (e1,...,€&,) € {0,1}".
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Graph Theory Year 2018
The Hales-Jewett Theorem
Scribe: Yash Karnik

We present a proof of the Hales-Jewett theorem due to Saharon Shelah (1988). This proof gives
better bounds than the original proof by Hales -Jewett, whose bounds were of the Ackermann type

Definition

A hypercube of size t in n dimensions, [t|" is defined as:
[t]" = {(x1,22,..xn) : x; € {1,2,..t}}

Definition
A combinatorial line in [t]” is defined as:
L = (x1,x2,...Xt)
where each x; € [t]" and satisfies
xi = (21, Tig, - Tip)

where, for at least one 1 < j < n
xij:iV1§i<t

and for the rest j’s
T1j = T25 = ... = Tty

Statement of the theorem

Given r,t € N | there exists H = HJ(r,t) such that if n > H, the r-coloring

X[t = [r]

admits a monochromatic combinatorial line.

Idea of Proof

We use induction on t.

HJ(r,1) =1 trivially

Let s = HJ(r,t — 1), that is, x : [t — 1]* — [r] ensures a monochromatic combinatorial line.
To make the induction work, we impose an extra criterion.

Definition

A coloring x : [t]"™ — [r] is called fliptop if, whenever x,y differ in exactly one coordinate, and that
coordinate has values t — 1 and ¢, x(x) = x(y)

So if coloring on [t]™ is fliptop, then any monochromatic line on [t — 1]™ of length ¢ — 1 extends to
length t.
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Definition

By a Shelah line in [¢t]™ we mean a combinatorial line whose first ¢ coordinates are constant at ¢ —1,
the next j — i coordinates are moving coordinates and the final n — j coordinates are constant at
t,with0<i<j<n

A point on any Shelah line is caled a Shelah point.

We can see that the number of Shelah lines is (”;1) because ¢ and j, which are distinct, with ¢ < j

can be chosen independently from {0,1,2,...n}

Let N(n) denote the number of Shelah points in a hypercube [t]" of dimension n.
Clearly, N(n) < (";rl)t
Definition

A Shelah s-space is defined by
L1 X L2 X ...LS

where L; is a Shelah line.
Through the moving coordinates of each of the s Shelah lines, which move from 1 to ¢, the Shelah
s-space admits a canonical isomorphism with [¢t]°.

Question 1
How large an n do we need such that x : [t|” — [r] admits a fliptop Shelah line, that is a Shelah
line with last two points colored the same?

Answer

n = r works. This can be seen by considering the r + 1 points:
(t—1t—1,.t—1),(t—1,t—1,.t—1,8),(t—1,t —1,...t — 1 t,8)...(t,t,...t)

each point having r coordinates with the ¢th point having the last i — 1 coordinates equal to t and
rest equal to t — 1. By pigeonhole principle, we have at least 2 of the r + 1 points colored the same,
as there are r colors. Thus, a fliptop Shelah line corresponding to those two coordinates is ensured.

Question 2

How large an n do we need such that there exists a fliptop Shelah 2-space in the coloring

X : [t]™ — [r], that is, the canonical isomorphism of the Shelah 2-space has a fliptop coloring?
Answer

We will try to get Ly x Lo as Ly C [t|™, Lo C [t]"2, with ny +ne =n
The Shelah 2-space looks like (x,y) where x is a Shelah point of dimension n; and y is a Shelah
point of dimension no.
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We will try to get a deriverd coloring x on [t]"2
1 - ey
that is,
y — (X(XLY)aX(XzaY)a ---X(Xle),Y))
By answer to question 1, if ny > #N() then ¥ admits a fliptop Shelah line Lo

As shown before, N(n;) < ("12“) t. So, ng > 7‘(n12+1)t suffices.
For any Shelah point x, in [t]™ and if y1,y2, are last two points of Lo, x(X,¥1) = x(X,y2).

Consider another derived coloring
el -

X — <X(Xa y1), x(X,y2), ---x(x,yt)>

If n; > r! from before, this coloring contains a fliptop Shelah line L;.
Thus L1 X Lo is the required fliptop Shelah 2-space.

Extending the Argument to Shelah 3-space

We will try to find three Shelah lines L1, Lo, L3 of dimensions n1, no, ng respectively.

Define a derived coloring

)2: [t]ng N [T}N(nl)xN(ng)

mapping all Shelah points z in [t]"® to a vector of colors [x(x,y,z)] of length N(n1)N(nz2), where

x and y are Shelah points in [¢]™ and [t]"2? respectively.
ny+1

So if ng > r(") S there exists a fliptop Shelah line Ls.
Similarly define another derived coloring
T [ - e
mapping all Shelah points y in [t]"? to a vector of colors [x(x,y,z;)] of length N(n;)t, where x is
a Shelah point in [t]"' and z; is a point on the Shelah line Ls.

If no > (”1; 1)t2, we can get a fliptop Shelah line Lo.

Finally define
[ — )

<55

mapping all Shelah points x in [t]™! to a vector of colors [x(x,y;j, zi)] of length 2, where y; and z;

t

are points on the Shelah lines Ly and L3 respectively. If ny > r 2, we can get a fliptop Shelah line

L.
Thus Ly X Lo x L3 is the required fliptop Shelah 3-space.
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Extending the algorithm to the general case

s—1
ny = Tt

ni+1:r’4i forl1<i<s—1

Il

j<i

n =nj + ne + ...ns guarantees a fliptop Shelah s-space.

Proof of the Theorem

We fix r and induct on ¢.

The base case where t = 1 is trivial with H.J(r,1) = 1 because the combinatorial line contains only

1 element.

Assume s = HJ(r,t — 1) exists and we will prove that HJ(r,t) exists too.

Consider n given by the recursive formula in the general case above which ensures the existence of
a fliptop Shelah s-space. We know that the Shelah s-space has a canonical isomorphism with [¢]®.
Further, consider [t — 1]°, a subset of the hypercube [t]*, which is isomorphic with the Shelah s-
space. Any r-coloring of [t — 1]°, admits a monochromatic combinatorial line of length ¢ — 1, by the

definition of s.

But, because the Shelah s-space is fliptop, the monochromatic combinatorial line in [t —1]° of length

t — 1 extends to length t. Therefore, HJ(r,t) < n.
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