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Preface

One of the most popular motifs in mathematics in recent times, has been the study of the
complementarity between the notions of ‘Structure’ and ‘Randomness’ in the sense that
most mathematical structures seem to admit this broad dichotomy of characterisation.
It is little wonder then, that probability theory has become a ubiquitous tool in as varied
areas of mathematics as Differential equations, Number theory, and, Combinatorics, to
name a few, as it brings forth the language to describe ‘randomness’.

Combinatorics is one of the areas where this dichotomy has played a very critical role
in the resolution of several very interesting problems. Combinatorics has long been held
as an area which , unlike many other areas of mathematics, does not involve a great deal
of theory building. However, it is of course not true that there is no general sense of
‘theory in combinatorics; to quote Gowers from his iconic essay, ‘The two Cultures of
Mathematics’, “The important ideas of combinatorics do not usually appear in the form
of precisely stated theorems, but more often as general principles of wide applicability.”
What plays an equivalent role in Combinatorics for ‘theory” would be something akin to
‘general principles’ which shape the manner in which the combinatorist generally forms
his/her view. And one of the principal principles at work in combinatorics is the Proba-
bilistic paradigm.

The word ‘paradigm’ as listed on dictionary.com describes ‘a framework containing
the basic assumptions, ways of thinking, and methodology that are commonly accepted by
members of a scientific community’. The probabilistic paradigm in combinatorics, was
initiated largely due by the seminal work of Paul Erdés who ushered in the language,the
viewpoint, and perspectives it offers to problems in combinatorics, and today, probabilis-
tic tools are an indispensable part of the combinatorist’s arsenal.

One of the main reasons for the ubiquity and all-pervasive nature of the method is
that it provides a tool to deal with the ‘local-global’ problem. More specifically, many
problems of a combinatorial nature ask for a existence/construction/enumeration of a fi-
nite set structure that satisfies a certain combinatorial structure locally at every element.
The difficulty in many a combinatorial problem is to construct structures that are ‘locally
good’, everywhere. A significant part of this difficulty arises from the fact that, often,
there seem to be several possible choices for picking a local structure, but no canonical



choices, consequently, it is not clear which local choices are preferential. The probabilis-
tic paradigm enables one to consider all these ‘local’” patches simultaneously and provide
what one could call ‘weak’ conditions for building a global patch from the local data. In
recent times, many impressive results settling several long standing open problems, via
the use of the probabilistic method, essentially relying on this principle. But one thing
that stands out in all these results is: the techniques involved are often quite subtle, ergo,
one needs to understand how to use these tools, and think probabilistically.

Coming to existing literature on this subject, there are some truly wonderful mono-
graphs - the ones by Alon-Spencer [5], Spencer [29], Bollobas [0], Janson et al [18],
Molloy-Reed[23] spring readily to mind - on the probabilistic method in combinatorics,
specifically. In addition to this, one can find several lecture notes’ compilations on the
probabilistic method, on the internet. So, what would we seek to find in another book?
What ought it to offer one that is, say missing, in all this plethora of material that is
already available?

Most of the available material attempt to keep the proofs easy to follow and simple
to verify. But that invariably makes the proof appear rather magical, and almost always
obscures the thought processes behind them. Indeed, many interesting (probabilistic)
arguments appear in situations that do not seem to involve any probability at all, so
a certain sprezzatura is distinctly conveyed. So a new book could certainly do with a
deconstructionist perspective.

This book arose as a result of lectures for a graduate course - first at Caltech, and then
later at II'T Bombay - with the goal of providing that sense of perspective. Tim Gowers
has on more than one occasion written about ‘The Exposition Problem’ “Solving an
open exposition problem means explaining a mathematical subject in a way that renders
it totally perspicuous. Every step should be motivated and clear; ideally, students should
feel that they could have arrived at the results themselves.” ! An entire book in this spirit
has not appeared before, and that is what this book really attempts to do.

This book could be criticsed as ‘a bunch of deconstructions of some specific results
that arise from the idiosyncrasies of the author’s choices’. Indeed, while some of the
results that appear are best known, there are others that are not best possible - even
within the material that appears in the book. My counter to that would be - Yes....and
No. The choice of material that has been included here is indeed a reflection of my own
tastes and preferences. But the theorems and results that appear here also reflect an
aspect of each of the techniques that are discussed, in a very specific sense; if for instance
a result appears in the chapter on the Second moment method, then the second moment
computation there is key to the eventual result. In that sense, the book is tightly struc-
tured.

IThis is from his blog where he in turn was quoting Tim Chow.



I do not (deliberately) include proofs or detailed discussions of many important results
from probability although I do state the ones in their full form for their utility within the
confines of this book. The reason is twofold: this is basically a book on combinatorics,
which forms and informs the topics of interest in the first place. Secondly, the imperative
is to provide a perspective into probabilistic heuristics and reasoning and not get into
the details and technicalities of probabilistic results in themselves. I list some sources as
references throughout the text for related reading.

As mentioned earlier, principles in combinatorics play the role of theory in most other
areas in mathematics. While most experts are aware of (or acquainted with) these prin-
ciples, and have some other principles of their own? these never see an explicit mention
in books (though some blogs like that of Tao or Gowers do a fabulous job there), and
it is for a well-founded reason: these principles are more akin to rules-of-thumb and a
formal statement attempting to put this in words will inevitably be an oversimplification
that amounts to an incorrect statement. But my opinion is, these simplistic heuristics go
a great way in laying a pathway, not just towards solving open conjectures, but also allow
us to pose newer interesting questions. Towards that end, I put as an encapsulation, one
core principle from each chapter; each chapter’s title includes an epigram that attempts
a heuristic describes the underlying principle.

I thank all my students who very actively and enthusiastically acted as scribes for the
lectures over the years, and those scribed notes, formed the skeleton for this book.

24 la Groucho Marx, perhaps.






Notation with asymptotics

This is a brief primer on the Landau asymptotic notation. Given functions f, g, we write

f> g (resp. f < g)if lim ) — oo (resp. — 0). We also write f = o(g) to denote
n—oo

g(n)

that f < g. We write f = O(g) (resp. f = Q(g)) if there exists an absolute constant
C > 0 and ng such that for all n > ng,|f(n)| < C|g(n)| (resp. if |f(n)] > Clg(n)|), and

finally when we write f = ©(g) then we mean f = O(g) and g = O(f). If lim fn) =1,

n
n—oo g(n)
then we write f ~ g.

Here is a simple proposition that is left as an exercise.
Proposition 1. Suppose f, g, h are functions defined on the integers.

1. (Transitivity) f = o(g) and g = o(h) implies f = o(h). A similar statement holds
for O and © as well.

2. If g =o(f) then f+ g =O(f).

The main advantage of using this notation is (besides making several statements look
a lot neater than they would if written in their exact analytic form) that the asymp-
totic notation allows us to ‘invert’ some functions in an asymptotic sense when an exact
inversion is not feasible. But before we make that precise, here is a simple proposition
that follows easily from the definition of the notation.To make this precise, consider the
following example. Suppose n < Cklogk. Then how do we get a lower bound for £ in
terms on n?

Here is a simple trick (and this will be used repeatedly in the book). The given
inequality gives us

cn
k>
~ logk

and since clearly k < n (otherwise there is nothing to discuss further), this gives us

—
~ logn

9



which is best possible asymptotically since if k = ﬁ then

log logn

n
klog k 10gn< ogn — loglogn) n( > n(l—o(1))

logn

One can use this idea more iteratively as well as we shall see in the book.

Computations with asymptotics is an art, and also needs a bit of practice before one
can get comfortable with it. We illustrate one case in a little more detail; this is the
calculation from the second chapter (which is omitted there). Suppose for a fixed k, we
wish to maximize n — (Z) 9=(5)+1. Note that as n increases, this quantity eventually be-
comes negative, so one needs to find the optimal n for which this is large. Unfortunately,
the usual maxima/minima methods of calculus are not directly applicable here, so the
perspective is motivated more by an eye on the asymptotics.

Since the given quantity cannot exceed n, from an asymptotic perspective, we would
be happy if this quantity is at least as large as n/2. To see if we can achieve that, since

k! > (f)k, we have (”) < (ﬂ)k, SO

k k
n\ __(k en k
(k)2 ® < (rgamm) -

Now set
An — en k
"= (m(k—n/z) '
This gives
o
n o= [arFoe-n
e
Y T P
e
k2k/2
= (1+0(1))
for k large.

Here is a second example, again from the second chapter. Again, the question is the
following: Given d, maximize s such that d > 4(5:) log (2 (S:)) Again, since we shall not

be too concerned by constants, let us set d = 8(5:) log <2 (5:)) Write Y = 2(5:); then this
gives us d = 4Y log(Y"), and so by our discussions from earlier, this gives us Y = 2 (@).

As for the asymptotics of Y, since (S:) < (es?)® < 5% we have s > Q(@) so taking

10



log both sides gives us 4slogs > logd(1 — o(1)). Once again, by the same argument as

from earlier, this gives us s > Q ( —2<_ ).
’ loglogd

To the uninitiated, we close this chapter by recommending Asymptopia by J. Spencer
[?] for a fascinating introduction to the world of asymptotics.

11






3.1

The Basic ldea

If you cannot think of anything
clever, or worse, cannot think of
anything, roll the die and take
your chances.

T

he probabilistic paradigm or more simplistically, the probabilistic method, is based
on the following premise: Given a (combinatorial) problem, one may set up a probability
on the underlying set, and one may then compute (or estimate) the probability of an
event not occurring. If this probability is less than one, then the corresponding set that
describes the occurrence of the event is nonempty. This is a rather simple description
of the method, and yet hardly anything that explains how one might go about this is
revealed. Our goal in this book is to attempt a deconstruction of this process.

We shall assume a basic familiarity with the notions of probability theory and graph
theory. As a good reference, we recommend [31] for probability theory, and [32] for graph
theory.

Lower bounds on the Ramsey number R(n,n)

We start with the instance that ¢ started it all’ - the famous Erdos lower bound on the
Ramsey numbers. Ramsey theory, roughly stated, is the study of how “order” grows
in systems as their size increases. In the language of graph theory, the first result that
founded the basics of Ramsey theory is the following:

Theorem 2. (Ramsey, Erdds-Szekeres) Given a pair of integers s,t, there is an integer
R(s,t) such that if n > R(s,t), any 2-coloring of the edges of K,, using colors red and
blue must yield either a red K or a blue K.

A fairly simple recursive upper bound on R(s,t) (proved inductively, and a good
exercise if you haven'’t seen it before) is given by

R(s,t) < R(s,t — 1)+ R(s — 1,1),

13



which gives us

and thus, asymptotically, that

for some constant C' and for s sufficiently large.
A constructive lower bound on R(s, s), discovered by Nagy, is the following:

R(s, s) > (g)

Explicitly, his construction goes as follows: take any set S, and turn the collection of all
3-element subsets of S into a graph by connecting subsets iff their intersection is odd. The
graph represents the red edges, and the non-edges are the blue edges. It is a not-entirely
trivial exercise to show that this coloring admits no monochromatic clique of size s.

There is a rather large gap between these two bounds; one natural question to ask,
then, is which of these two results is “closest” to the truth? Turan believed that the
correct order was of the order s?. Erdds, in 1947, in a tour-de-force paper “” disproved
Turan’s conjecture in a rather strong form:

Theorem 3. (Erdés) For s > 3,
R(s,s) > |2°2].

Proof. A lower bound entails a coloring of the edges of K, using colors red and blue
with no monochromatic complete subgraph on s vertices. If one looks at Nagy’s exam-
ple, one is tempted to think of a ‘global” recipe for coloring the edges in some manner
that witnesses the lack of sufficiently large monochromatic complete subgraphs. The
reason for this ‘global’ outlook is, if one starts with an ad-hoc coloring of the edges,
there seems to be plenty of leeway to color each edge one way or the other before our
color choices force our hand, and even on the occasions that they do, it is hard to see if
earlier choices could have been altered to improve upon the number we have so far. And
lastly, it is hard to see how this pattern (if one could use such a word here!) generalises
for large s. And in this conundrum of a situation, where local choices for edge colorings
do not seem clear, Erdds appealed to the principle explicated as the slogan of the chapter:

If you cannot think of anything clever, or worse, cannot think of anything, roll the die
and take your chances.

14
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3.2

Fix n and consider a random 2-coloring of the edges of K,. In other words, let us
work in the probability space (€2, Pr) = (all 2-colorings of K,,’s edges, Pr(w) = 1/2(2))
An alternate way of describing this would be to consider a random 2-coloring to be one
where each edge of K, is independently colored red or blue with probability 1/2, since
there is no reason to prefer one color over another.

For some fixed set R of s vertices in V(K,,), let Ag be the event that the induced
subgraph on R is monochromatic. Then, we have that

P(AR) =2 - (2(3)‘(3)) /2(’5) _91=(3)

Thus, we have that the probability of at least one of the Ag’s occurring is bounded
by

Pl A< Y P(AR):(Z>21—(’S>.

|R|=s RCQ,|R|=s

If we can show that (Z) 21-(5) is less that 1, then we know that with nonzero probability
there is a 2-coloring w € ) in which none of the bad events Ag’s occur! In other words,
we know that there is a 2-coloring of K, that avoids both a red and a blue K, even
though we do not have such a coloring explicitly!

Solving, we see that

s 1+s/2 s
M\ g1-(3) o T gli(s/2—(s2/2) _ 2 ” 1
s s! s! 25%/2

whenever n = [2%/2],s > 3. [ |

Tournaments and the .S;. Property

A tournament is simply an oriented K,; in other words, it’s a directed graph on n
vertices where for every pair (i, 7), there is either an edge from i to j or from j to 4, but
not both. A tournament 7' is said to have property Sy if for any set of k vertices in the
tournament, there is some vertex that has a directed edge to each of those k vertices.
One way to think of this is to imagine a tournament of some game where each pair of
players play each other - there are no draws - and for players ¢, 7 we shall indicate by the
directed edge (i, ) the outcome of the game between these players with ¢ beating j. In
these terms, the property Sj indicates that in this tournament, for every set of k players,
there was always some player who beat them all.

One natural question to ask about the S; property is the following:

Question 4. For a given arbitrary k, is there always a tournament with property Sy ¢ If
yes, how small can such a tournament be?

15



This problem again seeks an orientation of the edges that achieves Sy for starters,
and when that is done, to see if this property has a universality to it. Note that unlike
the Ramsey problem it is not true that all sufficiently large tournaments have property
Sk. Indeed, a transitive tournament - a tournament where the players come seeded, and
all the games between them respect their rankings - clearly does not possess Sy since no
one beats the top ranked player.

For small k£ - 1,2,3 - one can answer these questions to some degree of satisfaction;
indeed, we can calculate values of Sj through ad-hoc arguments:

o If £ =1, a tournament will need at least 3 vertices to satisfy Sy (take a directed
3-cycle.)

e If £k =2, a tournament will need at least 5 vertices to satisfy Sj .

o If £ = 3, a tournament will need at least 7 vertices to satisfy Sy (related to the
Fano plane.)

For k = 4, constructive methods have yet to find an exact answer. Indeed, constructive
methods have been fairly bad at finding asymptotics for how these values grow. And
again, anyone who takes a stab at this problem, realises very quickly that the fundamental
problem here is one of choice; there does not seem to be a canonical choice for orienting
edges one way or another, for each edge, and again, as with the Ramsey problem, it is
hard to unravel which choices lead to what outcomes. And so, we bring out the maxim
once more.

Proposition 5. (Erdds) There are tournaments that satisfy property Sp on O(k?2F)-
many vertices.

Proof. Consider a random tournament: in other words, for every edge (i, 7) of K, direct
the edge ¢ — j with probability 1/2 and from j — ¢ with probability 1/2. Again, this
uniformity in choosing the edge orientation reflects our ambiguity for not preferring either
direction.

Fix a set S of k vertices and some vertex v ¢ S. What is the probability that v has
an edge to every element of S? Relatively simple: in this case, it’s just 1/2*, so that the
probability that v fails to have a directed edge to each member of S is 1 —1/2%. We shall
notate this by event as v 4 S.

For different vertices v ¢ S, the events v 4 S are all independent since these events
are determined by the edge orientations of disjoint sets of edges, so we know in fact that

P(for all v ¢ S,v 4 ) = (1 - 1/2’“)"7’{.

16



There are (Z)—many such possible sets S; so, by using the union bound again, we have
P(There exists S such that for all v ¢ S;v A ) < (Z) (11— 1/2k)n_k.

As before, it suffices to force the right-hand side to be less than 1 as this means that
there is at least one orientation of the edges of K,, on which no such subsets S exist — i.e.
that there is a tournament that satisfies Sj. .

This takes us into a world of approximations. Using the approximations (Z) < (%)
and 1 —z < e 7, we calculate:

n—k
(e_I/Qk) <1

- (ﬁ)’“ < k)2
k

k(1 +log(n/k)) - 28 +k <n

Motivated by the above, take n > 2% . k; this allows us to make the upper bound
k(14 1log(n/k)) - 28 + k < k(1 +log(k2"/k)) - 2F + k

1 1
k* -log(2) ( + klog(2) T log(Z))

= k*2F1og(2) - (1 4+ O(1));

so, if n > k?28log(2) - (14 O(1)) we know that a tournament on n vertices with property
S exists. |

Remark: The asymptotics of this problem are still not known exactly. However, it
is known (as was shown by Szekeres) that a tournament on n players satisfying Sy needs
ck2F vertices for some absolute constant ¢ > 0.

As we move to our next few instances of the basic method, we introduce the basic
tool that gets the probabilistic method going. For a real -valued random variable X on
a finite probability space, the Ezpectation of X (denoted E(X)) is defined as

E(X) =Y aP(X =ux).

zeR

Note that since the sum is finite since the probability space is finite.

The expectation is the first important tool that one plays with, in this process, and
one of the reasons it is a useful and simple quantity to play with, is that for random

17



3.3

variables X,Y on the same space, E(X +Y) = E(X) + E(Y).! The main handle the
expectation gives us is the following: If E(X) > «, then with positive probability, X > «.
A similar statement holds for other inequalities as well.

A philosophical point before we get into applications of the idea. Why is the expec-
tation a useful tool? Here is a heuristic: An expectation computation, in some sense,
enumerates ordered pairs, and the formal definition for the expectation, fixes one of the
parameters of the ordered pair, and enumerates over the other parameter while fixing
the former. But one of the oldest combinatorial insights is that one might interchange
the order of enumeration and this principle allows us to reinterpret the same computa-
tion from another perspective. This has the advantage of making what seems a ‘global’
computation, the sum of ‘local’ computations.

Sum-Free Sets of Integers

This is another gem originally due to Erdds. A set B C R is called sum-free if the sum
of any two elements in B does not lie in B.

Theorem 6. Every set of n nonzero integers contains a sum-free subset of size > n/3.

Proof. For ease of notation, let us write B = {by,...b,}. Firstly, (and this is now a
standard idea in Additive Combinatorics), we note that it is easier to work over finite
groups than the integers, so we may take p large so that all arithmetic in the set A (in Z)
may be assumed to be arithmetic in Z/pZ. Furthermore, if we assume that p is prime,
we have the additional advantage that the set is now a field, which means we have access
to the other field operations as well. Thus we pick some prime p = 3k + 2 that’s (for
instance) larger than twice the maximum absolute value of elements in B, and look at B
modulo p — i.e., look at B in Z/pZ. Because of our choice of p, all of the elements in B
are distinct mod p.
Now, look at the sets

zB:={xb:be€ B} in Z/pZ,
and let
N(z)=|[k+1,2k+ 1] NnzB]|.

We are then looking for an element = such that N(z) is at least n/3. Why? Well, if
this happens, then at least a third of 2B’s elements will lie between p/3 and 2p/3; take
those elements, and add any two of them to each other.This yields an element between
2p/3 and p, and thus one that’s not in our original third; consequently, this subset of

'In more fanciful terms, expectation as an operator on the space of random variables is linear operator
with operator norm 1.
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3.4

over a third of B is sum-free. But this means that this subset is a sum-free subset of B,
because p was a prime; so we would be done.

So, the question again is: Is there a clever way of choosing an = that would optimally
bring a big chunk of B into the middle? Not really. So, let’s just roll the dice - pick
x uniformly (there is no reason to pick one element more than another) at random, and
examine the expectation of N(z):

k+1
+ >n/3.

E(N(x)) = Z (Labelhs12nsn]) =1 T

beB

Thus, some value of x must make N(z) exceed n/3, and thus insure that a sum-free
subset of size n/3 exists. [ |

Remark: One can ask the same question more generally on an arbitrary abelian
groups, and there, the corresponding constant is 2/7 (see [2]). For the integers, it remained
a hard problem to determine if the constant 1/3 could be improved, and as it turns out,
1/3 is indeed the best possible constant (see [11]).

The Distinguishing chromatic number of Levy graphs

For a graph G = (V, E) let us denote by Aut(G), its full automorphism group. A labelling
of the vertices using the labels {1, ..., r} is said to be distinguishing (or r-distinguishing)
if no nontrivial automorphism of the graph preserves all of the vertex labels. The Dis-
tinguishing Chromatic Number, a variant of the usual chromatic number of the graph
introduced by Collins and Trenk, is defined as the minimum number of colors r, needed
to color the vertices of the graph so that the coloring is both proper (adjacent vertices
receive different colors) and distinguishing. In other words, the distinguishing chromatic
number of a graph G (denoted yp(G)) is the least integer r such that the vertex set V(G)
can be partitioned into sets Vi, Vs, ..., V, such that each V; is independent in GG, and for
every I # m € Aut(G) there exists some color class V; such that 7 (V;) # V;. It is not hard
to see that this variant is well defined, and in recent times, this variant has attracted a
lot of attention.

Here, we shall consider the following specific problem. Let F, denote the finite field
of order ¢, and let us denote the vector space IFZ over F, by V. Let P be the set of 1-
dimensional subspaces of V' and L, the set of 2-dimensional subspaces of V. We shall refer
to the members of these sets by points and lines, respectively. The Levi graph of order
¢, denoted by LG, is a bipartite graph defined as follows: V(LG,) = P U L, where this
describes the partition of the vertex set; a point p is adjacent to a line £ if and only if p € /.

The choice of terminology of ‘lines’, ‘points’ is because the pair (P, L) is a Projective
plane of order q, so every pair of points lie on a unique line, and every pair of lines have
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a unique common point. For more, we refer the reader to [17], for instance.

The fundamental theorem of projective geometry [17] states that the full group of
automorphisms of the projective plane PG(2,B,) is induced by the group of all non-
singular semi-linear transformations PFL(F?). If ¢ = p™ for a prime number p, PFL(F?) =
PGL(F?) x Gal(F,/F,). In particular, if ¢ is a prime, we have PT'L(IF2) = PGL(F?), so
PTL(F3) is a subgroup of the full automorphism group of LG,. The full group is larger
since it also includes maps induced by isomorphism of the projective plane with its dual.

Proposition 7. xp(LG,) = 3 for all prime powers ¢ > 7.

Proof. First, let us see why 2 colors will not do. It is easy to see that LG, is connected, so
the only proper colorings correspond to the vertex partition (P, £). But every non-trivial
map A € PGL(IF;) induces an automorphism of LG, which keeps the two color classes
intact, and that establishes that xp(LG,) > 2.

To get a proper distinguishing 3-coloring of LG, one may imagine partitioning £ =
L1 U Ly and have as the three color classes, P, L1, Ls. To see what makes this a distin-
guishing coloring (it is clearly proper), consider for starters, an automorphisms ¢ induced
by PTL(F3); call it ¢. If ¢ preserves the other two color classes then for every line £ € L,
¢(¥) is in the same color class. In particular, the orbit

Orby (L) :=={L,¢(0),...}

is contained within the same color class. And this happens for every automorphism.

Thus, a partition of £ such that for at least one of the automorphisms induced by
PFL(F?), this property of all its orbits being within the same part is violated. This sug-
gests a random partition of L, i.e., for each ¢ € L, set it in £; or L5 independently, and
uniformly. A bad event in this context would be the presence of a nontrivial automor-
phism that maps both these partitions into themselves, or in terms of the observation
above, a bad event Ej is the event where for each ¢ € L, the orbit of ¢ is contained
entirely in the part £; containing it. This idea can be captured more generally as follows.

Suppose a graph G is given a vertex coloring using x(G) colors and suppose C] is one
of its color classes. Let G be the subgroup of Aut(G) consisting of all automorphisms that
C; as a set. For each A € G, let 4 denote the total number of distinct orbits induced
by the automorphism A in C;. Fix an integer ¢ > 2, and partition C; randomly into ¢
parts, i.e., for each v € C, pick uniformly and independently, an element in {1,2,...,¢}
and assign v to the corresponding part.

For ¢ € G, let E4 denote the event that ¢ fixes every color class. Observe that if ¢
fixes a color class containing a vertex v, then all other vertices in the set orb,(v) are also
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in the same color class. Moreover the probability that Orb,(v) is in the same color class
of v, equals t'~197%(®) Then

P(E,) = HtkIOr%(v)l — 9o—1C1l
Oy

Let AN/ C G denote the set of all automorphisms which fixes each of the ¢ parts that were
partitioned, and let N = |[N|. Then note that

E(N) <) tc%% (3.1)

PeG

IfE(N) < f(G) =Y 4 t?719 < r, where r is the least prime dividing |G|, then with
positive probability N < r. Since N is in fact a subgroup of G, N divides |G|, so it
follows that with positive probability, N = 1, which means, we have a distinguishing
proper coloring using x(G) + ¢ — 1 colors.

Define
Fizy(S) = {veS:o(v) =0}, (3.2)
Fy(S) = |Fixze(5)], (3.3)
F(S) := max Fy(S) (3.4)
oF#I

. Since 8, < F(Cy) + [Al=F@)

E(N) < ZtF(CUQ—\ClI _ |g|tF(Cl)2—\Cl\'

Aeg

Thus, if F(Cy) < |Cy| — 2log, |G| then there exists a distinguishing proper x(G) +t — 1
coloring of the graph.

Let us return to our setting. Set G = PGL(]Fg’). It is a simple exercise to check that
every A € PGL(IF?) which is not the identity fixes at most ¢ + 2 points of LG,. Hence

(@ +g+1)—(¢+2) ¢*+2¢+3

0, <q+2
ASqat 2 2

Consequently,
(- +¢%
f(G) < P2 +1 (3.5)
For ¢ = 7,t = 2, the right hand side of (3.5) is approximately 1.16. Since the right hand

side of inequality (3.5) is monotonically decreasing in g, it follows that f(G) < 2 for ¢ > 7,
hence xp(LG,) < 3. [ |
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3.5

Remark: It turns out that xp(LG5) = 3 as well, and this again follows the same
argument. The only difference is that the analysis above does not work, and one needs
to explicitly compute f(G) In this case, for ¢ = 2 one calculate f(G) explicitly (using a
computer program) to obtain f(G) &~ 1.2 to see that xp(LG5) = 3. For more results on
the distinguishing chromatic number, see [9].

Colored hats and a guessing game

There are n friends standing in a circle so that everyone can see everybody else. On each
person’s head a randomly chosen hat - either black or white - is placed. After they have
had a look at each other, they must make a claim on their hat color, or declare that
they are unable to determine the color from what they have seen. They cannot hear the
answers of their friends, and cannot communicate with each other in any manner, but
they may make a strategy prior to the placement of the hats. They are awarded a grand
prize if at least one person gets the color of her hat correct, and no one gets her hat color
wrong. In the latter case, they are all punished.

One easy strategy to achieve a 50% success is if one of the friends takes a random
guess, and the others pass on their guess (“I don’t know the color of my hat”). The friends
wish to devise a strategy that increases the probability of their getting the reward. The
question is, do they have a better strategy? Again, the question is to be viewed as one
that deals with n large but fixed.

First, let us formalize the problem. Denoting white and black by 1 and 0 respec-
tively, any configuration of hats (on the friends’ heads) is a point in {0, 1}". Thus the i*"
member witnesses a vector X; = (Ti1,. .., Tii—1,%, Tiit1,---,Lin), and these vectors are
compatible in the sense that for all distinct ¢, j and k # ¢, 7, we have x; ;, = ;.

Suppose there exists a set L C {0,1}" such that for every element (x1,zs,...,2,) €
W ={0,1}"\ L there is an element (y1,¥2,...,yn) € L such that the set {i | z; # y;}
has size 1; call such a set L desirable. The upshot is the rather crucial observation that a
desirable set allows us to strategize as follows. Person ¢ knows z; for all j # 4, so if there
is a unique value of z; so that (zy,zs,...,2,) € W then person i declares that her hat
color is x;.

This allows the friends to argue as follows. If they have a desirable set on their hands,
then the strategy outlined above works unless the color choice profile of the hats cor-
responds to a point of L. Consequently, the probability that the friends get the award
following this strategy equals 1 — |2£n Thus to maximize this probability, they need a
‘small” desirable set L. And since there is no canonical choice here, we shall pick it ran-

domly.
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Pick a set X by choosing each element of {0,1}" independently. But this time, the
probability distribution is not clear. Picking each element with probability 1/2 as in
the preceding examples would result in a very large set with high probability - this will
become more formal in later chapters. So for the moment, let us pick each such element
with probability p, where p is a parameter that is to be determined later.

For a fixed x € {0,1}", let 1xcr denote the random variable that takes value 1 if
x € L and 0 otherwise. Note that E(lxer) = P(Ixer). By linearity of expectation,

|X’ Z ILxeL Z E xeL Z P xeL —2p

x€{0,1}" xe{0,1}" xe{0,1}n

Let Y be the set of elements which differ from the chosen elements in at least two
coordinates. For a fixed x € {0,1}", it is easy to see that x € Y is equivalent to saying
that no element in the ‘ball’> B(x) consisting of all the elements which differ from x in
at most one coordinate are not chosen into X. Since |B(x)| = n + 1 (the element x and
the n elements that differ from x in exactly one coordinate) we have

E(Y)= ) PxeY)=2"(1-p"""

xe{0,1}n

so But now consider the set L. = X UY; this is indeed a desirable set! Furthermore,
E(|L])) = E(|X|+|Y]) = 2”(p + (1 — p)™*1). Minimizing this over p € [0,1] (basic calcu-
lus), givesus p =1 — W'

Plugging this back in the preceding expression gives us

Bz =2 (1- )

where z = (n + 1)~/ Since this expression look cumbersome, we backtrack and work

differently. Note that p+ (1 —p)"*! < p+ e~ P we minimise the latter function. That
log(n+1)
n+1

, and plugging this in gives

E(|L]) < 2" (1 +log(n + 1)) <o (210gn)

n-+1 n

gives us p =

for all n > 3 (the last inequality is a simple exercise). By the probabilistic maxim, there

then exists a set L whose size is at most O(lorgln) fraction of the total size, which then
2logn
OB

means that the friends can achieve a success rate of 1 —

Remark: A concise (and low complexity) description of optimal sized desirable sets
is possible for n of the form 2%, and this is through what are known as Hamming codes.
One can also prove similar results when the friends are assigned hats that may take any
one of ¢ different colors.

2This term is not a loose one. The Hamming distance d(x,y) which counts the number of coordinates
where x,y differ is indeed a legitimate metric

23



3.6

The 1-2-3 theorem

The following question was first posed by Margulis: Given i.i.d random variables X,Y
according to some distribution F', is there a constant C' (independent of F'; that is the
important thing) such that

P(|X — Y| <2) < CP(|X — Y| < 1)?

Note that it is far from obvious that such a C' < co must even exist. However, it is
easy to see that such a C' must be at least 3. Indeed, some X, Y are uniformly distributed
on the even integers {2,4,...,2n} then it is easy to check that P(|X — Y| < 1) =1/n
and P(|X — Y| <2) =2 — % Tt was finally proved by Kozlov in the early 90s that the

constant C' = 3 actually works. Alon and Yuster shortly thereafter gave another proof
which was simpler and had the advantage that it actually established

P X -Y|<r)<@2r-1)P(X-Y|<1)

for any positive integer » > 2 which is also the best possible constant one can have for
this inequality. We shall only show the weaker inequality with < instead of the strict
inequality. We shall later give mention briefly how one can improve the inequality to the
strict inequality though we will not go over all the details.

Proof. The starting point for this investigation is based on one of the main tenets of
Statistics: One can estimate (well enough) parametric information about a distribution
from (large) finite samples from the same. In other words, if we wish to get more infor-
mation about the unknown F', we could instead draw a large i.i.d sample X, Xo,..., X,
for a suitably large m and then the sample percentiles give information about F' with
high probability. This is in fact the basic premise of Non-parametric inference theory.

So, suppose we did draw such a large sample. Then a ‘good’ estimate for P(|X —Y| <
1) would be the ratio
[{(0,5) : 1Xs — X5] < 1

2

m
A similar ratio, namely,
[{(i,7) = |Xi = X5 <7}

m2

should give a ‘good’ estimate for P(|X — Y| < r). This suggests the following question.

Question 8. Suppose T = (x1,Ta,...,%y) is a sequence of (not necessarily distinct)
reals, and T, = {(1,7) : |v; — z;| <r}. Is it true that |T,| < (2r — 1)|T1|?

If this were false for some real sequence, one can consider F' appropriately on the
numbers in this sequence and maybe force a contradiction to the stated theorem. Thus,
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it behooves us to consider this (combinatorial) question posed above.

Let us try to prove the above by induction on m. For m = 1 there is nothing to prove.
In fact, for m = 1 one in fact has strict inequality. So suppose we have (strict) inequality
for r — 1 and we wish to prove the same for r.

Fix an ¢ and let 7" = T\ {z;}. Consider the interval I := [z; — 1,z; + 1] and let
St ={jlz; € I}, and let |S;| = s. Then it is easy to see that

|Ty| = |T7] + (25 — 1).

Now in order to estimate |T,.|, note that we need to estimate the number of pairs (j, )
such that |z; — z;| < r. Suppose ¢ was chosen such that |S;| is maximum among all
choices for x;. Then observe that if we partition

[:L‘i_ra xz+r] = [Ii_ra Iz_(r_l)) Ty [fL’Z—Q, xl_l)v [Xi - 1, Xj + 1]7 (xz_’_]-) ZEZ_’_Q]u R (*/EZ_’_(T_]-)? ZL’Z—f—T’]

as indicated above, then in each of the intervals in this partition there are at most s
values of j such that z; is in that corresponding interval. This follows by the maximality
assumption about x;.

In fact, a moment’s thought suggests a way in which this estimate can be improved.
Indeed, if we also choose z; to be the largest among all x; that satisfy the previous
criterion, then note that each of the intervals (z; + [, z; + (I + 1)] can in fact contain at
most s — 1 x;’s. Thus it follows (by induction) that

T <|Tl|4+2(r—1)s+(2s—1)+2(r—1)(s—1) < (2r—1)|T]|+(2r—1)(2s—1) = (2r—1)|T1|.

This completes the induction and answers the question above, in the affirmative, with
strict inequality.

Now, we are almost through. Suppose we do sample i.i.d observations Xi, Xs,..., X,,
from the distribution F, and define the random variables Ty := |{(z, ) : | X; — X;| < 1}
and T, := |{(4,) : |X; — X;| < r}|, then note that

E(Ty) =) P(Xi = X;| < 1)+ m = (m* —m)ps + m,
i#j
where p; = P(|X; — Xj| <1). Similarly, we have
K(T,) = (m? — m)p, +m
with p, = P(|X; — X;| <r). By the inequality
T.<@2r-1T
we have

(m*> —m)p, + m = E(T,) < (2r — DE(T}) = (2r — 1)((m* — m)p; + m).

2r—2
m—1

This simplifies to p, < (2r — 1)p; +

. As m — oo, the desired result follows. |
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As mentioned at the beginning, Alon and Yuster in fact obtain strict inequality.
We shall briefly describe how they go about achieving that. They first prove that if
pr = (2r — 1)py, then if we define p,(a) = P(|X — a| < r) there exists some a € R such
that p.(a) > (2r — 1)pi(a). Once this is achieved, one can tweak the distribution F' as
follows.

Let X be a random variable that draws according to the distribution F' with probabil-
ity 1 —« and picks the number a (the one satisfying the inequality p,(a) > (2r —1)p;(a))
with probability « for a suitable a.. Let us call this distribution G. Then from what we
just proved above, it follows that p,(ﬂG) < (2r — 1)p§G). Here p,(ﬂG) denotes the probability
pr =P(X = Y] <r)if X,Y are picked i.i.d from the distribution G instead. However,
if we calculate these terms, we see that pi%) = p,(1 — a)? + 2a(1 — a)p,(a) + a2, so the

above inequality reads
pr(1—a)*+2a(1 — a)p.(a) + o < (2r — 1) (p1(1 — @)® + 2a(1 — @)pi(a) + o)
which holds if and only if

B

a> —1:8 where 8 = p,(a) — (2r — 1)p1(a) > 0.

But since choosing « is our prerogative, picking a smaller than this bound yields a con-
tradiction and completes the proof.

As we complete this chapter, we leave the reader with an important caveat. The power
of the probabilistic method becomes more evident only when one runs out of ideas, so
to speak. Where one has a deterministic argument that seems to work, the probabilistic
method is not to be unsheathed as it will be suboptimal. To illustrate this point, suppose
[n] :={1,2,...,n}, and suppose we wish to show that for n < m, there is an injective
function from [n] to [m]. We pick a random function ¢ which maps for each x € [n] a
uniformly random member of [m] as its image, and independently for = € [n]. For a fixed
pair z,y € [n], the probability that z and y are mapped to the same element in [m| by ¢
is 1/m. Hence the union bound tells us that if (im) < 1 then with positive probability, the
random function ¢ is injective. In other words, our methods of this chapter only testify
towards the existence of an injective function for m > en?, and the suboptimality of this
conclusion is evident to all. One may ask if this suboptimality is due to the union bound,

or if the reason is something subtler. We shall return to this point in a later chapter.
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Managing Expectations and the Markov
bound

If the expected value of a
non-negative random variable is
small, then the random variable
is not very likely to take large
values.

As we saw in the latter half of the preceding chapter, Expectation of a random variable
is one of the most useful tools within the Probabilistic paradigm. One of the reasons the
expectation appears a very natural tool is because most combinatorially relevant functions
can be regarded as random variables that tend to get robust with a larger population, so
the expected value gives an idea of where a ‘typical’ observation of the random variable
lies and that is often a very useful start. For instance, suppose our random variable in
question counts the number of undesirable events. Having its expected value less than
one is good for our cause. But even if that is not the case, having a low value of its
expectation has useful consequences - it instantiates the existence of a configuration with
very few undesirable events.

There is another important feature that the expectation computation provides. While
the expectation tells us that the random variable in question can take small/large values
relative to its expected value, it does not tell us how likely such an outcome might be.
Here is a concrete instantiation of the same. Consider a random variable X that takes
the value n? with probability 1/n and 0 with probability 1 — 1/n (for n large). The
expected value is n and yet the random variable itself is non-zero with very low probabil-
ity. Of course, this example also illustrates that one needs a relative perspective on what
large/small ought to be. But if the expected value of a mon-negative random variable is
small, then the random variable is not very likely to take large values.

In this chapter, we shall expound upon these two principles.
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4.1

4.2

Revisiting the Ramsey Number R(n,n)

Let us revisit the problem of the lower bounds for R(n,n). As usual, color the edges of
the complete graph K, red or blue with equal probability, and independently for distinct
edges. Then the expected number of monochrome copies of K, is m := (2)2_(§)+1. Thus
there is a coloring of the edges in which there are at most m monochrome copies of Kj.
Now, from each such monochrome copy, delete a vertex; then the resulting graph on n—m
vertices has no monochrome Kj! Thus we get R(k, k) >n — (2)2_(5)“.

Now, to see if this improves upon our earlier bound, we need to do some calculus.
If m = n/2, then we get R(k, k) > n/2. Some routine asymptotics (see the chapter on
asymptotics for the detail) give us

R(k, k) > (1 + 0(1))22’“2

for large k.

An approximate form of Caratheodory’s theorem

One of the most powerful consequences of the probabilistic paradigm is that it allows for
an ‘approximate’ version that allows for more efficient (albeit randomized) algorithms,
and here we present one such instance.

The Caratheodory theorem is a well known and fundamental theorem in discrete
geometry. It states: Every point in the convex hull of a set T C R™ can be written as a
convex combination® of at most n + 1 points of T', and the number n + 1 is best possible.
Now, consider an approximate version of this statement: Suppose we wish to approximate
a point in the convex hull of T. Do we still need close to n points to be able to make
the approximation? More precisely, suppose z is a point in the convex hull. How small a
number k of points of T" are needed so that some convex combination of those points is
close to x?

Theorem 9. Suppose T is a subset of R™ of bounded diameter’ d, and suppose € > 0.
Then one can find points x1,...,x; witht < g—i) such that there is a conver combination
y of the x; such that

|z -yl <e

where the norm is the usual L?>-norm.

The interesting feature of this theorem is that the ambient dimension n does not
feature at alll The only thing that matters is how good an approximation we are hoping

LA convex combination of z1,...,z; is a sum of the form A\jzy + - -+ + Az with \; > 0 for all ¢ and

S =1

2The diameter of a set A is defined as the supremum of the distances between pairs of points on A.
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4.3

to find. This is again a feature that appears on more than one occasion when one
encounters randomized methods.

Proof. Without loss of generality, by translating 7', we assume that the radius of T is at
most 1, i.e., for all z € T, we assume that ||z|] < 1. Let  be a point in the convex hull of
T. By Caratheodory’s theorem, there exist x1, ..., z,, with m <n+41 such that z = \;z;
where \; > 0 and ), \; = 1. The )\; summing to one suggests a natural random variable.
Let y be the (vector-valued) random variable with P(y = x;) = \; for i = 1,...,m. Then
E(y) = >, Aiz; = x. Here the expectation is taken coordinate-wise.

Picking from the general principle that an average of i.i.d (independent and identically
distributed) random variables converges to its expected value, it is somewhat natural
to consider yq, ...,y independent and distributed as y above, and look at the average
z:=2(y1 + -+ yk). Clearly, E(z) = z. To see how well this fares, let us compute (or
estimate) E(||z — z||?. For the random variable y,

E(ly — 1) = E(llyI* + ll2]* — 2(y, 2))
= E(lyl*) - ll=|I*

= D> N (Il = ll=]1)
i=1
< 1.
Set z; = y; — x so that z —y = %Zle z;. Then

E|S, |12
EHZ—JUHZ _ HZz’ZH

k2
1 k
- (ZEH%HuzZE@“”)
i=1 i<j
< !
-k

where the last inequality comes from the preceding calculation and the fact that z;, z;
are independent which consequently gives E(z;, z;) = 0 for all ¢ < j. In particular, this
computation tells us that there exist k vectors y; for which ||z — z[|> < 1/k and 2 as
above. The rest is a routine consequence. [ |

Remark: The theme of approximations is closely tied with the probabilistic paradigm,
and we will encounter the motif several times in the book.

Graphs with many edges and high girth

The girth of a graph G is the size of its smallest cycle (should a cycle exist) and if the
graph is acyclic, then its girth is infinite. It is both intuitively and mathematically clear
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that as the number of edges in a graph increases (proportional to the total possible num-
ber of edges) then its girth can go down dramatically. So, for a fixed parameter k, the
following extremal problem is both natural and of great interest to the extremal combi-
natorist: What is the maximum possible number of edges in a graph on n vertices with
girth at least k7

The following simple argument gives an upper bound. Suppose the graph G has
minimum degree at most d. Set { = % If the girth of G is at least k, then for any
vertex v, the subgraph induced on the ¢-fold neighborhood centered at v, i.e., the set of
vertices at a distance of at most ¢ from v, is a tree This follows since if this was not a
tree, then there is a cycle contained in this graph. However, since any vertex w is at a
distance of at most ¢ from v, the size of the cycle is at most 2¢ + 1 < k contrary to the

assumption. Since each vertex has degree at least d, this induced subgraph has at least

d((d—1)"—1)
d—2

l+d+dd—1)+--+dd—1)""=1+
vertices.

Now for a given graph G with average degree d, note that if we remove a vertex of
degree at most k (for some k - we’ll see what k to set) then the modified graph has
t nd—2k

n—1

average degree at leas . If we set k = d2 then this last expression is at least d.

In other words, if we delete a vertex of degree at most d/2 then the average degree of
the graph does not decrease in this process. Consequently, this process must eventually
terminate and when it does, every vertex has degree at least d/2. It is a simple exercise
to show that if the average degree of a graph is at least Cn?*=2) for a suitably large C
then G must have a cycle of size at most & — 1. In other words, the maximum number of
edges in a graph with girth at least k is O(n”ﬁ).

A lower bound was established by Erdés.

Theorem 10. For a giwen integer k > 4 and n somewhat large, there exist graphs on n

vertices with girth at least k with Q(nHﬁ) edges.

Proof. To establish a lower bound, one needs to construct a graph with girth at least k and
as many edges as possible. Like in the Ramsey problem, the small cases for k (k = 3, 4 for
starters) are well studied; indeed one knows the best possible bounds in these cases. But
in the general case, the specificity of the examples in the smaller cases makes it harder to
generalize. And so Erdés did what came to him naturally; he picked the graph at random.

Let us construct a random graph where each edge is chosen independently with prob-

ability p where p (as in a previous example) will be determined later. The ‘bad instances’
here are incidences of small cycles. Indeed, for 3 <t < k — 1 let N, denote the number
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of t-cycles in GG. Then

LU L CEL R )

since every cyclic permutation of size t counts a particular t-cycle exactly 2¢ times - the
first vertex is picked in one of ¢t ways, and the orientation in one of two possible ways.
This gives

(np)* + -+ + (np)*

E( Z N;) < G <

3<t<k—1

(np)*~1

On the other hand, the expected number of edges of G is E(e(G)) = (g)’%z for n large
enough.

The key insight again of Erdés was: If the number of small cycles is not that large,
say, it is at most half the total number of edges, then one may throw away one edge from
each of the small cycles, thus eliminating all small cycles, and yet, retaining at least half
the total number of edges. This suggests, that if

. _n*p
(np)k ! < 7

then by linearity of expectation®

E(e(G))
E (e(G) — ZN,:) > —

t<k

so that there is an instance with this inequality holding. That gives us a lower bound on
the number of edges of a graph with girth at least k.

The computation now is straightforward. We leave it to the reader to see that the
inequality we have forced gives us p = ——j;5=s (for a small constant ¢ > 0) which in

turn gives us a bound of ¢(G) = Q(nlﬂﬁ). [ |

Remark: As it turns out, the random construction here is not best possible, and the
considered opinion of the experts in extremal combinatorics, is that the exponent that
appears in the upper bound is the truth. However that remains an open problem. The
best known bound is a remarkable algebraic construction by Lazebnik, Ustimenko and
Woldar [21] which gives a lower bound of Q(nHm) which, in terms of the exponent
of n is ‘halfway’ between the randomized construction and the simple upper bound. This
again reinforces the caveat: If one can, one should strive for non-random constructions.

3 Again, the linearity is key here.
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4.4

List Chromatic Number and minimum degree

The list chromatic number is a notion introduced by Erddés, Rubin and Taylor in their
seminal paper that sought to address what was called the ‘Dinitz problem’. This variant
of the usual chromatic number goes as follows. For a graph G, let £ = {L,|v € V(G)}
be a collection of subsets of some set C indexed by the vertices of G. These are to be
interpreted as lists of colors assigned to each vertex. An L-coloring of GG is an assignment
of an element y(v) € L, for each v € V such that if u and v are adjacent vertices in
G, then x(u) # x(v). In the parlance of colorings, this is a choice of color assignments
to each vertex such that no two adjacent vertices are assigned the same color. The [ist
chromatic number of G, denoted x;(G), is the smallest k such that for any family £ with
|L,| > k for all v, G is L-colorable. It is not hard to see that this is well defined, and in
fact, the usual chromatic number of G' corresponds to the case where all the vertex lists
are identical. The next result shows that the reverse inequality need not hold.

The list chromatic number is a very interesting invariant for a host of reasons. One
natural way to motivate this notion is the following. Suppose we attempt to properly
color the vertices of a graph using colors, say, 1,...,k and to suppose we are given a
partial coloring. For each uncolored vertex v, let D, denote the set of colors that appear
among any of its neighbors from the partial coloring. Then the partial coloring extends
to a proper k coloring of the graph if and only if the induced graph on the remaining
uncolored vertices is L-colorable where L, := [k] \ D,. So in that sense, list colorings
arise quite naturally in connection with proper colorings.

As was observed in the seminal paper of Erdés, Rubin, and Taylor, there are bipartite
graphs with arbitrarily large list chromatic number.

Theorem 11. (Erdds, Rubin, Taylor) xi(Knn) > k if n > (2’“];1).

Proof. We wish to show there is some £ = {L,|v € V(G)} with |L,|] = k for each
v € V(G) such that K, , is not L-colorable. Let A and B denote the two partition
classes of K, ,, i.e., the two sets of vertices determined by the natural division of the
complete bipartite graph K, ,, into two independent subgraphs.

Now we construct £. Take the set of all colors from which we can construct L,’s
to be {1,2,...,2k — 1}. Since n > (%k_l), which is the number of possible k-subsets
of {1,2,....,2k — 1}, we can choose our L,’s for the v’s in B so that each k-subset of
{1,2,...,2k — 1} is L, for some v € B, and similarly we choose lists for vertices of A.

If S is the set of all colors that appear in some L, with v € B, then S intersects every
k-element subset of {1,2,...,2k — 1}. Then we must have that |S| > k (since otherwise
its complement has size > k and thus contains a subset of size k disjoint from S). But
then since |S| > k, by choice of lists there exists a € A with L, C S. Since a is adjacent
to every vertex in B, so no L-coloring is possible. |
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Another interesting feature of the list chromatic number is the following result due to

Alon.

Theorem 12. (Alon) Suppose d denotes the minimum degree of G. Then

log d
=Q(——.
x(G) (log log d>

This is quite at variance with the usual chromatic number since one has bipartite
graphs with arbitrarily large minimum degree.

Proof. 1If the result holds, then it also holds in the case the chromatic number is two
(that is the first nontrivial case), so let us first assume that the graph is bipartite with
partition classes A and B, and |A| > |B].

We shall assume that the minimum degree is sufficiently large (for asymptotic rea-
sons). In order to establish a lower bound of the form x;(G) > s, we need to assign lists
of size s to each vertex and ensure that from these lists, a list coloring is not possible.
Suppose C is a set of colors from which we shall allocate lists to each of the vertices of G.
Without loss of generality, let C := {1,2,...., L} for some L to be fixed/determined later.

How do we show that a vertex a € A cannot be colored from its list? Let us take a
cue from the previous result: Suppose a vertex a € A has, among the lists assigned to
its neighbors in B, all the possible s-subsets of C. Consider a choice of colors assigned
to the vertices of B from their respective lists, and let W be the set of colors that are
witnessed by this choice. Note that since the neighbors of a witness all possible s-subsets
of C, WNS # for all S C C of size s, so that in particular, |W| > L — s+ 1. If this choice
extends successfully to a choice for a, then L, must contain an element from a very small
set, viz., C\ W, which has at most s — 1 colors of C. Now, if there are several such vertices
a € A (i.e., that witness every s-subset as the list of one of its neighbors) then this same
criterion must be met by each of these vertices. And that is not very likely to happen if
we were to allot random lists to the vertices of A! This potentially sets up a contradiction.

Let us set this in motion. Call a vertex a € A critical if among its neighbors, all
possible s-subsets of C appear. To achieve this, assign for each b € B, the set L; to be
an s-subset of C uniformly at random and independently over different vertices. Then
the probability that a is not critical is equal to the probability that there exists some
s-subset T" of C such that no neighbor of a is assigned T as its list. Since there are (i)
possible T’s it follows by the union bound that

P(a is not critical) < (i) <1 - %) d < (i’) (2,

s
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Now assume that d > (5) Then by the above, P(a is not critical) < So if N

denotes the number of critical vertices of A,

1
3

A
E(N) = ZIP’(a is critical) > ‘2—’

a€A

Thus there exists an assignment of lists for vertices in B, {L,|v € B}, such that the num-
14
2

ber of critical vertices is greater than 5. Fix these choices for the lists for the vertices

of B.

Fix a color palette w from these assigned lists, i.e., a choice of an element each from
the collection {L,|v € B}. Denote as W = W (w) the set of colors that appear among
the vertices on B from the palette w.

Since there exists critical a € A, W has nonempty intersection with all s-subsets of
[L], so [W| > L —s+ 1. If an extension of w to a coloring to a exists for a critical vertex
a, then as we observed earlier, exists, L, N W # (.

Since we haven’t yet dealt with the color lists for A, let us pick color lists for the
vertices of A uniformly at random from the s-subsets of C. Then for a critical a € A
s — 1) (1 &2
P(w extends to a exists) < # <7
(2)
For an extension of w to G to exist, we need an extension of w to all critical vertices
of A. Since there are s!®! possible w’s and the number of critical vertices is greater than

ﬂ, we have(since the color lists for the vertices of a are picked independently)

2
§2\ 14172 $2\ 2 1Bl
P(an extension to a coloring of G exists) < s/Z! <f) < (s (f) )

which is less than 1 if s4/ % < 1, or equivalently, if L > s*, so set L = 2s*.. Recall the

assumpti ' L : Ly, —d/(%) _ 1 L
ption made earlier that d > (s) We needed this to make (S)e <) < 5, which is
equivalent to d > (i) log(2(§)).

o () o2))

then there is a collection of lists £ = {L,|v € G} with |{L,}| = s for all v € G such that
no L-coloring of G exists, i.e., x;(G) > s. Again, arriving at the lower bound as stated
in the theorem is a good exercise in asymptotics. For the precise details, see the first

In summary, if
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chapter on asymptotics.

This is all under the assumption that G was bipartite. But it is a very simple fact
that every graph contains a ‘large’ bipartite subgraph:

Lemma 13. For any graph G, there exists a subgraph H of G with V(H) = V(G) such
that H is bipartite and dg(v) > 1da(v) for allv € V(G).

To see why, consider a partition of the vertex set into two parts so that the number of
crossing edges (across the partition) is maximized. It is now a straightforward observation
to see that for every vertex at least half of its neighbors must be in the other part since
otherwise we can move that vertex to the other part. This partition in particular produces
a bipartite subgraph H as stated. This completes the proof of the lemma and the theorem
as well. [ |

Alon later improved his bound to x;(G) > (3 — o(1))logd with d = §(G). We shall
show a proof of a slightly weaker form of this result (x;(G) > clogd for some constant
¢ > 0 in a later chapter by a different probabilistic paradigm. Alon also conjectured that
Xi(G) < O(A(G)) where A(G) denotes the maximum degree of G. That remains an open
problem.

We now move on to the next principle outlined in the introduction of this chapter,
and that is this fairly easy inequality.

Theorem 14. (The Markov Inequality) IF X is a non-negative value random variable
then
E(X)

P(X >a) <
(Xza) <=

As seen in the example earlier, the expectation of a random variable being ‘large” does
not guarantee that its takes large values with high probability. But if the random variable
is bounded, then it must take ‘somewhat large’ values with ‘ not-too-little’ probability:

Proposition 15. Suppose X is a non-negative values random variable and suppose X <
M with probability one. Then for a < E(X),

E(X)—a

P(X >a) <
(X >a) < M —a

The idea of proof is straightforward. Write

E(X) = XdIP+/ X dP
r<a r>a
< aP(X <a)+M(1-P(X >a))

and now the conclusion follows by a straightforward computation.
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4.5

The Varnavides' averaging argument

An old conjecture due to Erdés and Turan was the following: Given € > 0 and an in-
teger k > 3, there exists Ny := Ny(e, k) such that the following holds: If N > Ny and
A C{l,...,N} with |A| > &N then A contains a k-term arithmetic progression (k-AP
for short). This conjecture came on the heels of the theorem due to van der Waerden
that states that given positive integers, r, k there exists an integer W (r, k) such that if
N > W, then any r-coloring of the integers in [N] := {1,..., N} necessarily contains a
monochromatic k-AP. The Erdés-Turdn conjecture basically captures the intuitive idea
that van der Waerden’s theorem holds because it does so on the most popular color class.
This conjecture was settled in the affirmative for £ = 3 by Roth, and then later in its full
generality by Szemerédi.

What we are after (following Varnavides) is a generalization of this result. The state-
ment we aim to prove is that, if N is sufficiently large, and |A| > &N then A in fact
contains as many k-APs as there can be (upto a constant multiple):

Theorem 16. (Varnavides) Given € > 0 and k > 3, there exists 6 := (e, k) such that
the following holds. Any subset A C [N] of size at least eN contains at least N* APs of
length k.

Note that the total number of possible k term APs in [N] is determined by specifying
the first term, and the common difference, so there are at most N2 k-APs in all. Thus,
this theorem is best possible up to the constant.

Proof. By Szemerédi’s result, we know that there is an Ny := Ny(g, k) such that any
subset A C [Ny] of size at least e Ny contains at least one k-AP. The simplest thing one
can imagine doing is, cutting the set [IV] into linear chunks of length Njy; clearly at least
one of these chunks must meet A in at least an ¢ proportion of its size. That unfortu-
nately does not give us anything new. But one thing is does suggest is, the number of such
chunks that have a reasonable proportion of A in them will each give us one distinct k-AP.

But this breaking into chunks is a little too wasteful. Every AP of size N is again a
model for the set [/Vy] so one might want to consider all possible APs of length Ny and
see how many among them meet A in a significantly large portion. Of course, the same
k-AP might be a part of several such Ny-APs, so there is a double counting issue to sort
out anyway. But that immediately suggests the following.

Pick an Nyp-AP at random, i.e., pick xg, d uniformly and independently from [N] with
d#0and let K := K(x¢,d) = {zo,z0+d,...,x0+ (No— 1)d}. One problem this imme-
diately poses is that not all possible such pairs give rise to K C [N]. To overcome this
nuisance, let us work in Z/NZ. The relevant random variable now is |ANK|. To compute
the expectation using the linearity of expectation, we need to compute P(a € K) for an
arbitrary a € [N]. To count the number of pairs (z¢,d) such that K(x,d) contains a,
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4.6

observe that if a = xg is the first term, then all possible choices for d count such valid
K, otherwise, there are N — 1 choices for zy, and for each of those, if a is the i"* term of
K(xg,d) (with Ny — 1 choices for i) this determines d uniquely, provided we can solve the
corresponding linear equation a = xg + id for d. Again, this makes things messy, but as
we have observed earlier, this works provided N is prime.

So, let us start again. Instead of working in Z/NZ, pick a prime p € (2N,4N) and
let us then work in Z/pZ. We choose p > 2N since that ensures that addition of two
elements in {1,..., N} is the same as addition in Z/pZ. We also don’t want p to be too
large because we need to estimate p in terms of N. Now pick zg, d uniformly from Z/pZ
as outlined before, and let K := K(xg,d). Then

A
E(KNA =) PlackK)= ||N0>4N0
acA

by the assumption on the size of A. We would ideally like it to be the case that |[K N A|
takes somewhat large values with not-too-small probability, and by Proposition 15

P(\Kmu z%NO) >§

since |K N A| < Ny. This suggests the following: Let Ny = Ny(¢/8, k) from Szemerédi’s
theorem. Then it follows by everything seen above that with probability at least /8,
K N A contains a k-AP. But on the other hand, if A is the set of all k-APS contained in
A, then

P(K N A contains a member of A) < Z P(P C K)
PcA

No(Ng — 1
< o=y

N(N -1)
since to determine if K (xg,d) contains P, we have at most No(Ny — 1) choices for deter-
mining the first and second elements of P in K. Rearranging terms, this gives

3

P S—
Al 16No(No — 1)

and that completes the proof. |

Remark: The constants Ny(e, k) that Szemerédi’s proof offer are extremely large and
are of a tower type.

A conjecture of Daykin-Erdos and its resolution

Suppose H C P([n]) is a hypergraph. One can construct a graph Gy with vertex set
E(H), and E # F are adjacent in Gy iff ENF = ).
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Why would one define this particular graph? This is actually one of the most well-
studied instances of a graph arising naturally from hypergraphs. The Kneser graphs are
instances of this when the underlying hypergraph is the complete uniform hypergraph of
order 7, i.e., V(H) = [n] and E(H) = ([:f]) for some r < n/2. One of the other motiva-
tions for studying this graph comes from the problem of explicit constructions for Ramsey
graphs: We say that a graph on n vertices is k-Ramsey (if the k is implicitly clear, we
simply say Ramsey graph) if it neither contains an independent set” nor a clique® of order
k. Note that if the edges of a k-Ramsey G are colored red, and the remaining edges of
K, are colored blue then by the definition of G being k-Ramsey, this coloring does not
contain a monochromatic K.

As seen earlier, the first explicit construction of a k-Ramsey graph due to Nagy was
by considering the graph G, where H was the complete uniform hypergraph of order 3.
As seen before, Erd6s proved that R(k,k) > Q(k2/2) but his proof did not provide an
explicit deterministic construction. This also suggests the following question: Suppose
e(H) = 2" for some § > 0. Is there a hypergraph H on n vertices such that the
graph Gy is n-Ramsey? If true, this would in one stroke improve upon the probabilistic
lower bound, and also provide an explicit construction for n-Ramsey graphs.

While this would indeed be nice, it seems like asking for too much. And to see why
that would be the case, suppose G is a Ramsey graph on n vertices, i.e., suppose G
contains neither an independent set, nor a clique of order 2log,n (Why?!). We claim
that e(G,) must be rather large. Indeed, a celebrated theorem in extremal graph theory
due to Turdn (in an alternate formulation) states that a graph on n vertices admits an
independent subset of size at least 17, where d is the average degree of the vertices of
the graph. If the Ramsey graph G, satisfies e(G,) < en?~° for some constants ¢,d > 0
then by Turdn’s theorem, ‘a(G,) > 5 = Q(n’), so such graphs could not be Ramsey.

Since examples of Ramsey graphs of size 2(3+9n seemed difficult to contruct (they
still are!) this line of argument possibly convinced Daykin and Erdds to conjecture the
following;:

Conjecture 17 (Daykin-Erdés). If |H| = m = 26197 then,
d(H) == #{{E,F} e H|ENF =0} = o(m?).

Note that if m = 2?2 then in fact there do exist hypergraphs H for which the graph
Gy, are dense (though not Ramsey graphs). For instance, take the set [n] and partition
it into two sets A, B of size n/2 each, and consider H to consist of all subsets of A along
with all subsets of B. Since A, B are disjoint, Gy has all edges of the type (F, F') where

4A subset S of vertices is called independent if no two vertices of S are adjacent.
5A clique in a graph is a set of pairwise adjacent vertices.
6a (@) denotes the size of a largest independent subset of vertices in G,
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A C A, F C F. The conjecture of Daykin and Erdos says that this cannot be improved
upon if the exponent were strictly greater than 1/2.

The Daykin-Erdés conjecture was settled by Alon and Fiiredi in 1985.

Theorem 18. (Alon-Fiiredi) Suppose 0 < § < 1 is fized, and suppose n is sufficiently
large. If [H| = m = 20/2%9% then d(H) < em®=9*/? for some positive constant c.

Proof. Let us see how we could go about this. If the graph Gy is dense, one should
expect to find two large disjoint subsets S, T of V(G%) which constitute a dense pair,
i.e., one ought to expect to see lots of edges between S and 7. If this pair witnesses all

So if the pair S, T constitute a dense pair, it would not be a stretch to expect that U S
ses
and U T are almost disjoint from each other. But if these sets are also ‘large’ subsets

TeT
of [n], this appears unlikely and would probably give a contradiction.

To see if we can pull this off, let us try something simpler first: Suppose there exists an

S such that A(S) := U S is large, and further, that the number of sets £ € H satisfying

Ses
ENA(S) =0 is also large. For the sake of simplicity, suppose |A(S)| > 5. Then

#{ECH|ENAS) =0} <272
so if there exists S such that

o A(S) = U S satisfies |A(S)| > § (which is likely), and
ses

o #{E€H|ENAS) =0} >2"

then we have a contradiction.

Let us begin formally now. We seek a collection S with A(S) being very large. Since
we are bereft of specific choices, pick Si,S,,---,5; € H uniformly and independently
for some ¢ that shall be determined later. If A(S) has at most n/2 elements, then there
exists T' C [n] such that |T| = n/2 and each S; C T. Fix such a choice for T

_H#HECH|ECTY #HECH|ECT} _ 2% 1

e 9 +o)n = o(G+om 20’

]P)(Sl C T)
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Therefore by the union bound,

n 1\ 2» 1
paS) <02 < (1) () < s = oo

Thus, to ensure that this is a low probability event, we need td — 1 > 0, or equivalently,
t> 1
5

For the second part, we want X := #{F € H|E N A(S) =0} to be at least on/2

Writing X = Z L{Ena(s)=py we have

EeH
E(X)=> P(ENAS)=0).
EcH
Fix F € H.

d(E)\"
P(ENAS)=0)=P(ENS;=0foralli=1,...,t) = (Q)

m

where d(F) is the degree of E in Gy. Denoting e(G%) = M, we have

-5

E(X) =Y P(ENAS)

EeH EeH
1 1
i ()
EeH
2L M
m2t—1°
" . _ E[X]
By proposition 15 we have (setting a = 557)
1 2tmt-t
1mix) — EXI 2\ w21
]P’(XZaM) > ]m?M _
1 =5 1— (—anﬁ{il)
which gives us
n 1
PIAWS) > 2) > 1~ o
If tagt—1
e
1_ 2:112124_?1 o(t—1)n’

then both events as outlined in the sketch happen simultaneously and our contradiction
is achieved. Choose t = %. If M = em?, then this forced inequality is feasible for a
suitable ¢ that depends only on ¢ and ¢. To determine the upper bound for M as in the

statement of the theorem is a straightforward exercise. |
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4.7

Graphs with high girth and large chromatic number

While it is easy to ensure that a graph constructed has a high chromatic number (make
a clique of that size as a subgraph), it became a considerably harder task of ensuring
that the same holds if we forbid large cliques. The first such question that arose was the
following;:

Question 19. Do there exist graphs with chromatic number k (for any given k) and
which are also triangle free?

This was settled with the ‘Mycielski construction’ in the affirmative. This led to
the next natural question: What if we also forbid 4 cycles? Tutte produced a sequence
of graphs with girth 6 and arbitrarily large chromatic number, but the bigger question
loomed large: Do there exist graphs with arbitrarily large chromatic number and also
arbitrarily large girth? It took the ingenuity of Erdds to settle this in the affirmative.

To see why this is a little surprising, note that insisting on large girth g, simply implies
that for each vertex v, the induced subgraph on the set of vertices at a distance at most
g/2 is a tree, which can be 2-colored. Yet, it is indeed conceivable that the chromatic
number of the entire graph varies vastly from the chromatic number of small induced
subgraphs.

This again fits the general template we have discussed. We need a graph GG in which
locally small induced subgraphs are trees, and yet, the graph itself has large chromatic
number. A random graph appears a sound candidate for such a possibility.

Theorem 20. (Erddés) There are graphs with arbitrarily high girth and chromatic number.

Proof. Let G,,,, denote a random graph on n vertices, where each pair of vertices {z,y}
is added independently with probability p. Let n be sufficiently large. For the random
graph to give us what we seek we want:

e G, , will have relatively few small cycles with reasonably high probability.
e (G has large chromatic number with reasonably high probability.

Fix a number ¢, and let N, denote the number of cycles of length at most ¢ in G,, ,. As
seen before,

¢ o
nip? (np)® (np)2—1 _ (np)*
E(NE)SZ?) 25 =6 (w1 = 2

Hence by the Markov inequality,

Pr(|Ne| > (np)*) < 1/2
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in other words, with probability at least 1/2 G,,, has at most (np)¢ cycles of size at most
¢. This is the first step.

To show that the chromatic number of our random graphs is large, we need to un-
derstand how one might bound the chromatic number from below. Doing this directly,
by working with the chromatic number itself, would be rather ponderous. But a simple
observation based on the definition tells us that since each color class is an independent
set, we have

X(G) > (@)

where a(G) is the independence number of the graph. How does this help?

Let us examine a(G) in G,,,. We need this to be small since we want the chromatic
number to be large. Then

P(a(G) > m) = P(there exists an independent subset of G of size m)
< Z P(there are no edges inside S)
SCV,|S|=m

= ()= n)®) < exp(-plm ~ 1)/2)"

To get a handle on these parameters we have freely introduced, note that the term in-
side the parenthesis in the last inequality above can be expressed as exp (log n— (mT_lp)),

-‘, then the probability that G, , contains an independent set of size at

so if m = F’l‘;g"

least m goes to zero as n — oc.

So, what do we have on our hands now? If p is chosen in some manner, and then we

set m = F’k’%w then with positive probability (certainly) we have that G has at most

9np)? cycles of size at most £ AND that its independence number is at most m. Pick such
aG.

As before, we shall perform some deletions to GG to rid it of all small cycles. But unlike
the earlier instance, if we deleted edges, we run the risk of pumping up its independence
number, so this time let us delete vertices instead. The advantage is that vertex deletions
result in an induced subgraph of the original graph, so its independence number remains
the same.

This suggests that we set (np)* < n/2, or equivalently, p < C”Tl/g for some constant C.
So, set p = % for some A € (0,1/¢), and m as suggested. Then remove an arbitrary vertex
from each small cycle from G, and call the resulting graph G’. Then G’ has girth > ¢ and
at least n/2 vertices. Finally, since deleting vertices doesn’t decrease the independence
number of a graph,

/ A
V(G| S n/2 S n

n > _
X&) 2 a(G@) ~ a(G@) T 6logn  6logn’
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which goes to infinity as n grows large. |

Remark: There have been subsequently many constructive forms of this result, with
the first one by Lovasz, and then subsequently by many others. Many of those construc-
tions actually construct hypergraphs with the same property. The nicest description of
such graphs however are the Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak
([22]). But the proof involves some sophisticated number theory.
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Dependent Random Choice

Sometimes, the desired object
is not the random object itself,
but an associate of it.

In this chapter, we consider another aspect of tweaking a randomized construction:
Sometimes it pays off to pick the object of desire not be picking it directly as a random
object, but rather pick another object randomly and then pick a relevant associated object
to the randomly picked object, to be our desired object. This sounds a bit roundabout but
on quite a few occasions, it turns out to be the correct thing to do.

The premise for some of the investigations in this chapter is motivated by the following
question: Given a ’small’ graph H, how many edges must a graph G have in order that
H C G? We denote by ex(H;n) the maximum number of edges in an n vertex graph
G which is H-free. If H is not bipartite then theorem of Erdds-Stone-Simonovits settles
this upto a multiplicative factor of 1 + o(1). But if H is bipartite then the Erdés-Stone-
Simonovits theorem only tells us that ex(n; H) = o(n?). This begs the following question:

Question 21. For H bipartite, what is the correct value of o with 1 < v < 2 such that
ex(n; H) = ©(net))?

Suppose H = (AUB, F) with |A| = a,|B| = b. One constructive way to find a copy of
H in a large graph G is to try and embed H into GG, one vertex at a time. Suppose there
is a large subset Ay of G into which the vertices of A have already been embedded in
some fashion. Let B = {v;, v, - - - v} and suppose that we have embedded vy, - - - v;_; into
V(G). The new idea that provides a scheme by which this inductive procedure extends
to embedding v; as well is the following: Suppose v; has degree r, and suppose that every
r-subset of Ag has many common neighbors in G. One elementary bound here is that the
number of common neighbors is at least a + 0. Since A has been embedded into Ay, this
gives a set U C Ay of size < r which should be the neighbor set for v;. Since |U| < r and
it has at least a + b common neighbors in G there is some available choice for v; in V(G)
which is not a vertex that has already been taken! In short, we have the following

Proposition 22. Let H be bipartite, H = (AU B, E) with |A| = a,|B| = b, any vertex
in B has degree at most r. Suppose there is a set Ay C V(G) of size at least a such that
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5.1

every r-subset of Ay has at least a+b common neighbors in G. Then H can be embedded

mn G.

This proposition presents a technique which allows one to establish that a graph H
can be embedded into a bigger graph GG and the technical criterion in the proposition
leads to the following question: Given a graph GG, under what conditions can one ensure
that there exists a subset of vertices Ay of size at least a such that every r-subset of A
has at least a + b common neighbors?

Since we do not choose our actual objects of interest by the random method but
rather in this dependent manner, this method is referred to as the method of Dependent
Random Choice.

A graph embedding lemma

Let V(H) = AU B, |A| = a,|B| = b, let Ay be subset of V(G) containing all the vertices
of A. We seek to embed the graph H in G as described in the preceding section, and this
brings us concretely to the following question: How do we determine a set Aj such that
every r-subset of Ay has many common neighbors in G?

Before we launch into how we might prove this proposition, let us see if picking the
desired set randomly would work. A moment’s reflection will tell us that it may not
be feasible at all. Suppose G is bipartite with both parts of considerable size. Then a
random set is very likely to pick at least one vertex from each of the parts and then the
condition cannot be satisfied. But even if we were aware of the graph being bipartite
there is yet another issue. Indeed, suppose we pick each vertex to be in independently
with probability p, then E(|U|) = np and the expected number of r-subsets of U that do
not have, say, m common neighbors, is at most (:)rp . If we were to try and alter this
set by removing one element from each bad r-subset, we are left with a set whose size is
only guaranteed to be at least np — (:f) rP and this can only certify that the set has size
at least €2,(1), a far cry from what we want.

The main key idea to overcome this problem is to invert this search technique: instead
of picking the set Ag randomly, pick a set T and let Ay be the set of those vertices which
contain T among their neighbors. This is a healthy heuristic since by fiat, we know that
all the chosen vertices have the vertices of T" among their neighbors.

Indeed, over t rounds, pick a vertex v; uniformly at random and independently across
the rounds. Call this set T" and consider the set of common neighbors of 7' - we shall
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denote that by N*(T"). Then

E(NY(T))) =) _PB(ve N*(T))

T
> (% Zdw))
o\

ntfl

where d denotes the average degree of the vertices of G. The inequality above follows
from Jensen’s inequality for convex functions.

Let Y denote the number of r-subsets U of N*(T') such that U has fewer than m
common neighbors. Then

EY)< ) PUCNYT))

UcCV(G),|U|=r
IN*(T)|<m

If U ¢ N*(T), it means that every choice for T was picked from among the common
neighbors of U, so P(U C N*(T")) < (%)t Consequently,

which implies

E(N(T) - v) > D (”) @)

so that there exists (by the method of alterations as seen in the preceding chapter)

Ap C N*(T) of size at least % - (%)t such that every r-subset of Ay has at least m
common neighbors. This gives the following

Theorem 23. (Alon, Krivelevich, Sudakov) H is bipartite with vertex partition (A, B),
and if every vertex of B has degree < r, then ex(n; H) = OH(nQ_%).
Proof. We only need to fill in the gaps now. Note that

1 1

e(G) > COn* v = d >2Cn'"~

where C' = C'y is a constant depending on H. To complete the proof, we need

() =
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5.2

Now plugging in the lower bound for d from before, we have

(4" <n>(a+b)t . (20t~ ) nr (QH)t‘

nt—1 r n

n nt—1 rl

Now, setting r =t gives that the last expression is at least

b r
0y — @ - " e
d
. L (ab)" 1/r
with €' > 3 <a + T) and that completes the proof. [ |

Before we move on, we highlight the inequality obtained earlier to the status of an
observation.

Observation 24. Suppose the average degree of a graph G is d. Then there exists a
subset Ag of size at least nf—; — (’Z) (%)t such that every r-subset of Ag has at least m
common neighbors.

The peculiar aspect of this observation is that the parameter ¢ which appears is not
present in the consequence, so it is more of a driving parameter that gives a condition to
make a conclusion.

An old problem of Erdos

We now take a look at another old problem of Erddés that was settled in the affirmative
following the Dependent Random Choice line. But first, we need a definition.

Definition 25. A topological copy of a graph H is formed by replacing every edge of H
by a path such that paths corresponding to distinct edges are internally disjoint, i.e., have
no common internal vertices.

Erdés conjectured that if e(G,,) > cp®n, then there is a topological copy of K, in G.
This was proved in 1998 by Bollobds and Hind. Erdés’ conjecture implies that there is a
topological copy of K ; in G, if e(G,) > cn®.

Definition 26. A t-subdivision where each edge is replaced by a path with <t internal
vertices.

Erdés also asked if e-dense graphs, i.e., graphs G, with e(G,) > en? admit a 1-

subdivision of Kq(/z). More formally, is there a 1-subdivision of Kj 5 in an e-dense
graph for some absolute § = §(¢) > 07 Note that the Bollobas-Hind result does not
establish a 1-subdivision, since the paths in the topological copy could involve some long
paths.
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5.3

The following perspective is key:

If one seeks to embed a fixed bipartite graph into another graph, and if all the vertices
on one side of the bipartite graph have somewhat small degree, then the Dependent Choice
method gives a handle - effectively reducing the problem to a calculation - on proving suf-
ficiency results.

In the Erdés problem above, note that a strict 1-subdivision of the complete graph
K,, i.e., one where each edge of K, is subdivided to get a path of length two, corresponds
to a blpartlte graph with parts of size a, ( ), respectively. Observe that every vertex in
the part of size (2) has degree 2 since each of these vertices is placed in an edge of the
original K,, and hence has degree 2. Thus, the Dependent Random Choice technique
appears a likely tool.

Theorem 27. (Alon, Krivelevich, Sudakov) If e(G,) > en?, then G has a 1-subdivision
Of Kgs/z\/ﬁ.

Proof. If we think along the lines of the embedding procedure that we discussed in the
previous sections, then as remarked above, we have a sufficiency condition provided we
make a back calculation. Indeed, we would have the result we seek if

L () @)

Here r =2,m=a+ (3) < 2(3) <d? and d > 2en.
Consequently,

n2 g2t
LHS > (2¢)'n — ——
(2)'n — 5.
For a = 0y/n and § = %2, we have

2
LHS > ¢t (Qtn — %EZ%)

so if the second term in the square bracket equals n then we may factor out n from both

these terms. This basically boils down to setting ¢ = % so that

LHS > \/75(2”1 —1) > \/TH \/_ Tost172)

n2log(1/5

As n goes large, this beats a = §y/n and settles the conJecture. [ ]

A special case of Sidorenko's conjecture

One of the most beautiful conjectures in extremal graph theory is Sidorenko’s conjecture.
To get to it, we need a definition first:
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Definition 28. A graph homomorphism between graphs H,G is a map ¢ : V(H) — V(G)
such that whenever uv is an edge in H, ¢(u)p(v) is an edge in G.

Homomorphism capture graph adjacencies at the local level, i.e., for each vertex u the
neighbors of u are mapped to the neighbors of the image of u. The map ¢ is not required
to be injective, so for instance, there is a homomorphism from K3 to any odd cycle. It is
usually of greater interest to consider isomorphisms between graphs, i.e., injective maps
¢ such that ¢ also preserves non-adjacencies. But if H is small compared to G, then
the non-injective maps are asymptotically far fewer than the injective ones, so homomor-
phisms are easier to study, since to count the number of homomorphisms, one can think
of it in terms of embeddings where for each vertex u € H, the neighbors of u in H are
mapped into neighbors of its image in G.

Let hy(G) denote the number of homomorphisms from H to G. The homomorphism

density of H in G denoted ty(G) is defined as ty(G) = W(hg)%

Sidorenko’s conjecture (also attributed to Erdds and Simonovits) states that for any
bipartite graph H, among all graphs G with edge density p, the random graph G(n,p)
has asymptotically the least number of copies of H. More formally,

Conjecture 29. (Sidorenko): Suppose H = (A, B, E) is bipartite and suppose G is a
graph with edge density p. Then ty(G) > pt).

One way to intuit this is that a random graph tends to ‘spread out’ all the copies
of H so that no conglomeration of the copies of H is possible. While there have been
several attacks on this problem with beautiful results by several researchers, the problem
still remains open. In this section we shall see a beautiful result due to Conlon, Fox and
Sudakov (2010). But before we get to that result, let us quickly see how Sidorenko’s con-
jecture may also be stated in terms of counting homomorphisms instead of dealing with
homomorphism densities. Let |V (H)| = n,e(H) = m, and suppose hy(G) > cyp™N™"
holds for all graphs G on N vertices with pN?/2 edges. Here cy is a constant that de-
pends only on H. We first observe that this establishes the Sidorenko conjecture for H.

Indeed, suppose tg(G) < p™ for some graph G with edge density p. The idea is
to ‘boost’ up the edge density of H in another related graph, by what is called the
‘tensoring trick’. For graphs Gi, G, the (weak) product G; x G is the graph on the
vertex set V(Gy) x V(Gq) and (u,v) is adjacent to (u',v’) if and only if wu' € E(G,)
and vv' € E(G3). The simplicity of this definition leads to many things, but here, the
relevant point is that for any H, ty(Gy X Ga) = ty(G1)ty(G2). We shall denote by G®”
the r-fold product G x --- x G.

m

Consider 0 < ¢ = t’;(G) < 1, if possible. Then for any integer r > 1
chrm S tH(G®r) — tH(G)T — crpmr — Cr(pr)m
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since p” is the edge density of G®" and the assumption about the number of homomor-
phisms of H in any graph. But since ¢ < 1, this yields a contradiction if r is sufficiently
large.

Theorem 30. (Conlon, Fox, Sudakov) Suppose H = (A, B, E) is bipartite with n = a+b
vertices and m edges, and suppose there is a vertex in A (which shall be referred to as a
special vertex) which is adjacent to all the vertices of B. Then for any graph Gy with at
least pN?/2 edges, the number of homomorphisms from H — G is at least (Qn)*”meN”.
Consequently, Sidorenko’s conjecture holds for H.

Proof. Let A = {uy,...,u,} and B = {wy,...,wp}. Let us start with a scheme for
constructing homomorphisms from H to GG. One curious aspect of the hypothesis of the
theorem is the assumption about the existence of a special vertex in A. But if we were
to approach this from a constructive perspective, it makes certain things more rigid and
natural: Suppose u; € A is special. To construct a homomorphism ¢ one vertex at a
time, we shall first fix the image ¢(u;) = x; in G, and then (since we are interested
in homomorphisms which need not be injective) fix a sequence B = (y1,...,y,) with
y; € N(x1) which would act as the image of B under ¢, and then finally, choose the
images of the other u; € A.

Suppose we have chosen y; € N(z1) that act as ¢(w;). To see if this sequence B is a
good extension to the choice for x, let us examine how well this extends to the other u;
as a homomorphism. Each wu; picks a subsequence B’ := (y;,,...,v;, ) that corresponds
to the neighbors of u;, so one is guaranteed many homomorphism extensions for defining
¢(u;) if N*(2B') is large. Since the neighbors of the u; may be arbitrary subsets of B, a
naturally good choice B is one for which for every subsequence B' := (vy;,, ...,y ), the
set N*(%8') is ‘large’. This begs the question: How large is ‘large’? Since Sidorenko’s
conjecture posits that the random graph generates the least number of homomorphisms,
it is reasonable to compare the size of the N*(B) with p?(*) N since in a random graph
of edge density p, the expected number of common neighbors for a set of size k is p*N.

So, we formally postulate: A sequence B = (yi,...,4) is desirable if for each
1 < k < b the subsequence B’ = (y;,,...,%;,) has |[N*(8')| > ap”N for some small
a that we will pin down later. We define a vertex x € V(G) to be good if the number of
desirable sequences B = (y1,...,y) with y; € N(z) is at least %”’)b. Again, this is not
out of the blue; if x were to act as ¢(uy) the number of possible sequences of neighbors
of x is at most d(z)°, and we require that at least half of those are desirable sequences.

We denote by Good, the set of good vertices in G.

This gives us a back-of-the-envelope estimate on the number of homomorphisms from

H into G to be at least
d(z1)b [+ .
Z (21) <H apd(uz)N> .
i=2

z1€ Good
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To explain this, we first pick x; to be a good vertex, and fix z; as the image of the special
uy. For each desirable sequence (yi,...,1,) which will serve as (¢(wy),...,o(wy)), we
pick choices for the remaining u;. Since B is desirable, there are at least ap?®) N choices
for each wu;.

Hence
d(x b a » aa—lpm—bNa—l
Z (21) (H apd( 1)N> — 5 Z d(l’l)b
z1€ Good =2 z1€ Good
b
S a“_lpm_bN“_lN lee Good A1)
- 2 N
b
Qn—lpm—bNa
= T | 2 )
z1€ Good

so if we can prove a lower bound of the form

> d(zr) > Q(pN?)

z1€ Good

then we are through.

This sets us a goal, but there is still a lot packed tightly into the notion of what it
means for a vertex to be good. To unspool this a bit, suppose that a vertex = ¢ Good.
An alternate way to state this is: Suppose 9B is picked uniformly at random from (N (x))°.

Then the probability that 98 is not desirable is at most 1/2.

Let B = (y1,...,u), and let us fix 1 <4y <--- <ip < b, and set B’ = (yiy, ..., i, )-
If there exists 8 > 0 such that P(|[N*(B8)| < ap”N) < j for all k and choices of (iy, ... i)
the
P(%B is not desirable) < 23 < 2"7'3

and if we choose § = 27" then this contradicts that = ¢ Good.

This motivates the following definition. For 1 < k < b, we say that a vertex x is prob-
lematic for k (which we shall denote by x ~ k) for a positive integer k£ < b if the number
of subsequences B’ = (y1,...,yr) € N(x)* with |[N*(B')| < ap*N is somewhat large, say
at least Bd(x)*. By our terminology, * € Good if and only if x is not problematic for &
for each 1 < k < b.

We now invoke the Dependent Random Choice principle: Small subsets of the common

netghborhood of small random sets admit many common neighbors. Let B’ be a random
k-sequence of vertices from V', and let COUNT}, be the number of vertices x € V such
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that B’ € N(x)F and |[N*(B’)| < ap*N. Then

E(COUNT;) = » P(B' € N(z)" and [N*(B')| < ap*N) (5.1)
> Y P(B' eN@)*)=p) (%) (5.2)
> BN <Z d@)) (5.3)

x~k

by the convexity of the function f(x) = 2* and the definition of  being problematic for
k. On the other hand,

E(COUNT}) < ap*N (5.4)

since any such x that is counted in this which admits B’ € N (z)* with |[N*(B’)| < ap*N
must necessarily satisfy z € N*(8’). Thus we have

Y d(x) < (%) " pN2,

z~k

Now, if a < (, then summing this over all £ < b gives

o\ 1/
> d(x)<b (—) pN?
x¢ Good 6

: _ 1 1 pN? .
so, if we take 8 = 55, @ = = we have Z d(z) > 5 and the proof is complete. W
z€ Good

The Balog-Szemerédi-Gowers Theorem

The last section of this chapter deals with a deep result in Additive Combinatorics,
originally due to Balog and Szemerédi, and then was reproved by Gowers with stronger
estimates than in the original. To motivate the statement, we set up some terminology.
For sets A, B C Z for an ambient abelian group, we mean by A + B (called the sum
set) the set of all elements of the form a + b with a € A,b € B. One of the principal
questions in Additive Combinatorics studies the size of sum sets in interesting abelian
groups. One of the foundational theorems in this direction is Freiman’s theorem which
states that if |A+ A| < K|A| for some bounded constant K, then A is a large subset of a
well-structured set, called a Generalized Arithmetic progression, so in that sense the size
of |A + A| measures how structured the set A is.
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But suppose we only have access to consider pairs of sums for a restricted number of
pairs of A. More precisely, consider a bipartite graph G = G4 with both vertex partitions
corresponding to the set A and we only have access to the pairs of sums a + b whenever
ab € E(G). We shall denote by A +¢ A the set {a+0b:a,b € A,ab € E(G)}. How much
information does A +¢ A capture about |A + A|?

Let |A| = n . If the graph G is sparse, then there is not much hope of gathering
much information about A, so suppose that G is dense, i.e., e(G) > an? for some fixed
0<a<l1. If |A+g A| < cn for some absolute constant ¢ then could we conclude that
|A+ A| < ¢yn for some ¢;?

A moment’s thought tells us that such a conclusion is too good to be true. Indeed,
suppose R is a random subset of [1,n?] where each x € [1,n?] is picked uniformly and
independently with probability %, say, and let A = [1,n] U R . Let G be the graph
corresponding to the pairs ab with a,b € [1,n]. Then |A +¢ A] = 2n — 1 and it is not
hard to see that P(|R + R| > Q(n?)) = Q(1).

However, in this example the set A had a large subset A’ = [1, n] for which |A'+ A'| =
2|A’|. This motivates the following modification: If |A +5 A| = O(n), then is there
a large structured subset of A? The answer in the affirmative is the substance of the
Balog-Szemerédi-Gowers theorem:

Theorem 31. Suppose 0 < o < 1,¢ > 0 are reals then there exist ¢, " (depending on
c,a) and no(c, k) such that the following holds. Suppose n > ny and A is a subset of
the integers of size n, and suppose that for a graph G = G4 with e(G) > an?® we have
|A +¢ Al < cn then there exists A C A with |A'| > ¢|A| with |A"+ A’| < 'n.

We will prove a slight generalization of this for sets A, B and A +4 B.

There is a natural injection from paths of length 3 in G to elements in A+ B: Suppose
v,/ x' €e A+tgBandr=a+b, 2’ =ad +V, 2" =d +b. Thena+b=z—2"+2", so
one can associate to the path ab'a’b in G, the element a + b € A + B. Hence every path
of length 3 in G corresponds to a unique pair (a,b) which corresponds to an element in
A+ B. If we can lower bound the number of paths of length 3 corresponding to each
element in A+ B then we have an upper bound on the size of A+ B. Since G is dense it is
reasonable to expect many paths of length 3 between most pairs of vertices (but perhaps
not all pairs) so we might need to restrict to subsets A’ and B’ so that this property holds.

More precisely, suppose we can find A" C A, B’ C B such that |A'| > ¢n,|B'| > d'n
and between every pair (a,b) €€ A’ x B’ there are 2(n?) paths of length 3. Then there
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are at least (n?) triples (z,z’,2") € (A +¢ B)? such that

z—a +2" = a+b,
xr = a+l
2 = d+0b

holds for some (a’,0’) € A x B. Since by assumption |A+¢g B| < ¢n the number of triples
(z,2',2") € (A+¢ B)* < *n?, so

And > Z #{(z, 2", 2" ly=a— 2" +2")} (5.5)
yeA'+B’
> Q(n?)|A + B (5.6)

which gives |4’ + B'| = O(n).

So we would be done if we can answer the following question affirmatively:

Question 32. If G = G[A, B] is bipartite, |A| = |B| = n and e(G) > xkn? can we find
subsets A" C A, B" C B with |A'| > ¢'n,|B'| > ¢'n such that for all a € A’,b € B’ there
are 2(n?) paths ab'a’b ?

Let Ay ={a € A:d(a) >} Then e(A\ Ay, B) < KTnQ’ S0

2
RN
n|A;| = |A4| - |B| > e(Ay,B) > =

which gives
KN
|As| > 5
Now let us speculate a bit.

Conjecture 33. Suppose e(A, B) > rn?. There exist absolute constants o, > 0 de-
pending only on k such that the following holds: There exists A" C A with |A’| > «a|A|
such that every pair {a,a’} in A" has at least §|B| common neighbors in B.

This conjecture is a natural first-line-of-attack. If conjecture 33 holds, then get
U C Ay, |U| > a|A;| such that every pair {a,a’} in U have at least §| B| common neigh-
bors; by the arguments outlined earlier, this gives us that |U| > axn/2.

Now we choose By C B to consist of those vertices with large degree into U - that
would provide many choices for the 3rd edge. If |B;| = Q(n), we are through.

Let p# > 0 be a parameter that we shall fix later. Set

By :={be B:db,U) > uU|} (5.7)
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and again exactly as before, since e(B \ By, U) < p|Uln and e(U, B) > |U|(%}), we have

K
U1 1B > e(U, B) 2 (5 — p)|U]m (5.8)
so that
KN
Bil = (5.9)

We now claim that (U, By) will do the job. Indeed, since each b € B; has > #

neighbors in U, b has at least % — 1 neighbors in U \ {a}. For each o’ € N(b) \ {a},
there exist at least n — 1 common neighbors for a,a’ in B\ {b}, so that there are at least

K KO ko
_ — — > > 2 .
(4|U| 1)(on—1) > 16|U|n 2 55 n (5.10)

paths of length 3 from a to b.

Unfortunately, here is the bombshell; Conjecture 33 is FALSE! For an explicit counter
example, see [20].

How does one salvage this? If this line of argument can still be exploited, the next
natural question in place of Conjecture 33 would be

Question 34. Does conjecture 33 hold if the words ‘every pair’ are replaced by ‘most
pairs’? More precisely, suppose k > 0, and G = G[A, B] is bipartite with edge density
k. Does there exist subset A" C A such that |A'| > «|A| such that there are at least
(1 —¢)|A')? ordered pairs of A', each of which have at least §|B| common neighbours in
B, for some suitable «, 0, ¢ depending only on k?

First, let us see if this weakening still yields the desired outcome. Let U, B be chosen
as before, but with U being the set guaranteed by an affirmative answer to question 34
rather than the erroneous Conjecture 33. To be precise, call (a,a’) a pair bad if they have
fewer than 0| B| common neighbors in B. Let U C A; such that |U| > «a|A;| and with
at most |U|* bad pairs. Then again as before, b € By implies that d(b,U) > %|U|. But
this time, instead of using U, we refine it further. Let

A":={a €U :aisin at most g|U| bad pairs}. (5.11)

Since the total number of bad pairs in U is at most ¢|U|?, the total number of bad
pairs featuring a vertex in U \ A’ is at least §|U|[(|U] — |A]), So

K
U = SIUlul =147
which gives

4] > 1= D) (5.12)
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So for instance if ¢ = % then |A’| > 3|U|.

So for (a,b) € A’ x By, the number of paths of length 3 from a to b is at least

K K KO akd
b S —_1)> 2 > 7
(4|U| 1 8|U|)(5n 1)_32|U|n_

ol n? = Q(n?) (5.13)

as before with only slightly worse constants. Thus we are just left with proving settling
question (34) in the affirmative. And the good news is

Theorem 35. Suppose 0 < € < 1 and G = G[A, B] is bipartite with e(G) = k|A||B].
There exist constants a,d > 0 that depend only on k,e such that the following holds:
There exists A" C A satisfying

o [A]=alA],

o Allpairs (a,d’) in A’ except for at most e|A’'|* admit at least 6| B| common neighbors
in B.

Proof. We go back to the Dependent Random Choice heuristic: Small subsets of the
common neighborhood of small random sets admit many common neighbors. Pick b € B
at random and let A" = N(b). Then

E[|A'|] = B Z d(B) = k|A|. (5.14)
beB

As before, call a pair (a,a’) bad if the number of common neighbors is at most 6| B|, and
let BAD denote the number of bad pairs (a,a’) in A. Then

E[|[BAD|] = Z P(b is chosen from a set of size at most 6|B|)  (5.15)
(a,a’)€EBAD
< J|AP (5.16)

Our goal is to find a b such that [N(b)| = Q(|A|) and |BAD| < ¢|N(b)|>. Note that by
Cauchy-Schwarz,

1 )
E(A'? - L[BAD|) > x?| A — 2| AP (5.17)
€ €
Setting § = ££-, we have
1 21 A)?
B¢ - Lpap)) > A
€ 2
so that there exists b € B such that
1 21Al?
NG - Lap) > AL
€
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Thus we have

|BAD| < ¢|N(b)|> =¢|A)? (5.18)
KA
V2

which proves theorem(35) and consequently, the Balog-Szemerédi-Gowers theorem. W

AT = [N (D)

v

(5.19)

A Ramsey bound for sparse bipartite graphs

We shall conclude this chapter with one final application - a beautiful result due to Con-
lon. Before we state the result, we need to recall the definition of the Ramsey number
r(H) for an arbitrary graph H. Since the (usual) Ramsey number concerns two colorings
of the edges of a complete graph, it can also be restated as follows. For a graph H, the
Ramsey number of an arbitrary graph, r(H) is the least integer N such that any G with

at least %(gf ) edges contains H as a subgraph. (It is a simple exercise to see why this is

well defined).

As we now know, the case for H = K,, gives N = 290" An old problem of Erdés also
considered this problem for sparse H, and conjectured that for r-sparse graphs (graphs
with maximum degree at most ), the bound for r(H) is linear in n. This was proved by
Chvétal et al via the regularity lemma, and hence the constant (depending on r) was a
tower-type bound. Later, this constant was improved to an exponential in 7. The result
of Conlon that we shall see in this section is a simpler and slightly weaker result that the
original. More precisely, if H is bipartite and with maximum degree r, then N = O,.(n).
We will soon see a more explicit version of this, with an explicit bound in the O, (1) term
there.

But before we get there, recall the Dependent Random Choice principle: If G has
average degree d then there is a subset U with |U| > nffl — (:f) (%)t such that every
r-subset of U admits at least m common neighbors. Let us see if this version of the
Dependent Random Choice trick gives us what we want. If N were to be linear in n,

then we need a t such that

(2¢)'N — (ﬂ) - (%)t > Q(N)

r

and that is plainly infeasible.

Is there a workaround? Let us take a cue from the proof of the Balog-Szemerédi-
Gowers theorem: instead of asking for all r-subsets of U to have many common neigh-
bors, we could ask for a U for which many (most?) of its r-subsets have many common
netghbors. Our current embedding lemma is rather loose in that one of the parts of H can
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be embedded arbitrarily, so if we have to be more careful in embedding the first vertex
set of H, then such an argument is bound to produce a sharper result.

Here is a rough sketch of a possible strengthening of the result. Suppose H = (A, B, F)
and let A = {uy,...,u,} and B = {vy,..., v}, and suppose we have embedded u; — x;
in G. To be able to extend this embedding to a complete embedding of H, it would
suffice if for each v € B the image of the set Ny (v) among the z;’s is contained in at
least one r-subset with, say, at least n common neighbors. In that case, then for each v;,
pick a ‘good’ r-subset containing the image of Ny (v;); since there are at least n common
neighbors for that r-subset, there is at least one (still) available option that can serve as
the image of v;, thereby extending the embedding to all of B as well.

First, let us attempt a weakening of the conclusion of a Dependent-random-Choice
type lemma. Suppose Gy has average degree at least eN. Call an r-subset good if
IN*(R)| > n. If we want a U such that the fraction of bad subsets of U is ‘small’, then as
before let T be chosen randomly by picking vy, ..., v, independently and uniformly, and
let U = N*(T). Then as before, we have E(|U]) > ¢"N and if BAD denotes the set of
bad subsets of U, then E|BAD| < (JX) (=)

Here is a nice trick that allows us to combine these two into a single inequality to
get two inequalities to be satisfied simultaneously. Since E|U|" > (E|U|)" (Jensen’s
inequality), we rewrite this as

B (107 - 5 BU) - 5 iy - 0D ) 20

and as a consequence there is a U for which this inequality holds, which then also guar-
antees that

T 1 T
ur = SEU)
1 |BAD|
T > P R E T
U > gy EYD

Some simple rearranging of these gives us the following: There exists U such that

"N

)

o |U|>27e"N >

e The proportion of bad subsets of U is at most

U 1 Ul
where in the last inequality, we use (’ |> > . u
r !

N




Let us try an inductive procedure to embed A as described in the sketch above. For
each 1 < i < a, we will embed u; into distinct x; so that for each v € B the image of
Ny (v)N{ug,...,u;} is contained in several good sets. We will along the way, make these
as precise as our requirements force us.

To first embed u; into U, we need to find a desirable vertex x; that will serve as the
image of u; in the embedding. While that word is yet to acquire a precise meaning, it
certainly means one thing: the proportion of bad subsets of U containing 1 must not
blow up too much. Let Und(uy) := {z € U : x is in more than #; proportion of bad sets}
for a 6, that will be determined later. Then

r.90<|U‘) > #{(x,R) cx € Und(uy), R € BAD,x € R} > 91(

r

\U| -1
. ) | Und(uy)|

which gives
)
\Und(uy)| < =|U].
61

As long as 0y < 60, there is a desirable z; which can serve as the image of wuy.

More generally, for a subset S C U with |S| = s < r define
Und(S) :={x € U\ S : x is in more than 0, proportion of bad sets containing S}

for a suitable #,. Then, exactly arguing as above gives us
03—1

Os
In this schematic, we have not fixed the 6; yet, but we merely observe for the time being
that we must have ) < #; < --- < 0, < 1.

Und(S)| < ==L|U].

Suppose inductively, that we have embedded u, ..., u; into U successfully. Suppose
u;41 has neighbors v;,, ..., v;, with ¢t <r; set Sj := Ng(vi;) N {uy,...,uis1}. The total
05—
number of bad options as a possible image of u;,; is less than Z (%) \U]|.
; 1551
j
Now, let us make some choices that will quantitate some of the previous statements
we have made qualitatively. Since there are at most r terms in the summand above,
if there is a uniform bound f(r) for 6,/0,_; for all s, then the sum above is at most
rf(r)|U]. Since we need this to be at least n, f(r) = %, and |U| > 2n is naturally, the
simplest setting. This loops back to giving 65 = (1/2r)"~*, so that 6y = (1/2r)", and this
(a simple back-calculation) gives N > 4re~"n.

We are now in a position to give the finishing touches to the result of Conlon, and

thereby, the Ramsey bound stated earlier, by writing all our discoveries in a formal se-
quence.
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Suppose N > 4re~"n. If G has at least eN?/2 edges, then its average degree is at
least e N, so there is a subset U of size at least % > 2rn such that the proportion of bad
r-subsets of U is at most (2r)~". Now, call a subset S C U with |S| < r to be undesirable
if the proportion of bad r-subsets of U that contain S is at least (2r)*=", and for a
desirable set S, let Und(S) be the set of z in U \ S such that S Uz is undesirable. Then
|Und(S)| < % Thus, we have the following embedding procedure: embed each u; € A
in such a way that at the stage where we have embedded uq, ..., u; we have that for every
v € B the image of Ny (v) N{uy,...,u;} is not an undesirable set. It then follows that
there is always an option to embed all the u; into U satisfying this property. Finally,
embed each v € B; this is feasible because for each v € B the embedded image of Ny (v)
into U is not undesirable, so there is at least one good r-subset of U containing this set,
thereby admitting at least n common neighbors.

To get the Ramsey bound, note that if N = r2""3n then in any 2-coloring of the

edges of K the more abundant color class has at least 1(}) = (1 — £)N?/2 edges. Set
e’ = =1 Since 2 > ({5)" it follows by the previous result that Gy contains H.
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6.1

The Second Moment Method

When you have a random
variable of interest, and you
can compute its expectation,
you should try to compute the
variance next.

The method of using expectation of random variables is a very useful and powerful
tool, and its strength lies in its ease of computing the expectation. However, in order to
prove stronger results, one needs to obtain results which prove that the random variable
in concern takes values close to its expected value, with sufficient (high) probability. The
method of the second moment, as we shall study here gives one such result which is due
to Chebyshev. We shall outline the method, and illustrate a couple of examples. The
last section covers one of the most impressive applications of the second moment method
- Pippenger and Spencer’s theorem on coverings in uniform almost regular hypergraphs.

Variance of a Random Variable and Chebyshev's theorem

For a real random variable X, we define Var(X) := E(X — E(X))? whenever it exists. It
is easy to see that if Var(X) exists, then Var(X) = E(X?) — (E(X))>.

Theorem 36 (Chebyshev’s Inequality). Suppose X is a random variable, and suppose
E(X?) < co. The for any positive X,

B(IX -~ B(x) > %) < Y000,
Proof. Var(X) = E[(X —E(X))?] > MP(|X —E(X)| > \). u

The use of Chebyshev’s inequality, also called the Second Moment Method, applies
in a very wide context, and it provides a very basic kind of ‘concentration about the
mean’ inequality. The applicability of the method is most pronounced when the variance
is of the order of the mean, or smaller. We shall see in some forthcoming chapters that
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concentration about the mean can be achieved with much greater precision in many sit-
uations. What, however still makes Chebyshev’s inequality useful is the universality of
its applicability.

If X =X, +4---+ X, then the following simple formula calculates Var(X) in terms
of the Var(X;). For random variables X,Y, define the Covariance of X and Y as

Cov(X,Y) :=E(XY)—-EX)E(Y).
For X = X; +---+ X,,, we have

Var(X) = ) Var(X;) + > Cov(X;, X;).
i i#]
This is a simple consequence of the definition of Variance and Covariance. In particular,
if the X;’s are pairwise independent, then Var(X) = ). Var(X;).

The (usually) difficult part of using the second moment method arises from the diffi-
culty of calculating/estimating Cov(X,Y") for random variables X,Y. One particularly
pleasing aspect of the second moment method is that this calculation becomes much sim-
pler if for instance we have pairwise independence of the random variables which is much
weaker than the joint independence of all the random variables.

The preceding example illustrates one important aspect of the applicability of the second
moment method: If Var(X,) = O(E(X,)) and E(X,) — oo then Chebyshev’s inequality
gives

P(|X, — E(X,)| > cE(X,)) = o(1).

In particular, X, is ‘close to’ E(X) with high probability.

The Erdos-Ginzburg-Ziv theorem: When do we need long
sequences?

Our first application in this section that arises more as an outcome of curiosity, and is in
fact a probabilistic statement.

The Erdos-Ginzburg-Ziv theorem states that every sequence of length 2n — 1 of ele-
ments of Z,, contains a subsequence of size n whose sum equals zero. This is best possible
in the sense that the sequence (0"7*1"~!) admits no such zero-sum subsequence. But a
more natural question that arises is: How necessary is the length 2n — 17 In other words,
are there other sequences that look nothing like these and yet need to be significantly long
to witness a zero-sum subsequence of length n? If you had a typical sequence of elements
from Z,,, then how long does it need to be to contain a zero-sum subsequence of length n?

The answer, perhaps surprisingly, is that one typically needs much shorter sequences.
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Theorem 37. Suppose X = (Xy,..., X,42) be a random Z,-sequence, i.e., suppose X;
are chosen uniformly and independently from Z,,. Then with high probability, X contains
a zero-sum subsequence of length n.

Proof. We first set up some notation. For a subset I C [1,n + 2] we shall denote by A7
the sum &7 := >, _; X;. Consider the indicator random variables I(X;) := 1 if X7 = 0
and zero otherwise. Let

H = {ICn+2]:[I[=n},
N =) I(A).
IeH
Then . 5 5 .
E(N):ZP(XIZO):E<HZ >: (n+ 2)7(1n+ )7
IeH
and,

Var(N) =Y Var(I(X;)) + > Cov(I(X;),I(X))).

= I£J
I,JeH

The main observation is that since X;’s are i.i.d, it follows that the X} are pairwise inde-
pendent. Indeed pick ¢ € I\ J and j € J \ I and condition on the values of the random
variables { X}y ;; this determines X;, X; uniquely, so the conditional (and hence also
the unconditional probability) of X; = X; =0 is 1/n? = P(X; = 0) - P(X; = 0).

Consequently, Cov(I(X;),1(X;)) =0 for I # J € H. Also, Var(I(X;)) = (1 —2), so

(1_1) (n+2)(n+1)

n 2

Var(V) = 3 Var(I(X;)) = %
IeH

Therefore, by Chebyshev’s inequality we have,

Var(N) l1-1 (1>
P(N=0) <P(|N—-E(N) >E(N)) < = 2 & =0| -
which implies that P(NV > 0) — 1. This completes the proof. [ |

Remark: The theory of zero-sum problems considers various instances where one is
interested in sequences of elements of an abelian group admitting zero-sum subsequences
with other characteristics. Interestingly, many of these group invariants behave marked
differently for random sequences. For instance, the Davenport constant of a group is the
minimum m such that every sequence of m elements from the group admits a non-trivial
zero sum subsequence. The Davenport constant of the cyclic group Z/nZ is n (easy to see)
whereas its random analogue (as described above) is of the order (1 4 o(1))log,n. One
also has analogues of these invariants which admit weights, and the random analogues
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of these analogues are typically much smaller. The only interesting instance where this
is not the case is when we allow weighted sums for the subsequences with weights in
{—1,1}. For Z/nZ the corresponding weighted Davenport constant is log, n whereas the
random analogue is (1/2 + o(1)) log, n. For more such results, see [10].

Distinct subset sums

For the next application, we need a definition.

Definition 38. We say a set of positive integers {x1,xs, ..., xx} is said to have distinct
sums if Y. cq¥; are all distinct for all subsets S C [k].

For instance, if 2, = 2¥, then we see that {x;,zy,...,7;} has distinct sums. Erdés
posed the question of estimating the maximum size f(n) of a set {x1,zo,..., 2} with
distinct sums and z, < n for a given integer n. The preceding example shows that
f(n) > [logyn] + 1.

Erdés conjectured that f(n) < [log,n| + C for some absolute constant C'. He was able
to prove that f(n) <log,n + log,log,n 4+ O(1) by a simple counting argument. Indeed,
there are 2/(™ distinct sums from a maximal set {21, 2,,...,2;}. On the other hand,
since each z; is at most n, the maximum such sum is at most nf(n). Hence 2/ < nf(n).
Taking logarithms and simplifying gives us the aforementioned result.

As before, here is a probabilistic spin. Suppose {x1, s, ..., zx} has distinct sums. Pick
a random subset S of [k] by picking each element of [k] with equal probability and
independently. This random subset gives the random sum Xg := ines ;. Now

E(Xs) = 3(x1 + a2+ -+ + 33). Similarly, Var(Xg) = 3z + 23+ 4+ 2}) < #,
so by Chebyshev we have

n’k
— >1 - ——.
P(Xs - E(Xs)l < X) 21— 1

Now the key point is this: since the set has distinct sums and there are 2* distinct subsets
of {x1,x9,...,z1}, for any integer r we have that P(Xg = r) < %; in fact it is either 0
or 2% This observation coupled with Chebyshev’s inequality gives us

n2k 22+ 1
11— — <P(|Xs—EXg)| < A) < ST

Optimizing for A we get
Proposition 39. f(n) <log,n + 3 log,log,n + O(1).
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The space complexity of approximating frequency moments

One of the paradigmatic features of the probabilistic method is that it suggests different
perspectives to many problems, and one of the features of probabilistic thinking is to be
more accepting of approximate solutions, provided we have a control on the errors that
accrue. This section features one such result due to Alon, Matias, and Szegedy.

One of the features of the Theory of Complexity is to study efficient handling of re-
sources in various algorithmic computational problems (see [33] for a fantastic overview
of the subject). Usually, the resource that is optimized is run time of an algorithm. In
this section, we look at an optimization for space constraints.

Suppose A = {ay,...,a,} is a sequence of elements from [N] := {1,..., N}, and for
each 1 < 7 < m let m; denote the number of occurrences of the element ¢ in 2(. Define

for each k£ >0
N
i=1

which are referred to as the frequency moments of the sequence. In particular, Fy denotes
the number of distinct members of the sequence, Fj is the number of elements of the
sequence (which is always m) and Fy is called the repeat rate of the sequence and so on.
We also define

* -—_
F = max my
1<i<n

the most popular element of the sequence 2. For various reasons, one wishes to com-
pute/estimate these statistics of a given sequence as the provide useful information about

2.

It is straightforward to see that the frequency moments can be efficiently computed if
we maintain a full histogram - keep a counter for each m; as we scan over the data once)
of the data - which requires memory space of size Q(N). But the problem of interest here
is to if it can be done efficiently with lesser memory space (i.e. with o(IN)) for storage
and processing. More precisely, suppose we are allowed to scan the data once and we
have limited memory. One of the first interesting results is that for accurate computation
of the frequency moments, one cannot improve upon the memory allocation (see [3]). So,
we relax our requirements a little bit. We allow for a relative error in computing the F;
up to a factor of 1 — A for some fixed 0 < A < 1, provided we have control on the error
probability. The feature of this section is the following theorem of Alon, Matias, and
Szegedy [3].

Theorem 40. Suppose k > 0 and 0 <, \,e < 1. There is a randomized algorithm that,
given a sequence A = (ai,...,a,) of elements from [N] computes after scanning the

!The reason for the % in the definition is that if we adopt the usual ¢, notation, then Fy, =
limy, o0 (F)'/* whereas the F; are not defined with a k*" power.
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sequence in one pass, a number Y such that the probability that Y deviates from Fj by
more than AFy is at most €. Most importantly, the algorithm only uses

o (M%(zl/s)Nl—l/k(logN + log m))

memory bits.

Proof. First, note that the statement does not require that we know the size of the
sequence 2 in advance. But for starters, let us assume that m is known. Since we seek a
randomized algorithm, the key first step is to identify a random variable whose expected
value is the parameter of interest, viz., F} for each k. A first natural guess is to do the
following. Pick p uniformly from [m] and consider R := |[{¢ > p : a, = a, }|. Since we seek
to estimate Fj, the first natural choice is the random variable X := mR*. But a quick
check reveals why it is not good enough, and also how one can fix it. Indeed, suppose
the element ¢ € [N] occurs in positions i; < --- < 4, for some u. The contribution
from the element i towards Fj, is u*. However, in computing the expected value of X,
the contribution instead is u* + (u — 1)¥ 4+ -+ + 1%, so a fix for this would be to let
X =m(R* — (R —1)*). Then

E(X) = (mf = (m— 1))+ ((m — 1) = (my —2)F) + -+ + (25 = 19)
(ma) = (m = 1) o+ (25 = 19) +
(my — (my = 1)%) + ((my = 1)F = (my = 2)%) + - + (25 = 17)
Fy,

+ +

as desired. Also, if we pre-process the random choice prior to the one pass, then the
number of storage bits needed is at most O(log N + log m) bits that are needed to keep
track of the element a, and the number of occurrences of a, starting from position p in 2.

To see how good an estimate X is, we follow the maxim in the epigraph of this chapter:
After you have computed the expectation of a random variable, you should try to compute
the variance. Towards that end, we see

E(X?) = %QZ<(m?—<mi—1>’“>2+---+<2’“—1’“>2+12’f)

(mi )k) T k2k71(2k o 1k> + lekl)

A
3
M =
VR
5
3
|
3
|
|

A
oyl
3
]
ES
T
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where we basically use the fact that

k-1

a* — b = (a—b) Z a" b < (a — b)ka* ™!

i=0
for positive reals a > b > 0. To bound this further, let M = max;<;<y m;. Then

FiFy ., < FIM"'FE,

N (k—1)/k
<7 (z mf) R
=1

1-1/k p1/k 2—1/k
N'VRR IR
lel/kaQ

IN

where in the penultimate line we use the power mean inequality:

1 1 1/k
N £ mig(ﬁ Z, mz) '
Hence if we were to sample Xi,..., X, independently as above (for some s to be deter-

mined) and then take X to be their mean, then by Chebyshev,

Var(X) < N
NFZ — NNk

P(|X — Fi| > AFy) <

so that if s = N'"Y(*) we already have a saving in the number of memory bits since
we still only require O(s(log N + logm)) bits of memory. But one can do better; let

(X1,...,Xs) be independently sampled according to X as above, and let Y be their

mean - only this time, we take s = C";QI for some constant C', which does not quite

give the high probability estimate we want but rather P(|Y — Fk| > \F) < 1/C. But
repeat this process r times (for some r to be determined), and then report the value
Z = Median(Yy,...,Y,).

Define the random variable Y; to equal 1ifY; € [F,—\Fy, F, k—l—)\Fk] and zero otherwise
and let Z = =30, Y;, so that we can bound tail probabilities of Z by the distribution
of the Binomial variable Bin(r, 1 — 1/C). If Z lies outside [Fy — AF, Ff, + AF}] then Z
is less than r/2. If C' = 8, say, one can again use the Chebyshev bound (we omit these
details) to show that for r = O(1/y/€) one has P(|Z — F}| > \F}) < e.

But again, this is not optimal; the Binomial distribution approximates the Gaussian
random variable for sufficiently large r, so deviation from the expectation is an expo-
nentially unlikely event. A more precise form of this appears in the next chapter which
establishes exponential decay away from the expected value for the Binomial distribu-
tion. Thus, (and these details will be more clear in the next chapter) one can take
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r = O(log(1/¢)) and the proof is complete.

The last point is to deal with this when m is not known apriori. In that case, start
with m = 1, and choose a, as in the randomized algorithm stated above. If m is not one,
we update m = 2, and replace p = 1 with p = 2 with probability 1/2. More generally,
having reached m/, if m > m’ then we replace p with m’ + 1 with probability m,1+1. It
is not hard to see that this keeps the argument intact and the implementation still only
needs O(logm + log V) bits. [ |

Remark: We have throughout assumed implicitly, that m is not much larger than a

polynomial in N, but if m grows, say exponentially with N, then there are older results
that give a similar saving in memory.
The paper [3] includes several other interesting results. For instance, they show that the
space complexity results here are almost best possible: for & > 6, randomized algorithms
need at least Q(n'~°/%) memory bits, and that the estimation of F* requires Q(N) bits.
Another beautiful result is that the estimation of F, can actually be done with only
O(log N) memory bits. This uses the fact that there is a simple deterministic construction
of a set (using what are known as BCH codes) of O(N?) {-1,1}-valued vectors of length
N which are four-wise independent, i.e., any 4 of the coordinates are independently
distributed amongst the possible 4-tuples of {—1,1}. If v := (vy,...,vy) is randomly
picked from the above set, define X := (0,2) = 3. w;a;. For the details and other
interesting results, we refer the reader to the paper [3].

Uniform Dilations

We start with some definitions. By T we mean the 1-dimensional torus, i.e., T := R/Z.
For 0 < e <1, asubset X C T is called e-dense if it meets every interval in T of length e.
A dilation of X C T is nX := {nz : x € X} for some integer n where the multiplication
is performed modulo one, i.e., in T. For any € > 0, Berend and Peres defined the integer
k() to be the least integer k such that for any X C T of size at least k, there is some
dilation n.X which is e-dense. Moreover, they showed that

Q(1/e%) < k(e) < O(1/e)00/9)

and posed the question of determining the correct order of k(g). This was achieved by
Alon and Peres, who proved the following theorem.

Theorem 41. Given vy > 0, there ezists g = £o(7y) such that for e < gy, every set T C T
of cardinality at least e~ has an e-dense dilation nX. In other words,

Q(e?) < k(e) < e M)
for all v > 0.
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We will see a proof of this in the special case when X consists entirely of rationals
with the same prime denominator p so that every element in X is of the form x/p. Under
this assumption, we first observe that the problem reduces to considering dilations of
subsets in the finite field F,. In this case, the lower bound is of th eright order upto a
multiplicative constant.

To state the precise form of the stronger result, suppose p is a prime and € > 0. De-
fine k(e,p) to be the minimum integer k& such that the following holds. For every subset
X C F, of size at least k, there exists n such that nX intersects every interval of size at
least ep. Here, by an interval of length  we mean a set of the form {a,a+1,... a+r—1}.
In words, this states that when a set is of size then some dilate of this set is fairly well-
spread out, and so touches all the intervals of length ep.

Here is the theorem of Alon and Peres [1] in its exact form.

Theorem 42. For every prime p and 0 < € < 1 for which ep is an integer,
4
k(€7p> S ?
Proof. We shall omit floors and ceilings in our presentation below for convenience. Let
X = {xy,...,2} C F;. At first glance, the main issue is that there are p different
intervals of length ep while any dilate aX contains only O(g72) elements, so it seems
quite a task for the dilate to meet every interval of size ep. But a simple trick makes this
task realistically feasible. Set s = 2/¢ and let Iy,. .., I, be disjoint intervals of length %
that partition IF,. Since each interval I of length ep necessarily contains one of the I;, it
suffices to show that there exists a € F,, such that |aX NI;| > 0 for each of these intervals.

As with our previous rules of thumb, it is quite natural to try a random dilate of X.
Let a € [F, be a random element and for a fixed interval I; in the partition above, observe
that f

€
E(laX NL]) =Y Pla € {x/x1,... x/n}) = -

zel;

As before, to compute the variance, we have

o ¢k
E(laX NL|%) = Z P(z,y € aX) = £ + Z P(z,y € aX)
x,y€l; ]
z,yel;
and the last double sum poses a bit of a problem. The brilliant idea of Alon and Peres
was to modify the random process so as to make this sum computable. And to do that,

they consider affine translates of the set as well.

Indeed, pick a,b € F, independently and consider the set aX + b. The key point is
that if there are a, b such that aX 4+ b meets every interval of size ep, then since translates
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6.6

of intervals are again intervals, the same holds for a X as welll Furthermore, for = #£ y
the events x € aX + b and y € aX + b are pairwise independent, so we have

E(|(aX +0)N1J) =) Pla,y € aX +b) = %

zel;

Var(|(aX +0) N L) = > Var(lieax4s)

z€el;
ek
< —.
-2
Hence by Chebyshev,
2

which implies that

4
IP’(aX+bﬂ[,-:(Z)forsome1§i§3)§—Qk <1
€

for £ as in the theorem. [ ]

Remark: To move from this special case to all intervals in T as in the main theorem

stated at the beginning of this section, the idea is to pick a large enough A, and pick
a €{1,...,A} randomly, and b € T uniformly, and consider the affine translate a.X + b
as before. As before, we shall fix a partition of T into intervals of size €/2 and fix such
an interval /. Again, E(|(aX + b) N I| = ¢k/2, but now computing the variance is a
little more complicated. If we write X = {xy,...,zx} then it is not hard to show that
computing the variance of the aforementioned random variable can be estimated in terms
of the differences x; —x;. The technical ideas deal with how one can control the covariance
terms, and this involves a few more subtleties than the simple result above.
The paper [1] contains several other general results on when one can find dilations that
are e-dense. For instance, they also show that one can pick a dilate n which is prime for
which nX is e-dense, and further, if k& > ¢~(4*?) then there is an e-dense dilation of the
form n?X as well. We direct the interested reader to the paper [1] for other results.

Resolution of the Erdos-Hanani Conjecture: The Rodl ‘Nibble’

One of the most effective proof techniques in Combinatorics is the method of induction.
How would the method of induction blend with the probabilistic method? How does one
effectively carry out an ‘inductive probabilistic method proof’?

The Rddl ‘Nibble’ refers to a probabilistic paradigm (pioneered by Vojtech Rédl) for
a host of applications in which a desirable combinatorial object is constructed via a ran-
dom process, through a series of several small steps, with a certain amount of control over
each step. Subsequently, researchers realized that Rodl’s method can be extended as a
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paradigm to a host of other constructions, particularly for coloring problems in graphs,
and matchings/coverings problems in hypergraphs. Indeed, the proof of Erdés-Hanani
conjecture - the result that launched the Rodl Nibble - is an instance of a covering prob-
lem of a specific hypergraph. In this section, we shall see a resolution of the Erdés-Hanani
conjecture following a latter simplification by Pippenger and Spencer [24].

We start with a definition. As always, [n] denotes the set {1,...,n}. Suppose r,t € N.
An r-uniform covering for ([Z]) is a collection A of r-subsets of [n] such that for each

t-subset T € ([’Z]), there exists an A € A such that T C A. An r-uniform packing for

([ZL]) is a collection A of r-subsets of [n] such that for each t-subset T' € ([?]), there exists

at most one A € A such that T' C A.

When t = 1, if r divides n, then there obviously exists a collection A of r-subsets of
[n], |A] = n/r, such that A is both an r-uniform covering and packing for ([71”) = [n]. In
general, there exists a covering of size [n/r| and a packing of size |n/r|.

Let M(n,r,t) be the size of a minimum covering, and m(n,r,t) be the size of a
maximum packing. A simple combinatorial counting argument shows that

n
m(n,rt) < (TL) < M(n,r,t).
(:)
Indeed, if one were to consider a covering, then for each t-subset, there is at least one
r-subset containing it; conversely, each r-subset contains (:) t-subsets, so the first inequal-

ity is obtained. The argument is similar for maximal packings. It then seems natural to

ask if there exists a collection A of r-subsets of [n] with size |A| = (})/(}) such that A is

both an r-uniform covering and packing for ([T). This is called a t — (n,r,1) design and
is also referred to as a Steiner t-design.

In the 60s, Erdés and Hanani proved that

1lm M(”? r? 2) _ lm m(”) T? 2)

e (3)/G) e (3)/0)
and further conjectured that this is true for all positive integers r > ¢. In a sense, the
conjecture posits that as n grows large, one gets more room to attempt to fit these -
subsets to cover all t-subsets, so as n gets larger, one ought to be able to get closer to

as tight a packing (or covering) as one can. This conjecture was settled affirmatively by
Vojtech Rodl in 1985.

=1.

Here, we consider a more general problem. Suppose r > 2 is a fixed integer. By an
r-uniform hypergraph we mean a hypergraph # = (V,£) on a set V of size n such that
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each e € £ has size r. The degree of a vertex in a hypergraph is the same as the one we
have encountered in the graph case, i.e., d(z) = |{EF € £ : E 5 x}|. Given an r-uniform
hypergraph H on n vertices which is D-regular for some D, i.e. d(x) = D for all z € V|
we seek a covering (resp. a packing) of H which is as tight as possible, i.e., a covering
(resp. packing) of size approximately n/r. This more general question subsumes the
Erdés-Hanani question: consider the hypergraph H = (V&) where V' = ([7;}) and the
edges of # correspond to r-subsets of [n| with each such r-subset E containing all the
vertices x that correspond to t-subsets of E. It is easy to see that this is an (T)—uniform

t
regular hypergraph with degree D = (:f:f)

Let £ > 0. Note that in this new formulation, if we can find a packing of size @
then there are at most en vertices uncovered. Hence, we can find a covering of size
@ +en = (1 — (r —1)e)%. On the other hand, if we can find a covering A of size

{@ren then for every x which is covered by d(x) hyperedges, we delete d(x) — 1 of them.

ThTe number of deleted edges is at most

» (dz)—1)=> d(z) =Y 1=|{(x,E): E€ A} —n = (M> r—n=en

r
zeV zeV zeV

)

so there is a packing of size at least @ —en = (1—(r—1)e)*. The upshot is:

Finding a covering of size approximately = is equivalent to finding a packing of size
approzimately .

We shall try to obtain a covering A of size < (1 + €)% for n sufficiently large. Since
we seek a covering, we do not have to worry if some vertex is covered more than once.

Let us try a simple probabilistic idea first to see what its shortcomings are. Suppose
we decide to pick each edge of the hypergraph H independently with probability p. We
seek a collection £* with |£*| ~ Z; if we start with an almost regular graph of degree
D, then r|€| =~ nD, so that implies that we need p ~ %. Let us see how many vertices
get left behind by this probabilistic scheme. A vertex x is uncovered only if every edge
containing it is discarded. In other words, the probability that a vertex x gets left behind
is approximately (1 —1/D)” =~ 1/e. This is now a problem because this implies that the
expected number of vertices that go uncovered is approximately n/e which is a constant

proportion of the total number of vertices.

Rodl’s idea was to, as we described in the beginning of this section, attempt an inductive
procedure: We pick a small number of edges, so that the rest of H is as ‘close as possible’ to
the original one. If the inductive procedure were to take over for the modified hypergraph,
then after several “nibbles” into the hypergraph we are left with a very small proportion
of the vertex set that is yet uncovered. But for these, we pick an arbitrary edge for each
of these vertices to get a covering for the entire vertex set.
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However, note that after each step, some of the regularity conditions of the hyper-
graph are bound to be violated, so for the inductive procedure to apply to the smaller
hypergraph the hypotheses would have to be milder. We will get to this point momen-
tarily.

As H is D-regular, r|€] = [{(z,E) : z € E € £} = nD = [€] = “2. Since our
modified hypergraph ought to be as close as possible to the original hypergraph, we need
to pick a few - but not too few! - edges in the first step. If we want to pick about <*
edges, we will need P(E is picked) = 5.

This sets our paradigm into motion. In the first ‘step’, each edge E € & is picked
independently with probability p = 5. If £* is the set of chosen edges then we have

En

Efleml) = —-

Also, the probability that a vertex x is not covered in this process is (1 —&/D)%®) = e7¢,

In the rest of this section, and also in subsequent chapters, we shall adopt Pip-
penger and Spencer’s wonderfully terse notation. We shall write z = a £ b to mean
x € (a —b,a+b). Also, since there will be many constants that keep popping up, we
shall throw in new variables to denote various small quantities which can all be tied down
eventually, if need be.

Getting back to our first step, after a ‘nibble’; the rest of the hypergraph is no longer
regular, so as mentioned earlier, we need to make the hypotheses milder, so we propose:
Given an r-uniform hypergraph H on n vertices such that d(x) = D(1+6) for allz € V
for some small § > 0, we want to find a covering of size ~ . For this to work, our first
step necessarily has to reduce the degrees of all the vertices that are not covered during
round one, and that is still a little too strong. So, the hypothesis needs to be milder:

Given an r-uniform hypergraph H on n vertices such that except at most on vertices,
d(x) = D(1 £ 6) for other vertices v € V.

So under the milder hypothesis we wish to find a collection of edges £* such that
L |& = (1+4),

2. |V*| = ne~e(1 £ §") where V* := V\( U E)

Eeegx

3. For all x € V* except at most §”'|V*| of the vertices, if d*(z) denotes its degree in
the residual hypergraph then d*(x) = D(1 £ p).
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To explain this requirement, let 1, = 1{;¢ any edge of £+}- If each edge is picked indepen-
dently with probability €/D then

BV ) =Y (1 _ %)d(x) (1 —3) (1 - %>D(1i5) ~ n(l — 6)e=0%) x pe=s(1 4 "),

eV

Furthermore,

Var([V*]) = Var<21x>

- Z\/ar(lx) + ZCOV(].:BJ 1,)

zeV TH#Y
If d(z) = D(1+6) and d(y) = D(1 £ ), then

Cov(1,,1,) = E[1,,] — E[1,]E[1,]
(1 € >d(1)+d(y)—d($,y) (1 € >d($)+d(y)

D D

€\ d(@)+d(y) e\ —d(z,y)
S e (R
( D ( D )

~ 6—25(1:|:6)(6—%d(m,y) . 1)
where d(x,y) denotes the codegree of x and vy, i.e., d(z,y) = |{E: x,y € E}|.

Note that e~ 5%®¥ — 1 is very small provided that d(x,y) < D. This is true in
the original Erdés-Hanani problem, where V = ([’Z]), since D = (Z:f) = O(n"""), while

d(xz,y) = (”_mUTQ‘) < (”_t_l) = O(n"~'"!) < D, where z and y corresponds to t-subsets

r—|T1UTs| r—t—1

Ty and Ty respectively.

Before we make our speculation outright, there is one more aspect that suggests that
the hypothesis should be made milder. Suppose that for some vertex x the degree of
x is super large, i.e., D = o(d(x)). Since we wish to retain the r-uniformity of the
hypergraphs, our process would entail throwing away all edges that intersect some vertex
of V\ V* to get to the modified hypergraph. But if d(x) is very large, then it is somewhat
likely that some edge containing x is chosen, and since x would get picked, all edges that
contain x will have to be discarded to get to the residual hypergraph, and we may lose
too many edges in this process. So, to prevent this, we may want d(x) = O(D) for all z.
This motivates the following tentative statement:

Lemma 43. (‘Nibble’ lemma) Suppose r > 2 is a positive integer, and k,e,0* > 0 are
given. Then there exist 6o(r, k,,0%) > 0 and Dy(r, k,e,6*) such that for alln > D > D,
and 0 < 6 < g, if H is an r-uniform hypergraph on n vertices satisfying

(i) except at most dn wvertices, d(x) = D(1 £ 6) for other vertices x € V,
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(i1) d(z) < kD for allz € V,
(iii) d(z,y) < D,
then there exists £ C € such that
(a) €"] = 2 (1% 5);

(b) [V*| = ne(1 =+ 6*), where V* = V\< U E)

Ee&*

(c) Except at most §*|V*| vertices, d*(z) = De 2"~V (1 4 6%), where d* is the degree on
the induced hypergraph on V*.

We say that H is an (n,k, D, d)-hypergraph when (i), (ii) and (iii) hold for .
This lemma says that if H is an (n,k, D,d)-hypergraph then it contains an induced
(n*, k*, D*,0%) -hypergraph H* where

5 = et
n* = ne “(1+4"),
ko= ket

Y

D* = Des0D(1 4+ §%)

To see why these are the relevant new parameters, consider for instance, the parameter
0;

5*D —e(r—1)
d*(z,y) < d*(z,y) < 6D = §*D* forces § = GT _ gremctr—D)
and that gives 6* = de*"~V. Similarly for the parameter k, d*(z) < d(z) < kD = k*D*
forces k* = % — Les(r=1).

Let us see if this lemma is good enough to take us through. If we repeat the nibble
t times (where ¢ shall shortly be determined) then we have 6 = §y < §; < --- < & with
8 = 6,_1ec Y and H = Ho D Hi D --- D H,. Note that this establishes a cover of size

t—1
>°IE | + |Vi| where
=1
|‘/z| = "/z'—1|€_6(1 + (51) < ne_si H(l + 5])

=1
and
Celii1) @
elVi_1| ene—<i—1)

& ===+ < ———][(1+4),

j=1



so the size of the cover is

t—1 t—1 _5(7:_1) t t
2]%+Uﬂ§(Zfﬁ%f—>IUHﬁﬁ+m*q1ﬂ+M

i=1 =1 =1

- (H(l + 50) g (i e ¢ re—“)

< (ﬁ(l n 52»)> ; (1 _56_5 +re_5t) .

7

Pick t such that e‘gt < ¢ - for instance take t = 2¢7log(1/¢). For this ¢, pick ¢ small

enough such that H (14+;) <1+e. Since lin(l) = 1, the limit of this expression

—e-
goes to * as e — 0 Therefore all that remains is to prove the ‘Nibble’ Lemma 43.

Proof. (Proof of Lemma 43) We will use subscripts d;) to denote various small constants.
Keeping with the probabilistic paradigm, we pick each edge of H independently with
probability 5. Let £ be the set of picked edges.

We say x € V' is good if d(z) = (1 £ §)D, else we say that z is bad. Note that
H{(z,E):x € EY > |{(x,E) : x good}| > (1 =)D - (1—8)n=(1-3)*Dn.
On the other hand,

{(z,E):z € E} = |{(z,E) : x good}| + [{(z, E) : = bad}|
<(1+0)D-n+kD-dn.

So
1-6)’D D
(1=9)°Dn < €< —n(l + (k + 1)6) which gives
r r
D
] = ZE(1Ed).
r
Hence D
q £ en
E[|E7] ZIP E is picked) = o) (1£dmy) = (1 +6nq)).
Eeé
Let 15 = 1 s pickea}- By independence, Var(|€*|) = > Var(1g) < E[|€*|]. By Cheby-
Bee
shev’s inequality, we get PP (’]S*[ — E[|E*]]| > 5(2)EH€*H> % So if n > 0, then

En en
£ = (1 80) (1 £ ) = (140
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with high probability, yielding (a).

Let 1, = 1{%7_1 any edge of £} Note that

=vi=3(-5)" 2 (1-5)" 2 s a-n

zeV x good

On the other hand,

z good z bad
e\ D(1-9)
<y (- 5) +6n
z good

So
ne (1 —9d))(1 —0) <E[V*|] < ne (1 + 0wy + 0¢e%)

implying
EHV*H = ne_‘s(l + 5(5)).

Again, as we compute the variance, we see

Var([V*]) = Y Var(1,) + Y Cor(1,,1,) <E[[V*|] + ) Cor(1,,1,)

zeV TH#Y TH#Y

where

Cov(lz, 1y) = ]E[lLy] — E[lx]E[ly]
(1 € )d(w)+d(y)—d(9~%y) (1 € )d(w)er(y)

D D

€\ d(z)+d(y) €\ —d(z,y)
e e (RO
( D ( D )

< —6D
<1- ((1 — 5) — 1) < ¢® — 1 which is small.

This implies Var(]V*|) = o(E[|[V*]]?). By Chebyshev’s inequality, we get

Var(|V*])

P(||V* - E[lV* R L
(v - v L EIVP

> oeE[V*))) <

Soif n>> 0, [V*| =ne (1 £ d4))(1 £ d)) = ne (14 6*) with high probability, yielding

(b).
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To prove (c), suppose z survives after the removal of £*. Fix an E € £ such that
E > z. We wish to estimate the probability that E also survives conditioned on the
assumption that = survives. Let Fp ={F € £:x ¢ F,FNE # (0}. Then E survives if
and only if FrNE&E* = (.

Call E € £ bad if E contains at least one bad vertex. Suppose x is good, and FE is
good. Then
c >(r—1)(1i6)D—(rgl)6D

P(E survives | z survives) = (1 D

(1 - 5)“ Y1+,

Let Bad(z) := {F : E is bad and does not contain z}. If |Bad(z)| < 09D, then
E[d*(z)] = De *U""D(1 £ §10)).

(1£0m)

Now, the question is: how many x have |Bad(z)| > §yD? Call  Incorrigible if x
is good but |Bad(z)| > é)D. We now want to bound the size of Vixcor := {z € V :
x is incorrigible}. Note that

{(z, E) : |Bad(z)| > 69)D}| > 6(9)D - |Vincor|-
On the other hand,
{(x, E) : |Bad(z)| > 6@yD}| < [{(z,E) : E is bad}|
<r|{(x, E) : z is bad}|
< r(kD)(on).

Hence, |Vincor| := 6" n = T(;( )) Therefore, except at most 0*n vertices, the remaining

vertices z satisfy E[d*(z)] = De ="V (1 &£ §1)).

Let 15 = 1{ E survives}- For those x that are neither incorrigible nor bad,

Var(d* (z Z\/ar 1g) —I—ZCOV 1p,1p)
Ee€ E4F
<E[d"(z)]+ Y Cov(lg,1p)+6@D (1+06)D-1
E#F good
E[d* Z COV 1E> ]-F Z COV(]_E, ]-F)
E#F good E#F good
EnF={z} |[ENF|>1
+ 69y (1 + 5)D2
<E[d"(z)]+ Y  Cov(lp 1p)+ (r—1)D-(1+6)D-1
E;éF good
EnF={z}

+ (5(9)(1 + 5)D2

80



Now, denote by Fg the collection of those edges that intersect E non-trivially. Then,

€\ [FEUFF| e\ I FE+|FF|
57 (1- )

|FEl+|Frl| ] e\ —IFENFF]| ]
(1-5) " -

-1< 1% \which is small.

All these together imply Var(d*(z)) = o(E[d*(z)]?). By Chebyshev’s inequality, d*(z) =
De~¢(=1(1 £ §*) with high probability.

Let N = [{x good : d*(z) # e=""YD(1 4+ §*)}|. Now Markov’s inequality gives
E[N] < 6q1yn, so all except 6*n vertices satisfy (c). This completes the proof of the
Nibble lemma, and hence of the proof of the Erdés-Hanani conjecture as well. [ |

Remark: The theory of Steiner designs is one of the oldest problems in Design theory.
The existence and explicit constructions of Steiner 2-designs for all feasible parameters
(parameters (n,r) for which the corresponding numbers are integers) and very large set
sizes (n > 0) is the pioneering work of R. Wilson [34, 35, 36] beginning in the early
70s. The problem of existence of Steiner t-designs for ¢ > 6 was open completely until
P. Keevash [19] in 2014 settled this by a tour-de-force algebraic probabilistic argument.
Keevash’s proof is a little too involved for us to include in this book, but we will see some
relevant ideas in later chapters.
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7.1

Concentration Inequalities

A Simple Random Walk

Consider a simple random walk on integers. At each time unit, the walker flips a coin to
decide whether to go one step to the right or to the left, depending on whether heads or
tails shows up.

Formally, let X; denote a random variable which takes the value 1 if heads shows up
and —1 if tails shows up ( i.e. takes +1 or —1 with probability % each ) at time ¢.

X, (} 71) vt >0

2 2

Assuming that it starts in the origin, It is quite obvious that in expectation it’ll be
at the origin. But a good question to ask would be how far it can go. Although it can
reach arbitrarily large distances from the origin (with some tiny, non-zero probability as
it’ll mostly concentrate around it’s expectation), we would like to establish some bounds
on the chances that the walker is a certain distance away after some time.

Let S,, denote the sum of the random variable {X;} upto time n:

n—1
S, = Za X;

S, effectively measures the distance of the walker from the origin. Now, our question
can be interpreted as bounds on the following probability:

P[|Sy| > a] =7
Theorem 44 (Chernoff Bound). Given a collection of random variables {X;} where each
iid (1 -1
X~ (; 1 )
2 2

P[|S,| > a] < 2¢ % (7.1)
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(.2

Proof. Tt is enough to show the bound for P[S,, > a] as the other case will follow iden-
n—1

tically. Since {X;} are independent, E[S,] = ZE[XZ] = 0 by linearity of expectation.
i=0

Now,

E[e!Sn]

eta

P[S, > a] = ]P’[etS" > e <
by Markov’s Inequality. Using the fact that E[e**"] is the moment generating function
for S, and since S, is the sum of n independent random variables {X;}1~}

E[etsn] — l:IE[etXi] — E[eth]n

i=0
t —t\ "
e +e nt?

P[S, > a] < "t

Hence,

Minimizing the RHS with respect to t, we get the following

2

P[S, > a] < e 2=
]

This bound helps us characterise how well a random variable is concentrated around
it’s expected value without worrying about the asymptotics.

Why are these bounds so important?

The Central Limit Theorem (CLT) states that under appropriate conditions, the distri-
bution of a normalized version of the empirical mean converges to a standard normal
distribution, even though the underlying data might not have been from a normal distri-
bution.

Theorem 45 (Central Limit Theorem). Suppose that {X;} is a collection of i.i.d samples
with mean p and variance o2, then

n—1
Z X, —nu
i=0 <

pl=_
oyn  —

1.€.

Zﬁ:olXi—nu d
= 0,1).
4 N 0.)
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7.3

Now, even though we now have an idea about the limiting case, it is difficult to
say when we can say that this normalized empirical distribution is ‘close enough’ to the
normal distribution.

In the case of Xl-lrl\sl/\/ (0,1), the normalized empirical distribution approaches the nor-
mal distribution pretty rapidly, only requiring a small numbers of samples to approximate
it. However, in order to obtain the same estimates for something like the power law (
Fx(z) = m%, a > 2 ), we might require absurdly large number of samples to do so. Hence,
we can’t say anything about a general random variables, except for the asymptotic case,
without getting (possibly significant) error. Chernoff bound and other tail estimates
therefore help us provide estimates for a broad class of random variables without worry-
ing about the asymptotics and associated error terms.

Observation 46. A core idea to get better tail estimates is that the more we know
about the higher moment of the random variable, the more control we have on these tail
estimates.

The Johnson-Lindenstrauss Lemma

This is very useful tool which has its most important application in dimensionality re-
duction. Dimensionality reduction is a technique of transforming high dimensional data
into some low dimensional subspace in the way that preserves much of the properties of
original data. In many cases, original data have lot of sparsity; and is computationally
difficult to analyze. In such cases, dimensionality reduction helps to project this data
onto some lower dimensional subspace which is easier to analyze and have less sparsity.

Coming to the lemma, although it was initially proven by Johnson-Lindenstrauss in 1984
([?]), we will be following a more streamlined proof, developed by Frankl-Maehara ([?])

Definition 47. Suppose S C R and |S| = n. A map ¢ : R — R™ is said to be an
e-approximation isometry on S if for all u,u’ € S,

(=) flu—vll, < llg(u) — ¢, < (1 + &) lu =],

Theorem 48 (The Johnson-Lindenstrauss Lemma). Given ¢ > 0 there exists m =

0. (bggz") and an map ¢ : R — R™ that is an e-approzimation isometry.

A small digression: In [?] showed the existence of a set of n vectors in R? so that any

g-approximation scheme must have at least m = 2 <IO§#> Hence the bounds obtained

are tight up to a constant factor.
Observation 49. A random projection should do the job !

But how do we get one? Note that randomly choosing a unit vector is equivalent to
uniformly sampling a point on a (d — 1)-sphere S~! C R%.
So here’s an idea. Consider the matrix
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51,1 s gl,d

R=— : :
\/m gm,l gm,d

where fi,jig./\f (0,1) Vi € [m],j € [d] This matrix essentially ‘projects’ a d-dimensional
point to a m-dimensional point.
Now consider any d-dimensional vector u € R%. Then, if

v = Ru

Then,

d
1
Vi = ; §i.jj
where v; and u; are the ¢th and jth coordinates of vectors v and u respectively.

Proposition 50. If z; ~ N(0,1) Vi€ [d], then

d

d
Z a;x; ~ N (0, Z a?)
i1 i=1

Proof of Theorem 48 . Using Proposition 50, we see that

j=1
and
1< [k
vz=—m;uj5”~/v(o, )
and hence
U;
g ~ MO

We want to establish bounds on the following;:

P (|[v]* > (1+¢) |[ull*) <Zv > (1+¢) HUH)
=1

-2 (3 () - 0+0)
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To make our analysis easier, we define a vector X as X = (X1, X5 ..

X, = Vm— ~ N(0,1)

[l
We also use the following theorem to understand E[6X?]
Theorem 51. If X; ~ N(0,1) then m.g.f. of X?

1
V1—26

E[e’*7] =

Proof.

Therefore, using Theorem 51

i—1 i=1
=P (Hm 169Xi2 > eem(1+€)>
1=

HﬁlE[eex’g]
efm(1+e)

P (Zm: <HUTH)2 > (1+€)> =P (ixf > m(l—i—a))

1 m
()

efm(l+e)

1 m
n <,/1 —920.- 60(1+5))

Now,
1 I 10g(12729) —9(1-‘,—8)
V1 —20 - ef(+e)
Setting A = 2(%&), we get,

(S

(2

)2 > (1 +5)> < ((1—1—5)6_5)g

Vi
[[all
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7.4

Now, we use the following inequality ( for all £ > 0)

62 83
og(l+e)<e 5 + 3

we get,

P (i (ﬁ)z > (1 +€)> < (e§2+f>§

=1

Choosing k > 22— logn, we get,

3e2—-2¢3
" v\ 1
P (Z (||11||> > (1+5)> <
i=1

Therefore,
2 2 1
P (foll* < (1+<) ul?) > 1~ -
A similar bound can be established in the other case
2 2 1
P (ol > (1 - ) ful?) > 1~
and
2 2 2 2
P (ol ¢ [(1—e) [lull*, (1 +&) [ul]*]) < —
Therefore,
/ . , n 2 1
P (Ju, u" such that our hypothesis doesn’t hold) < o) X5 = 1-—-<1
n n

and hence, with positive probability, there exists a projection map that is an e-

approximation identity.

The Azuma-Hoeffding Inequality

Definition 52. Suppose, we have a filtration of o—algebras, Ag C Ay C Ay C Ay C

. in probability space. A sequence of random variables (Xo, X1, X, ...

Martingale if,
1. X; is A;—measurable for each i.

2. E[X;|A;_1] = X1 almost surely Vi > 1.
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Definition 53 (Doob Martingale). Suppose, we have a filtration of o—algebras, Ay C
Ay C Ay C A3 C--- CA, inprobability space. Let, a random variable Y be A, —measurable
and E[|Y|] < o0 orY > 0. Define Xy := E|[Y|Ay]. Then, the sequence { Xy} is a mar-
tingale, commonly known as the Doob Martingale.

Proof. First condition for Martingale is obvious. For second condition,
E [X|Ar-1] = E[E[Y[Ar] [Ar-1]
=E[Y|Ag_1]
= X}_1 almost surely.

Theorem 54 (Azuma-Hoeffding Inequality). Suppose, we have a Martingale, (Xo, X1, X5 . ..
and suppose there are constants C; such that | X; — X;_1| < C; almost surely for all i.
Then, given any K >0 andn € N,

K2

P(X,—Xo>K)<e X
In particular, if you take K = \y/n for some X\ > 0 and for all i,C; = 1,

P (X, — Xo > AWn) <e *
Proof. To prove Azuma-Hoeffding Inequality, we will need the following result:
Proposition 55. Let, Y be a random variable with mean 0 such that |Y| < d almost
surely, then E [eey} < e@ for any 0 € R.
Proof. For any y with |y| < d, Write

As €% is a convex function of y, we get,

(y+d) g9, (d—y) o—vd

Oy <
= Toa C T T
Thus,
ElY — ElY
E [eey} < (E[ 2]d+ 9) e+ (d Qd[ De_ed (using linearity of expectation)
1 1
- 56‘“ + 56*‘“ (as E[Y] =0)
= cosh (0d)
< 0%d?
<e
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Now, for 6 > 0,

P(X,—-Xo>K)=P (eG(X"_XO) > e”™)  (as €’ is monotonic increasing if 6 > 0)
< e 'fE [ee(X”_XO)] (Markov’s Inequality) (7.3)

For E [¢/Cn=X0)] | we have,

E [eg(Xn,XO)] - [E [ee(xnfxn,l)ee(xn,leo)|An_lﬂ

—F [GQ(X"*_XO)E [GG(Xn—anl) |An—1H

0(Xn—1—Xo

(as e ) is A,,_;—measurable.)

As {X;} is Martingale, E[X,, — X,,_1|A,1] = X,-1 — X,,-1 = 0 almost surely. Also,
from assumptions in Azuma’s Inequality, we have | X,, — X,,_1| < C,, almost surely. Thus,
using Theorem 55, we can bound E [ea(X"_anl) ‘An,l} as:

[69(Xn71*X0)E [69(Xn*Xn71) ‘An—lﬂ

0202

E
<E {ee(x”lXO)e 2 }

0%c2
2

IA
o

E [eg(Xn—I*XO)]

Now, one can use the same argument repetitively to get,

02y c?

E [ee(X"_XO)} <e T

Thus,

P(X, — Xo > K) < e FE [/ X0)] (from Inequality 7.3)

2 5n 2
< 66 izzlci 0K

As this is true for any 6 > 0, we can choose optimal € for which RHS is minimum. Such

optimal # turns out to be:
K

.= ==
2 im1 OF

and thus, the inequality:

K2

P(X,—Xo,>K)<e *Tii
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7.5

7.6

McDiarmid's Inequality

Theorem 56. Suppose &1,&,&3,...,&, are independent random variables and let,

Y = f(€17§27---a€n)

where function f is d— Lipschitz i.e. for any z;, ),

|f(z1, 20, iy my) — foy, 20, 2 xy)| < d

Then, for anyt > 0,
t2
P(lY —E[Y]| > t) < 2e 2
(In the above theorem, one can take t = O (\/nlog n) for maximum utility.)

Proof. Define Ay, := 0(&1,&,...,&) and Yy, := E[Y|Ag]. Then, {Y;} by definition, forms
a Doob Martingale Process. Let &, be an independent copy of &. Observe that

Yk{ L= ]E[f(glag%"'75]/97'"75n)|0<517§27"'a€k)]
= E[f(€17§27‘ - 75}2" - 7€n)|0-<§17€27‘ .- 751@—1)]

(as all entries in f are independent of &)

=E[Y|Ag_1]
=Y
Thus,
Vi — Yioi|
= [E[Y]Ag] - Yy

= |]E [f(£17£27"'7€k7"'7571)'0'(617527"'75/6)} _E[f(glaf%--'75],437'"7£n)‘0(£17§27'-~7£k)]’

SE[f(E & & &) = f6L & & G)llo (61,62, &)
<d (almost surely as f is d—Lipschitz)

Hence, by applying Azuma-Hoeffding’s Inequality (Theorem 54),
P(|Y —E[Y]| > t) < 2¢ 2

for any ¢t > 0. |

Janson’s Inequality

Suppose, H = (V, £) is given hypergraph. Consider the following random experiment:
Each v € V has some probability 0 < p, < 1 assigned to it. We want to sample vertex
set V' as per these probabilities i.e., we are going to choose randomly a subset R C V
such that independently, Vv € V,P(v € R) = p,.

Now, the question is what is the probability that R contains some E € £7
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Theorem 57 (Janson’s Inequality). Let, N := #{F € £|E C R}. Define,

p:=E[N]=> P(ECR)

For By,By € &, let By ~ By if By # By and By N By # (. Define,

A=Y P(BICRABCR)

Bi~By
Then,
1. P(N=0)<ent?
2. If A> u,P(N=0)<e 23
A simple application
Definition 58. Suppose p is prime and let, X = (x1,xs,...,x)) be a finite sequence in

. Then, X is said to have a 0—sum subsequence if 3S C [k] such that 3 g2z, =0
in .

Now, let (G, +) be finite abelian group. Define,
D(G) := min{m : Any sequence of m elements of G has 0—sum subsequence.}

For example, D(Z/nZ) = n.
We can also allow elements in sum to have =+ signs.

D4 (G) := min{m : Any sequence of m elements of G has 0—sum weighted subsequence with weights -

In the example above, Dy (Z/nZ) = |log,n| +1. To see why this bound can’t be reduced
further, take n = 2% and k—sequence to be (1,2,22,...,2¥1). For this sequence, one
can’t find any 0—sum subsequence even with weights +1.
This idea can be more generalized for G = F,, as follows:

Let, A C ;. Define D4(F,) as:
D4 (F,) := min{m : Any sequence (21,3, ..., ;) of F, admits ji, ja, ..., jr

T
and ay,as, ...,a, € A such that Zalle =0inF,.}
=1

Examples:
1. Dy(Z/nZ) = |logyn| + 1 where A = {1, -1}

2. Ds(Z/nZ) = [%] where A ={1,2,...,k}
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3. Da(Z/nZ) = [logyn] where A = {1»2’ e {LJ}

logy 1

Now, for k > 2, let

: . o\ k
fO(p, k) :=min{|A| : A C F and every sequence (zy1,s,...,2;) € (F})

admits an A—weighted zero-sum subsequence in F,}

Proposition 59. f©(p, k) > p'/F — 1

Proof. Suppose A C F¥ is optimal. Let Ay := AU {0}. Consider the bipartite graph
G = (A,B, &) where A = (F;)k B = (A)"\ {0} and & is defined such that:

&= {{a:,a}

k
x = (x1,29,...,21) € Aa = (a1,as,...,a;) €B and Zaixizoinﬂ?p}

=1

Note that this bipartite graph is capturing the idea of “subsequence” of sum zero as one
can simply put the a;’s corresponding to terms not participating in 0—sum subsequence
to be zero. Also, 0 being removed from B essentially ensures that there is a non-empty
0—sum subsequence taking coefficients from A. Thus, by our assumption about A, d(x) >
1 Ve e A

— 1€ > (p— 1) (7.4)

On the other hand, for fixed a € B, d(a) < (p— 1)*71. Because, one can take any a; # 0
in a and define x like this: Pick z;’s arbitrarily for j # ¢ and let, x; = —a; ! Z#i a;x;.
Note that this is unique choice for x; so that there is an edge between & and a. This
implies d(a) < (p — 1)*7! and thus,

€< (=D (14 + D! - 1) (7.5)

Thus, from inequalities 7.4 and 7.5,

(=1 < -1 (141 + D" ~1)
— p-1< (A +1) 1
= P12 A= O k)

Theorem 60. For k > 2,
O p. k) < O ((plogp)"*)
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Proof. (We will prove it for case when k = 2.)
Let A C F; be a f—random subset i.e. independently Va € Fy, P(a € A) = 0.
Note that for given z,y € F;, A annihilates it i.e. Ja,b € A such that,

ar +by =0
< al+byr')=0

that is, it is enough to check if A annihilates {1,z} for any = € IF;.
This is trivial for z = 1, so let = € F; \ {1}. If Ja,b € A such that either a + bx = 0 or
axr+b=0,

—r=—ab lorx=—bat

Using this, lets define a graph G, where V (G,) = IF;, and edges are given by:

u v
r=——o0raes=——
v U

£(Gy) = {{uv}

G, thus formed, is 2—regular as each vertex v has exactly two neighbours —vx and
—vz~ L

So, in terms of graph, A annihilates {1,z} iff A is not independent in G, or in other
words, there exists an edge between some pair of points in A. This is where we can use

Janson’s inequality. Define N := #{FE € £|E C A}. Thus,

p=E[N]=> P(ECA)

Ee&

= p— 1) <|e| =Y =2 1)

veV

and

A:= > P(BICAAByCA) where By ~ By if By # By and BiN By # 0)

Bi~B>
=0(p—1)

Thus, by Janson’s inequality (Theorem 57),

Therefore,
P ({1,z} is not annihilated by A) <e 2 ¥
Hence,
p—1)63 2
P (\/meyz{l, } is not annihilated by 4) < (p — 1)6( 2 (-1)6 (union bound)
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We want this probability to be strictly less than 1 so that there will be A which annihilates
{1,z} Vo € F;. Thus,

3
(P—21>9 —(p—1)92

(p—1)e <1
—1)6?
ﬁlog(p—l)%—%—(p—l)ﬁz <0
1 —1 63
j% < 6 — 5 ~ O(6?) (as we can safely assume 6 << 1)
p_

This implies that § = ) <,/1°$> — E[|A]] = (p — 1)0 = Q(v/plogp) which further

implies:

fOp.2)<0 ((p logp)"/ 2)

If p is sufficiently large and k fixed, f©(p, k) < 4¥p'/k.
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8.1

Some applications of the basic concentration
iInequalities

It is often the case that the random variable of interest is a sum of independent ran-
dom variables. In many of those cases, the theorem of Chebyshev is much weaker than
what can be proven. Under reasonably mild conditions, one can prove that the random
variable is tightly concentrated about its mean, i.e., the probability that the random vari-
able is ‘far’ from the mean decays exponentially, and this exponential decay is crucial in
several probabilistic applications.

The distribution of the sum of i.i.d random variables, suitably normalized, behaves
like the Standard Gaussian; that is the import of the Central Limit Theorem (CLT for
short) in Probability, so in that sense, the Chernoff bound has its antecedents from much
earlier - indeed this goes back to Laplace. But the CLT is a limiting theorem, whereas
the Chernoff bounds are not. This qualitative difference is also very useful from an algo-
rithmic point of view.

In this chapter, we consider a few prototypes' of such results along with some combi-
natorial applications.

The Chernoff Bound

We first recall (a version of ) the Chernoff* bound. We have seen a general template of
this theorem in a previous chapter. Any such exponential type decay bound will be called
a Chernoff type bound or simply, a Chernoff bound:

! Actually it is a misnomer to call them Chernoff bounds because these also date back to Chebyshev.
But they were independently discovered by Chernoff, and the name has stuck since.

2Though as Spencer explicitly has stated, this bound was already there in Chebyshev; the (somewhat
inaccurate) attribution to H. Chernoff was mostly popularized by Spencer. But since that is the name
everyone uses, we shall do the same.
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8.2

Proposition 61 (Chernoff Bound). Let X; € {—1,1} be independent random variables,
with P[X; = —1] = P[X; = 1] = 1, and let S, = Y. | X;. For any a > 0 and any n,
P[S, > a] < e=*/?",

Proposition 61 can be generalized and specialized in various ways. We state two such
modifications here.

Proposition 62 (Chernoff Bound (Generalized Version)). Let py,...,p, € [0,
X; be independent random variables such that P[X; = 1 — p;] = p; and P[X;
1 —p;, so that E[X;] =0 for alli. Let S, => . X;. Then

1], and let
= —pi] =

P[S, > a] < e 2/ and P[S, < —a] < 2¢72/"
Letting p = %(pl + ...+ pn), this can be improved to
P[S, > a] < e fpn+a®/2(pm)®

Proposition 63 (Chernoff Bound (Binomial Version), see [18]). Let X ~ Binomial(n,p),
and let 0 <t < np. Then

P[IX —np| > 1] < (2(71p_—f—t/3))

and the last expression is at most 2e~t*/3np if t < np.

In all three cases, the independence assumption can be removed while preserving the
exponential decay (although with a worse constant).

Before we move on to some applications, we make a quick remark. While the afore-
mentioned version of the Chernoff bound holds always, its efficacy, especially when we
wish to establish that some event occurs with high probability only works when np — oo.
If p = O(1/n) so that np = O(1) then this bound does not work as well. And this is again
an observation that goes back to Poisson; the Binomial distribution, suitably normalized,
can be well approximated by the standard Gaussian when the expected value goes to
infinity with n, and if the expected value is bounded by a constant, then for large n, the
behavior is more like the Poisson. We will return to this point in a later chapter.

First applications of the Chernoff bound

We start with a return to a result from a previous chapter. Recall the randomized
algorithm to determine the frequency moments using a sub-linear number of bits. We had
a sequence of random variables (Y7, ..., Y,) with E(Y;) = Fj and P(|Y —F}| > A\Fy) < 1/8.
Our final report was the random variable Z = Median(Y7,...,Y,) and our interest was
in obtaining a bound for r such that P(|Z — Fy| > AF)) < e. Towards that end, we
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8.3

had defined the ransiom variable 1?; to equal 1 if Y; € [Fy - AF}., Fy, —|—~)\Fk] and zero
otherwise, so that Y; is distributed as Ber(7/8). Setting Z := Y., Y; allows us to
estimate this probability by the bounds of a Binomial random variable Bin(r,7/8). If
Z ¢ [Fy, — \Fy, Fi, + AFy], then Z is less than r/2. The second moment method gives
P(|Z — Fi| > A\Fy) < e for r = O(1/+/2). Instead, if we use the Chernoff bound, then we
have
~ -9

so that we can, as claimed earlier, take r = O (log(i)) to get the same probability bound
as stated.

Discrepancy in hypergraphs

The notion of Discrepancy is the topic of very deep study and there are even a few mono-
graphs dedicated to this (see []). Here, we shall contend ourselves with a very basic result.
Given a hypergraph # = (V,€) and a 2-coloring ¢ : V() — {—1,1}, the discrepancy
of an edge E for the coloring c is simply disc.(E) := | > .z c(v)|. The discrepancy of
the coloring c is the maximum discrepancy that ¢ produces amongst the edges of 7,
i.e., disc(c)) := maxgeedisc.(E)}. The discrepancy of the hypergraph is the minimum
discrepancy amongst all two colorings of #, i.e., disc(H) := min. disc(c). In words, the
discrepancy of a hypergraph attempts to measure how equitably one can partition the
vertex set into two parts in the sense that that every edge of the hypergraph gets parti-
tioned as equitably as possible. One of the most celebrated results in Discrepancy theory
is the theorem of Spencer that states that a hypergraph on n vertices and O(n) edges
has a discrepancy of order O(y/n). This was subsequently given an algorithmic proof by
N. Bansal [11] and several others, with the current ‘book proof’ due to T. Rothvof [27].

But here, we shall prove a much more modest statement, which is also the starting
point for many of the improved results in this direction.

Proposition 64. Suppose H is a hypergraph on n vertices and m edges. Then disc(H) =

O(y/nTogm).

Proof. To show an upper bound on the discrepancy, we need to exhibit a coloring ¢ for
which the discrepancy is small. Pick a random coloring, i.e., for each v assign it the color
1 or —1 independently. For an edge E with |E| = k, let Xg := Y v € FEc(v). Then
E(Xg) = 0, so using the Chernoff bound to decree P(|Xp| > t) < 2exp ©/?* < 1/m
suggests t = O(y/nlogm) since k < n. By choice, this implies that the expected number
of edges with discrepancy greater than t is less than one, so again by the method of
expectations(!), there is a coloring ¢ such that all the edges discrepancies are at most t.
This completes the proof. |

3This was Erdds’ notion of the best/cleanest possible proof of any result. For more on this, see [1].
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3.4

Remark: It is not hard to show that there are hypergraphs with n vertices and n edges
with a discrepancy of Q(y/n), so the result of Spencer is asymptotically tight. But as we
have already seen with the Rodl nibble method, some probabilistic constructions cannot
achieve the desired goal in a single step process, and the proofs for the sharp discrepancy
follow a random process. We will address random processes in a later chapter.

Projective Planes and Property B

Given a hypergraph H = (V, £), we say that H has property B if there exists S C V such
that for all E € £ both S and S intersect £. This is an extension of the notion of graph
colorings to hypergraphs, where the notion of proper coloring now (considering that for
hypergraphs one has more than one interpretation of what a proper coloring ought to be)
is that there is no monochromatic edge.

Unlike the graph case where there is a very simple algorithmic characterization of
2-colorability, the problem of deciding when a hypergraph has property B is far from well
understood. Indeed, one of Erdds/ oldest and returning motifs was to determine m(n)
the minimum number of edges in an n-uniform hypergraph that does not have property B.

One of the earliest observations regarding property B was the following due to Lovasz,
which effectively comes from an algorithmic procedure to attempt to 2-color the vertices:
If H is such that |E; N Ey| # 1 for all pairs of distinct edges Ey, Fa, then H is 2-colorable,
and therefore has property B. Indeed, number the vertices 1,...,n. Color each vertex,
in order, avoiding monochromatic edges. It is easily seen that by the assumptions on
‘H, this must yield a valid coloring. So for now, let us work with a situation where the
hypergraph violates this condition in the extreme, i.e., suppose that 7 has the property
that every pair of edges meet at exactly 1 vertex. Examples of such hypergraphs arise
from the projective planes which we have encountered in Chapter 1. The Fano Plane,
shown here with each edge represented as a line, shows that such hypergraphs are not
necessarily 2-colorable. Following Erdds, we now define a stronger version of property B,

which we will refer to as Property B(s).

100



8.5

Definition 65 (Property B(s)). A hypergraph H = (V,E) has property B(s) if there
exists S C V' such that for every edge E, 0 < |[ENS| < s.

If we set s = n — 1, then for n-uniform hypergraphs, property B(s) is the same as the
usual property B.

Recall the notion of a Projective Plane of order n, denoted by 9§, It is an (n + 1)-
uniform hypergraph €, := (P, £) with |P| = n?+n+1 (called points), |[£| =n*+n+1
(called lines) such that every pair of points determines a unique edge, and every pair of
lines intersect in a unique point.

Theorem 66 (Erdds, Silverman, Steinberg). There exist constants k, K such that for
all n there exists a subset S of the points of Y, with klogn < |[LNS| < Klogn for all
LelL.

Proof. Choose S at random, with each point = placed in S with probability p = (fl), for
some f(n) to be determined later.

Fix a line L, and let S; = |SNL|. Note that E[S.] = (n+ 1)p = f(n). By the
Chernoff Bound, P[|S;, — f(n)| > f(n)/2] < 2e~7W/12_ Since §,, contains n?+n+ 1 lines,

P[There exists Lsuch that |S, — f(n)| > f(n)/2] < 4e~f(Wn?

for some absolute constant C. Therefore, if e“/™ > Q(n?), a set S with the desired
property exists. This in turn tells us that setting f (n) = O(logn) gives us the stated
result for sufficiently large n. |

Remark: Erdos conjectured that for the projective planes, a much stronger state-
ment holds: There exists an absolute constant s such that for all sufficiently large n, the
projective plane of order n has property B(s).

The problem of determining m(n) which was alluded to earlier remains one of the
most elusive problems in extremal combinatorics. We will, later in this book, see a proof

of the statement
n < 20n
Q(”lognz) m(n) < O(n°2")

which still marks the best known result to date.

Graph Coloring and Hadwiger's Conjecture

IN this section we see a counterexample to a conjecture of Hajos in an attempt to solve
the famous Hadwiger conjecture. To get there, we first need a couple of definitions. For
an edge e = uwv in a graph G, the contraction of e is a graph denoted G/e obtained by
deleting the vertices u,v and replacing it with a new vertex v, which is adjacent to all
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the neighbors of u and v counting with multiplicity. In other words, if a vertex w was
adjacent to both u,v in G, then v, has two edges to w in G/e.

Definition 67 (Graph Minor). Given a graph G, H is a minor of G if H can be obtained
from G by a sequence of edge deletions edges and edge contractions and deletions of
1solated vertices.

Definition 68 (Subdivision). A graph H is a subdivision of G if H can be made isomor-
phic to a subgraph of G by inserting vertices of degree 2 along the edges of H.

One can think of H as a subgraph of GG in which disjoint paths are allowed to act as
edges. Note that if H is a subdivision of GG, then H is also a minor of G; however, the
converse is false in general.

The deep conjecture of Hadwiger is the following

Conjecture 69 (Hadwiger’s Conjecture). Let G be a graph with x(G) > p. Then G
contains K, as a minor.

Paraphrasing, Hadwiger’s conjecture states that for a graph G to be p-colorable, the
clique on p vertices is forbidden as a minor. The best known result towards settling
Hadwiger’s conjecture is the celebrated Robertson-Seymour Theorem on graph minors
[26]which shows that p-colorability is characterized by a finite set of forbidden minors.

Hadwiger’s Conjecture is notoriously diffcult. Indeed, the special case of p = bis
equivalent to the four color theorem for planar graphs®. One way is straightforward: if
X(G) > 5 then by the conjecture G contains K5 as a minor and is therefore nonplanar as
a consequence of Kuratowski’s theorem (see [32]). But the other way needs more work.
The conjecture is currently open for p > 6. In fact, all known proofs of Hadwiger’s con-
jecture for p = 5,6 use the four-color theorem.

Due to the apparent difficulty of Hadwiger’s Conjecture, Hajos strengthened the con-
jecture to state that if x(G) > p, then G contains K, as a subdivision. But as it is usually
the case, this strengthened conjecture turned out to be false as was shown by Catlin via
an explicit counterexample. However, the motivating question really is: How good a
conjecture is the strengthened version? If the counterexamples were freak instances, then
maybe one at least had an asymptotically strong statement since subdivisions are eas-
ier to understand from a verification perspective unlike minors. But later, Erdos and
Fajtlowicz put this possibility to rest showing that the conjecture is almost never true.

Theorem 70 (Erdés, Fajtlowicz). There exist graphs G such that x(G) > and G

has no K 5 subdivision.

n
3logn

4The four color theorem states that ever planar graph, i.e., graph that can be embedded on the plane,
is 4-colorable.
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Proof. Let G = (V, E) be a random graph on n vertices, with each edge placed in the
graph with probability 1/2. We first show that with high probability, G has large chro-
matic number, and then also that G has no large K, subdivision.

Since x(G) > n/a(G), let us examine an upper bound for «(G). We have

Pla(G) > x| = P[there exists a set of x vertices which form an independent set]

() ()

Set # = 2logn + 3 so that 2(*=1/2 = 2n; then

1)21gn+3 1

Pla(G) > o] < (5

so with high probability, a(G) < 2logn + 3 < 3logn.

Now suppose that G contains K; as a subdivision. Since K; contains (;) edges, GG
must contain as many disjoint paths. Now, each vertex of G must either be a vertex of
the K, subdivision, or else be contained in at most one of the paths. Since there are n
vertices in GG, we end up forcing many of these paths to be single edges if (;) = Q(n).
Setting ¢ = 34/n the argument outlined gives us that at least 3n of the paths in the
subdivision of K; must be single edges of G.

Fix a set U C V, [U| = 3y/n. If U forms the vertices of a Kj 5 subdivision, then
e(U) > 3n. By the Chernoff Bound we have

1
Plle(U) — Ele(U)]| = JE[e(U)] < 9~ Ele()]/48
so that
Ple(U) > 3n] < 2e~On=3vm/192  o=n/25
which implies that

P[U forms the vertices of a K3 5 subdivision] < e~/

Hence by the union bound

3v/n
P[G has a K /; subdivision] < (33%) e < (#) e % = o(1)

as n — 00. So with high probability, G does not contain a Kj 4 subdivision.

Thus, it follows that with high probability, x(G) > STogn and G has no K3, s subdi-

vision, as desired. |
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8.6

Remark: This result shows that the chromatic number of a graph is a more esoteric

global feature of the graph. In fact, the determination of the chromatic number of the
random graph G, , is an interesting problem which still has many unresolved facets, and
we will examine some related results in the forthcoming chapters.
The fact that the chromatic number of a graph is a somewhat enigmatic invariant is
further evidenced by the following theorem due to Erdds: Given ¢ > 0, and an integer
k, there exist graphs G = G,, (for n sufficiently large) such that x(G) > k, while every
induced subgraph H on en vertices satisfies y(H) < 3. This was again based on a random
graph construction, and the interested reader can see this result in [5].

Why the Regularity lemma needs many parts

One of the most fundamental results in extremal graph theory is the celebrated Regularity
lemma of Szemerédi, and the result is essentially a probabilistic paradigmatic statement
for dense graphs®: Every graph can be decomposed into a bounded number of parts such
that the graph between these parts is basically ‘random-like’.

To make this more precise, we need the notion of an e regular partition. For a pair
of sets (not necessarily disjoint) U, W of vertices of a graph G, we denote by e(U, W)
the number of pairs (u,w) € U x W such that uw € E(G)and by teh density of the
pair (U, W) we means d(U, W) := T[%VVK‘) A pair (u, W) is called e-regular if whenever
A CU,B cC W with |A| > ¢|U| and |B| > ¢|W| then the densities of the pairs (A, B)
and (U, W) differ by at most ¢, i.e., |[d(A, B) — d(U,W)| < e. A partition of the vertex
set V = UF_,V; is called an e-regular partition if the number of irregular pairs (V;, V;)
from among these sets is at most k. The regularity lemma then states the following:
Given ¢ > 0, there exists M = O.(1) such that every graph admits an e-regular partition
into at most M parts. We will see this in greater detail in a subsequent chapter (Chapter ).

The regularity lemma has been found to be of deep consequence in extremal graph
theory, and since the proof procedure has an algorithmic flow to it, the regularity lemma
also finds applications in Theoretical Computer Science (Property Testing). However,
one drawback in the algorithmic application of the Regularity lemma is that the number
M that is obtained through the proof is a tower of 2’s with the height of the tower is
Q(1/£%). This makes the result immensely interesting and useful theoretically, but com-
pletely useless from a practical point of view. The natural question that arises is: Do we
really need such a large M7 Gowers [15]) settled this question in the affirmative. More
precisely, there exist graphs G for which every e-regular partition has partition size a
tower of 2’s with height 1/° where 0 < ¢ < 1 is an absolute constant.

5If the graph is not dense, then the statement in the usual version is completely tautological.
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While we shall not prove Gowers’ result here, we shall give an easier and a weaker
version of his result which also appears in the same paper.

Theorem 71. Given 1/1024 > ¢ > 0, there exist graphs such that every e-regular parti-
tion has size a tower of 2’s with the height of the tower being of the order logy(1/e).
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Property B: Lower and Upper bounds

We have seen a brief glimpse of Property B in hypergraphs in the preceding chapter.
As with many other problems and notions in this book, the main study into this notion
was pioneered by Erddés and some of the problems introduced then are still open. In this
brief digression of a chapter, we shall look at the current bounds (lower and upper) in
the corresponding problem.

Introduction

For an integer n > 2, an n—uniform hypergraph # is an ordered pair H = (V, ), where
Y is a finite non-empty set of vertices and £ is a family of distinct n—subsets of V. A
2-coloring of H is a partition of its vertex set hv into two color classes, R and B (for red,
blue), so that no edge in € is monochromatic. A hypergraph is 2-colorable if it admits a
2-coloring. For an n—uniform hypergraph, we define

m(n) := argmin {H = (V, ) is 2-colorable} (9.1)
€]

2-colorability of finite hypergraphs is also known as “Property B”. In [?], Erdés showed
that 27! < m(n) < O(n?2").

Let us start with a brief look at these results. The first of these, namely, that any
n-uniform hypergraph with at most 2"~ ! edges is 2-colorable is an immediate consequence
of considering a random coloring and computing the expected number of monochromatic
edges. The upper bound for m(n) too follows from a simple randomized construction,
and here is the gist.

logn

In [12], Beck proved that m(n) = Q(n32") and this was improved to m(n) = Q (2” & )

by Radhakrishnan et al in [25]. In fact, Erdds-Lovasz conjecture that m(n) = ©(n2").
Here, we outline the proofs of both Beck’s and Radhakrishnan’s results.
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9.2

We will begin with some notation, if an edge S € H is monochromatic, we will denote
it as S € M, and in addition, if it is red (blue), we write S € RED (S € BLUE). Also
for a vertex v € V, v € RED and v € BLUF have a similar meaning. We shall freely
abuse notation and denote by RED (resp. BLUFE) both, the set of points colored RED
as well as the set of edges of # that are colored RED and this should not create any
confusion, hopefully.

Beck's result
Theorem 72 ([12]).
m(n) = Qn32")

Proof. We will show that m(n) > ens—oMn  getting rid of o(1) will need some asymp-
totic analysis which is not relevant to the class and hence is not presented here. Let
m = |E| = k2", we will show that k > en3 =W The hypergraph will be colored in two
steps.

Step 1: Randomly color all vertices with red or blue with probability 1/2 and indepen-
dently.

Step 2: Randomly re-color vertices that belong to monochromatic edges independently
with probability p.

For an edge S, S(1) denotes its status after step 1 and S(2) its status after step 2. For
a vertex v € V, v(1) and v(2) have similar meanings. Let N; denote the number of
monochromatic edges after step 1, then note that E(/N;) = k. Also let N denote the
number of monochromatic edges after step 2. For an appropriately chosen p, we will
show that E(N) < 1.

E(N) =Y P(S(2) e M) =) (P(5(2) € RED) + P(S(2) € BLUE))

Se& Se&
=2 P(S(2) € RED)
Se&
P(S(2) € RED) = P(S(1) € M, S(2) € RED) + P(S(1) ¢ M, 5(2) € RED)

It is easy to bound P,

P, = P(S(1) € RED,S(2) € RED) + P(5(1) € BLUE,S(2) € RED) = W
< 2(1—p)"
T

(9.2)

In (9.2), we used the fact that p is small, in particular p < 0.5, this will be validated in
the following analysis. Towards analyzing P, note that, for the vertices that were blue
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after step 1 to have turned red, they must belong to blue monochromatic edges, i.e., for
each v € S that is blue, there is an edge T such that TN S # ® and T' € BLUE. Define

Esp:=event S(1) ¢ M, T'(1) € BLUE, SNT # ® and S(2) € RED

Then we have

P, < Z P(Esr) (9.3)
T4S

Let U := {v e S\ T|v(l) € BLUE} and Egry = event SNT # &, T(1) € BLUE,
U e BLUE and S(2) € RED, then

P(Egsr) =P \/ Esry | < Z P(Esrv)
UCS\T UCS\T

For a fixed triple (S,T,U), for U to even flip it must belong to some other edge which is
blue after step 1. But for an upper bound, let is just flip to red.

|SAT|+U| _ |SAT|—1, |U|

1 p
P(Esry) < WP W(Qm p

Pl
S 22n—1p

Using this in (9.3), we have

P(Esr) < Y _2%12( )

UCS\T |U|=0
_(I+p'p < 20+ p)" _ 2pexp(np)

o2mn—1 = 9m = 92n
2mp exp(np)
— Z P(Esr) < o (9.4)
SAT
Using (9.2),(9.3),(9.4), we get (recall that m = k2")
m’pexp(np) (1 —p)"
E(N) <2
(k2p exp(np) + k(1 —p)") (9.5)
For an arbitrary ¢ > 0, let p = M then k(1 — p)* < kexp(—np) = k~° and
k*pexp(np) = w So, (9.5) gives
2k31T (1 log k
(V) < 2k~ 4 26 (L +e)log (9.6)
n
So, if k ~ n'/372%/3 then (9.6) will be less than 1, so that P(N = 0) > 0. [ ]
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9.3

The Radhakrishnan-Srinivasan (R-S) improvement

Theorem 73 ([25]).

m(n)zQ(Q" o ) 9.7)

logn

(R-S) take Beck’s recoloring idea and improve it. Their technique is motivated by the
following observation

Observation 74. Suppose S is monochrome after step 1, then it suffices to re-color just
one vertex in S, the rest can stay as is. So, after the first vertex in S changes color, the
remaining vertices can stay put unless they belong to other monochromatic edges.

This motivates the following modification, do not re-color all vertices simultaneously,

put them in an ordered list and re-color one vertex at a time. Here is the modified step
2.
Step 2: For a given ordering, if the first vertex lies in a monochromatic edge, flip its
color with probability p. After having colored vertices 1,...,7 — 1, if vertex ¢ is in a
monochromatic edge after having modified the first ¢ — 1 vertices, then flip its color with
probability p.

The analysis proceeds along similar to that in the previous section until (9.2). Con-
sider P,. The last blue vertex v of S changes color to red because there is some T' # S
such that 7" was blue after step 1 and |S NT| = 1. We shall say that S blames T (which
we shall denote by S —— T') if this happens. Also, none of the vertices in 7' that were
considered before v change their color to red. To summarize,

Lemma 75. S +—— T iff
1. |SNT| =1, call this vertez v.
2. T(1) € BLUE and v is the last blue vertex in S.
3. All vertices before v in S change color to red.
4. No vertex of T before v changes color to red.
Then,
P2§IP<VS|—>T>§Z]P’(S|—>T) (9.8)
T+#S T+S

Fix an ordering 7 on the vertices. With respect to this ordering, let v be the (i, + 1)
vertex in S and the (j; + 1) vertex in T. If the index of w is less than that of v, we
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write is as m(w) < m(v). Also define,

S, ={we S|nr(w) <7n(v)}
Sti={weS|n(w) >mr(v)}

T, and T, have similar meanings. To compute P(S —— T'), we will need to list some
probabilities

1. P(v(1) € BLUE,v(2) € RED) = g

2. P((T'\ v)(1) € BLUE) = %

1

21171'”71

3. P(Sf(1) € RED) =
4. P(T, (2) ¢ RED|T(1) € BLUE) = (1 — p)’

v

5. For w € S with w(w) < 7(v),

1
P((w(1) € RED) or (w(1) € BLUE,w(2) € RED)|S ¢ M) = #
So, subject to this ordering T,
p 1 L+p\"
— < - .. _ I -
]P)(S T) — 92 9n—1 9n—ig—1 (1 ) ( 2 )
p ' in
= 9201 (1=p)"(1+p) (9.9)

Let the ordering m be random. Then P(S +—— T') = E,P(S — T'| w). A random ordering
is determined as follows. Each vertex picks a real number uniformly at random from the
interval (0,1), this real number is called its delay. Then the ordering is determined by
the increasing order of the delays.

Lemma 76.

B(S+—T) =E(B(S— T|m) < 5

(9.10)

Proof. Let the delay of a vertex w be denoted by ¢(w). Let U := {w € S\ v|w(l) €
BLUEY, then ¢(w) < {(v), since v, by definition, is the last blue vertex in S. Also for
each w € T, either ¢(w) > ¢(v) or w did not flip its color in step 2. So, for w € T
P(l(w) < £(v),w flips color) = pzx, so P(¢(w) > ¢(v) or w did not flip) = (1 — px). Now,
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conditioning on ¢(v) € (z,z + dx) and with some abuse of notation, we can write

1 u u n—
P(S+—T,|Ul=ull(v) =x) = o1 I p'r (1 —pax)"!
—~ K(U)SIUU{U} flip to red

coloring after step 1

n—1 1
—1 1
— P(S+—T) <) (n > / gnp (1= pr)t e
0

u=0 u
D 1 n—1 n—1
= —22n_1 / Z ( )(p;(;)u (1 —p:p)n—ldl‘
0 u=0 u
1
_ 2p_1/ (1 —p2I2)n_1d5E
24n 0
p
< S (9.11)
|

Proof of theorem 75. Using (9.11) in (9.8), we get P, < 5527, Recall that P < 2(12;”1’)717
summing over all edges S, we get

E(N) < ——~ 4+ =~ (9.12)

Compare (9.12) with (9.5) and note that exp(np) is not present in (9.12). For an arbitrary
e > 0, setting p = 1F18E and approximating (1 — p) &~ exp(—np), we get

n

E(N) < 0.5 (k:—é‘ L+ 12‘%) (9.13)

Clearly k ~ , /7 makes E(N) < 1 giving the result. [ |

Spencer’s proof of lemma 76. Aided by hindsight, Spencer gives an elegant combinatorial
argument to arrive at (9.11). Given the pair of edges S, T' with |S N T'| = 1, fix a matching
between the vertices S\ {v} and T\ {v}. Call the matching p := {u(1),...,u(n — 1)},
where each p(7) is an ordered pair (a,b), a € S\ {v} and b € \{v}, define y4(7) := a and
(i) == b. We condition on whether none, one or both vertices of (i) appear in S, UT,,
foreach 1 < i <mn—1. Let X; = |u(i)N (S, UT, )|. Since the ordering is uniformly
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9.4

random, X; and X; are independent for i # j. From (9.9), consider E ((1 — p)i~(1 + p)'~).

E ((1 _ p)jﬂ(l +p)in Mkt TJ) —E <(1 _ p)EZ T I(pu(@NSy 7é<1>)<1 +p)2” 1 I (z)ﬂTJsﬁ@))

n—1
=E ( (1 _ p)ﬂ(us(i)eS;)(1 + P)H(Mt(i)ETv)>
i=1

H < Yns(DEST) (1 4 p)HmETs ))

( 1—p+1+p+1+1—p))
UG

E((1-p) (1+p))=E(E((1-p 1+p) |unS, UT,)) <1

which implies that

and that implies
p

22n71
and completes the proof. [ |

P(S+—T) <

And then came Cherkashin and Kozik...

A nice coda to this chapter is a beautiful argument due to Cherkashin-Kozik (2015)[13]
(a ‘Book Proof’) which greatly simplifies the R-S argument (though it gives the same
bound) to essentially ridding the argument of the recoloring as well. But, it builds upon
the ideas from the previous results, and all the previous hard work now gives payoff in a
very satisfactory manner.

As before, suppose e(H) = k2"~ '. The coloring algorithm puts all the vertices in a
(random) order, and processes one vertex at a time. A vertex is give a default color of
BLUE unless it ends up coloring some edge BLUFE in which case, we color the vertex
RED. Note that the only monochromatic edges are all RE'D at the end of this procedure.
The ordering of the vertices is decided in the same manner as in the R— S algorithm. Each
vertex v picks independently and uniformly, X, € [0, 1] at random. As observed in the R-
S algorithm, if an edge is colored RE D at the end of this procedure, there is some edge T
such that |[SNT| = 1, and the common vertex of these edges is the last vertex of S and the
first vertex of T'. We shall, following Cherkashin and Kozik sat that in this case (S,7") is
a conflicting pair. We shall estimate the probability that the coloring produces no RED

113



edges, and to do that we shall estimate the probability that there exists a conflicting pair.

Let 0 < p < 1 be a parameter. Call an edge S an p-extreme edge if for each v € S,

X, < % or X, > %. To estimate the probability that there is a conflicting pair, we

consider the two possibilities: One of the pair of edges is an extreme edge, and the other
case, when neither of the edges is extreme. The probability of the former is at most

2. (k2n1hy. (%)n = k(1 —p)™. In the other case, note that if SNT = {v} then we must

have X, € (%, #) and for all the other v € S,w € T we have X, < X, and X, < X,
and the probability of this is (k2" 1) . pX"~1(1 — X)) 1 < k24" 1. p (i)"_l = pk?.
Hence, if pk? + k(1 — p)™ < 1 then we are done, and the asymptotics for this are the

same as seen in the discussion following the R-S algorithm.
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10

10.1

The Lovasz Local Lemma and Applications

Not all events in a probability
space occur reasonably often;
some events are a
once-in-a-lifetime events, and
yet, they do occur.

Most of the applications of probabilistic methods we have thus far encountered in fact
prove that an overwhelming majority of ‘instances’ from the corresponding probability
spaces satisfy the criteria that we sought, so that in effect, one could say that ‘almost all’
of those instances would gives examples (or counterexamples) for the problem at hand.
While this makes it very useful from an algorithmic point of view - one could envisage a
randomized algorithm that would contruct the desired object - it may not always be the
case that the ‘good’ or ‘desirable’ configurations we seek are plenty. For instance, suppose
we have two large finite sets A, B of equal size, then we know that there is an injection
from A to B but almost all random maps are bound to be bad. The so-called Lovasz
Local Lemma - discovered by Erdds and Lovasz - gives us a very useful and important
tool that allows us to show that certain probabilities are non-zero, even though they
might be extremely small. In this chapter, we shall consider the lemma,and see some
applications.

The Lemma and its proof

We know that given a set of independent events, Ay, As, ..., A,, each with nonzero prob-
ability, then P(A; U Ao U ...U A,) > 0. The idea behind the Lovasz Local Lemma
(LLL) is that in certain cases we can relax the assumption that the A; be mutually in-
dependent, as long as each A; is only dependent on a small number of the rest. We
can visualize this by imagining a graph with vertices labeled by the A;, and edge set
{{A;, A} A; and A; are dependent}. Call this the dependency graph. Then the de-
gree of vertex A; is the number of other events with which A; is dependent. We call this
degree the dependence degree of A;. Intuitively, if the maximum dependence degree is
small, then we should still have nonzero probability of all the events occurring. The LLL
formalizes this.
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We now state the LLL formally, in its most general form:

Theorem 77 (Local Lemma). Suppose & (i = 1,2,...,N) are events in a probability
space (2, P) and suppose D is the dependence graph of {&;} which is constructed such that
& is jointly independent of {&; | (i,7) & E(D)}. Suppose there exist reals 0 < x < 1,1 =
L,..., N such that P(&) < i ][ ;;epp)(1 — ;) for eachi. Then,

P(ﬁ@) > Tt -2 > 0.

i=1 i=1

In particular, with positive probability, none of the events & occur.

We will present the proof shortly. As an immediate corollary, we have:

Corollary 78 (Symmetric form of LLL). Let & be events in (Q,P). Suppose P(&;) < p,
and if the mazimum degree in the dependence graph is d, and suppose ep(d+1) < 1, then
with positive probability none of the &’s occur.

Proof. Follows from Chapter 77, take x; = 1/(d + 1). Then note that

1 1 \% 1 A \2
%H(l %)—A+1<1 A+1> A+1(A+1)

7

Note that (%)A = (1 + %)A < e, so for each 1,

1

; 1—2;)> ——— >p>P(A).
sz( x])—e(A+1)—p— ( Z)
7
Then applying the general version of the local lemma yields the result. |

The above corollary allows for a more useful symmetric version of the local lemma,
which will be the version that will also be referred to as the local lemma. In most
situations, this is the version that is easy to apply directly.

We now present a proof of the local lemma. As we can see, this is a simple induction
argument, coupled with an elementary conditioning argument.

Proof of the Local lemma. We have,
P& N&EN---Néy)
=P&) P& &) P &N - Néxv)
Therefore, it suffices to show, if S C N and i &€ S,

P(&; | ﬂg) <

JjES
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We will show this by induction on |S|. Clearly the statement holds for |S| = 0. Let
Si1={jeS:ije E(D)} and Sy =S5\ S;. We have,

P&| (&0 &)

JESI 1€S>
_P@i N mjesl 5 | mlESQ 5)
]P( Nies, & | MNies, gl)
T Hz‘jEE(G)(l — ;)
Mies, & | Nies, &)

<

It suffices to show that,

P& N&) = [ -2

jES 1€S, ijEE(G)

Suppose S1 = {j1,J2,---,Jx}. We have,

(G

&)

=1 €Sy
k
-TI(1-PG. ﬂm N&)
=1 €S
k
> [ -=)> [] @-=.
i=1 ijeE(D)

10.2 Applications of the Lovasz Local Lemma

We now illustrate several applications of the symmetric version of the Local Lemma.

Example: Property B

Recall that a hypergraph has Property B, or is 2-colorable, if there is a coloring of its
vertices using two colors such that no edge is monochromatic. We call a hypergraph
k-uniform if each of its edge sets contains k elements. We call it d-reqular if each vertex
is involved in exactly d edges.

Question: Suppose H is a k-uniform, d-regular hypergraph. What conditions on H will
ensure that Property B is satisfied?
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Let each vertex toss a fair coin. If the toss reads heads, we color the vertex red. If
tails, we color it blue. For each edge A, consider the event E4 that A is monochrome.
Then 2-colorability of H is equivalent the case that none of the events E4 occur, that is,
the event A ey 4. Now,

. 2 1
P(A) = P(A is monochrome) = oF = o1
Now, F4 is dependent with Ep if AN B # . Since edge A contains k vertices, each of

which is contained in d — 1 other edges, we obtain an upper bound for the dependence
degree as |{B € H|BN A # @O}| < (d — 1)k. Thus, by the Local Lemma, if

e (d—1Dk+1] <1,

ok—1
then we can guarantee that
P(Aaenla) >0,

so in particular, we have the following:
Theorem: If H is k-reqular and k-uniform, then for k > 9, H has Property B.

Remark: It turns out that this result is true even for £ > 7. Another aspect of the proof
of this theorem is that if n (the number of edges) is large, then this probability goes to
zero, but it is nonetheless strictly greater than zero. Also, the Lovasz Local Lemma does
not extend if there are infinitely many events.

Example: A Substitute for the Pigeonhole Principle
We know from the Pigeonhole Principle that if S and 7" are finite sets, with |T'] > ||,
then we can find a function f : S — T such that f is injective (one-to-one).

But suppose we didn’t know the Pigeonhole Principal (!). Then we could try picking
a function f at random by selecting, uniformly and independently, the images of the
elements of S in T". Then,

' (1 1 )lsl
T

so by the first moment method, there exists an injection f if this is greater than |S|.

Alternatively, we could let N be the number of pairs of distinct members of S which
have the same image in T under a randomly chosen function f. f will be injective
provided that N = 0. Again using the first moment method,

E(If(S)]) =) _ P(t is selected by f) = |T| -

tel

b

1
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so we see that if [T > (lg‘), there exists an injection.

We can get a remarkable improvement, however, if we use the Local Lemma. On this
note, for any edge E = {z,y}, let Ag be the event that both z and y have the same
image in 1" under the chosen function f. Then,

1

P(Ag) Tk

Since Ag is independent of Ag: if ENE’ = ), the dependence degree of these events can
be at most 2(|S| — 2) (we can get a dependent edge by replacing either = or y with one
of the remaining |S| — 2 elements). Thus, by the Local Lemma, if % < 1, then with
nonzero probability, f is injective. Thus, using the Local Lemma, we see that we need
only have that |T'| > e(2|S| — 3) in order to endure the existence of an injection S — T

Example: Cycles in digraphs of specific sizes
Alon and Linial consider the following general question: Given a graph, when can we
guarantee the existence of ‘special’ types of cycles? In the case of directed graphs, ques-
tions as simple as those concerning even directed cycles are difficult. However, there is a
positive result for the case of a directed graph D. If deg(D) > 7 and D is regular, then
the answer is yes.

Theorem 79. Suppose D is a directed graph with maximum in degree A and minimum
outdegree §. Then, for k >0, if e(6A+1) (1 — %)5 < 1, then there exists a directed cycle
in D of length 0( mod k).

First, consider the following observations. Let ¢ be a k—coloring of V(D). Let the
colors be {0,1,...,k—1}. If from a vertex z, colored i, there exists an edge from z to a
vertex of color i + 1 ( mod k) for every x € V(D), then there exists a directed cycle in
D of length 0( mod k). Thus, Theorem 79 is true if there is a coloring such that at each
x, the aforementioned local condition is satisfied.

Proof. Let us randomly color V' using k-colors with each vertex colored independently
by a color in {0,1,...,k — 1}. We may assume that d*(v) = § for any v € V, because if
not, we can throw away certain edges without tweaking the problem, until this condition
is satisfied. Define the following event for each v € V/,

E, := There is no vertex u in N*(v) such that color(u) = color(v) +1 ( mod k).

Notice that P(E,) = (1 — %)5. We need to show that P(A,E,) > 0. Moreover, E, and
E, are dependent if u € NT(v). Also, E, and E, are dependent if they share a common
out-neighbor. Also, FE, is determined by the color choices of v and N*(v). Therefore,
d = 0A in the Lovdsz Local Lemma. Hence, if e(6A + 1) (1 — %)6 < 1 then there exists
an oriented cycle D of length 0( mod k). [ |
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10.3 A Theorem of Erdés and Lovasz on a problem of Straus

The following question was proposed by Straus': Given S C R such that |S| < oo, is
there a k-coloring of R such that EVERY translate of S is MULTICOLORED?

Definition 80 (MULTICOLORED). A set S C R is multicolored if all k colors appear
i the set.

Definition 81 (k-coloring of R). A k-coloring of R is a function ¢ : R — k.
Theorem 82 (Erdés-Lovasz). If |S| > (3 + ox(1))klog(k), then the answer is YES.

Remark. This bound is optimal upto a constant. There exists a set S of size klog(k),
for which it isn’t possible to obtain a k-coloring of R such that every translate of S is
multicolored.

Proof. First let us fix a finite set X corresponding to the translations (i.e. we will consider
the translates x + S for z € X). Fix a large finite set 2 such that z + 5 C Q, Vx € X.
Write |S| = m for simplicity. Color each w €  independently + randomly in [k]. Define
the events,

& = x + .S isn’t multicolored, Vx € X.

We have,
P(&) < k(1 —1/k)™

which follows as the probability of some color being missing from the set (z + 5) is
(1 —1/k)™. The dependence graph D looks like,

& <> &, if and only if (z +5) N (y+S5) # 0.

For fixed z, we want to compute,

#y & o &)

where y # x. If ds1, s9 € S such that x + s; = y + s9, then y = x 4+ s; — s5. Therefore,
maximum dependence degree < m(m — 1). So if

ek(1—1/k)"(m(m—1)+1) <1, (10.1)
holds, then from Chapter 78 it follows that with positive probability none of the events
occur i.e. P((V,ex &) > 0. Notice that Chapter 10.1 holds for m = (3 + o(1)).klog(k).
To see why, note that

cke ™km?2 <1 —
ek > ekm? =
m > klogk +2klogm +c¢ =
> klogk + 2klog(klogk) (substituing the above) =
> 3klogk + 2kloglogk + . ..

Leollaborated with both Erdés and Einstein!
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10.3.1

We have thus shown that for every finite set of translates X, the theorem holds. To
prove the theorem fully (i.e. for the case of the set of translates being infinite), we’ll
use Tychonoff’s theorem! The space of [k]-colorings of R is simply [k]®. Endow each
component [k] of y with the discrete topology. Since each component [k] is a finite set, it
is compact under discrete toplogy. Since arbitrary product of compact spaces is compact,
it follows that y = [k]® is compact under the product topology. Let

C. = {c € [k]* : x+ Sis multicolored wrt c}.

Note that C, is closed in y with respect to the product topology. We have shown that
Nyex Cz # 0, for every finite subset X of R. Since C, are closed subspaces of the compact
space x and satisy the finite intersection property, it follows that (1, .z C, # 0. ]

Remark: It turns out that the klogk term in the above expression is not only
sufficient, but also necessary.

Linear Arboricity Conjecture of Harary

Definition 83 (Arboricity of a graph). The arboricity of a graph G is the minimum
number of edge-disjoint forests needed to partition E(G).

As an example, arboricity of the 5-cycle is 2. Note that arboricity of a graph G is 1
if and only if it is a forest.

Definition 84 (Linear). Fach tree in the forest decomposition of G must be a path.

For a given graph G, we denote its linear arboricity by la(G). Every graph G can be
embedded in a d-regular subgraph by adding more vertices and edges. Let G be a graph
on n vertices such that A(G) < d. Let Fy, Fy, ..., F, be a (linear) forest decomposition
of G. Since each F; is a forest, e(F;) < (n —1). We have,

(n—1)r< zr:e(Fi) = zr:di/Q <dn/2

This gives (taking r = la(G)),
d/2 <dn/2(n—1) <la(Q).

We have the following conjecture by Harary[?] which essentially says that this bound
is tight!

Conjecture 85 (Harary,1980). la(G) < [(d +1)/2], where d = mazimum degree of the
graph G.

Following is a directed version of the conjecture, which if true, will imply the undi-
rected version.
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Conjecture 86 (Directed version). Suppose D is a directed d-regular digraph. For each
v, if NT(v) ={u : (v,u) € E(D)}, then d*(v) = |[NT(v)| = d and similarly, d(v) = d.
If D is directed and d-regular, then dla(D) =d + 1.

Theorem 87 (Alon). If G is directed and d-regular, then
dla(G) < d + O(d**1og'/*(d)) = d(1 + 04(1)).
In particular, the Linear arboricity conjecture holds asymptotically.

Given D directed and d-regular, create two copies V and V' of the vertex set of D
such that (u,v") € E(Tp) if and only if (u,v) € E(D), where u € V and ' € V'. By
construction, T is a d-regular, bipartite graph. From Hall’s theorem, it follows that

E(Tp) =MW My -- - M,

where M;’s are perfect matchings in Tp. Each perfect matching in the bipartite graph
Tp corresponds to a union of disjoint cycles in the graph D. Therefore,

ED)=FWFkdY---WF,
where each F; is a union of disjoint cycles in the graph D. So clearly, dla(D) < 2d.
Idea: If it possible to choose one edge from each cycle such that the resulting edges

form a matching, then we have dla(D) < d + 1. Look at the line graph, we want an
independent set there! More generally, suppose we have

V(@) =Ww--wV,

Can one pick a TRANSVERSAL INDEPENDENT set with respect to this partition?
Pick one vertex v; € V; such that the resulting set is independent!

Theorem 88 (Alon). Suppose
V(G)=Viy---wV,
If A(G) < d and |V;| > 2ed, then G admits an independent transversal for this partition.

Proof. Pick u € V; uniformally at random. For 1 <i < j <, &; = vv; € E(G). Notice,
P(&;) = e(Vi, V;)/4e*d* = 1/2e. This doesn’t work out! |

Remark. In the above attempt, things didn’t work out because we had too few bad events!
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10.3.2

Directed Linear Arboricity Conjecture

Suppose D is a d-regular directed graph (d*(v) = d~(v) = d, Yv). Then dla(D) < (d+1).
Recall that we defined dla(D) as the minimum number of colors needed to color E(D)
such that each color class induces a LINEAR FOREST i.e. each connected component is
a directed path. We have already seen that dla(D) > d. To avoid the issue faced before
in finding the transversal independent set, we will sparsify the bad events!

Theorem 89 (Alon,[?, ?]). Suppose V(G) = V1. - -V, with A(G) < d, and |V;| > [2ed].
Then the collection {V;} admits an independent transversal, i.e. Jv; € V; such that
I ={vy,...,v,.} is independent in G.

Proof. WLOG |V;| = [2ed] (throw vertices out!). Pick v; € V; independently + uniformly,
i.e. one v; is picked randomly from each V. For each edge e = {u, v}, let £, = both u,v
are picked, where e = (u,v). We have, 1+ dependence degree < 2.2ed.d = 4ed?. This
follows as |V;| = |V}| = 2ed, Vi # j and degree of each vertex is d. If w € V; and v € V;
(i #J),

P(¢.) < 1/4e*d* = e(1/4e*d*)(4ed®) = 1.

The local lemma applies. |

Remark. The best constant ¢ such that if |V;| > cd, then there is an independent transver-
sal is < 2 (best constant has to be > 1).

Given D, construct H bipartite as H = (V,V', E), where V! ~ V = V(D) and
(u,v") € E(H) if and only if (u,v) € E(D). Since D is d-regular, H is also d-regular. We
have,

B(H) = My M,

where each M; is a matching in H. We obtain this by applying Hall’s theorem repeatedly
and reducing the graph by removing perfect matchings at each step. Note that such a
reduction preserves the regularity of graph. Each matching M, induces a partition of
V(D) into vertex-disjoint cycles.

Observation 90. Consider Chapter 10.1, if one can pick one edge from each of these
cycles (in these cycle decompositions) such that the chosen edges form a matching, then
we can color each M; with color © and color the matching formed by the ‘chosen’ edges
with one extra color. Total (d + 1) colors will be used in this process.

Consider the line graph L of the given graph D. Let V(L) = E(D) = Wi\, V;, where
each V; is a set of edges forming a cycle in some matching M;. So in terms of the line
graph, we have seen that if each |V;| > 2ed, then {V;} admits an independent transversal.
Small cycles are a nuisance! If a small cycle pops up, then it might not be possible to
choose an independent transversal among the sets {V;}. Observe that the degree of each
vertex in the line graph L is < (4d — 2). This follows by looking at all the possible edges
incident on one of u or v, given the edge e = (u,v). Since 2e(4d — 2) < 8ed, it is an
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Figure 10.1: We work with the line graph of D to check if the chosen edges from each
cycle form a matching

easy consequence of Chapter 88 to see that if the girth of the graph D is > 8ed, then
dla(D) = (d + 1). The conjecture holds for graphs of large girth! How do we proceed
from here? Given D, if we can partition

E(D)=DyWDy-- WD,

for some integer p such that each D; has large girth and “proportionally small” degree,
then could apply this result on each D;. Let degree of each vertex in some D; be ~ d/p.
Then we have,

dla(D) < (d/p+1)p=d+p

If p = o(d), then this gives a bound dla(D) = d + o(D).

The main idea: Pick a p (shall see how to do this!) and if E(D) can be partitioned
into digraphs Dy, Dy, ..., D,_; such that,

o AY(D;), A™(D;) ~ dfp
e girth(D;) > (d/p)
e p=o(d),

then one can repeatedly use the result for digraphs of “large girth” to get dla(D) <
(d/p+1).p = d+o(d). Let p>> v/d. We will show that the minimum cycle length is > p
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by constructing D;’s and using p > girth(D;) > d/p. The inequality p > d/p holds as we
chose p >> Vd.

Remark. [t is possible to attain (1) by locally splitting at each vertex to obtain (d/p)
degree for each split and then using Chernoff type bound to obtain a global split.

Here is the strategy: First we pick a large prime p (of order V/d, as one back of the
envelope calculation). We shall color the edges of D using colors {0,1,...,p — 1} such
that Yo € V(D) and each i € {0,1,...,p — 1}, we have

Nt (v,4) := #{u : (v,u) € E(D) and (v, u) has color i}.
Similarly, we define,
N~ (v,1) := #{u : (u,v) € E(D) and (u, v) has colori}.
Suppose
N*(v,i) = N~ (v,i) = d/p £ O(\/d/plog(d))

has been achieved (Chernoff). Define the digraph D; = (V, E;) (for 1 <i < (p—1)), where
(u,v) € E; if and only if x(v) = x(u) +¢ mod (p). Chapter 10.2 gives a representation
of the D;’s and the coloring idea, exploiting the fact that p is a prime. Choosing p to be
prime is integral to ensuring that each split has ‘large enough’ girth.

Figure 10.2: We define each equitable split D; in such a way as to ensure girth(D;) > p

Recap: If girth(D) > 8ed, then dla(D) = d + 1. Given D, we want to partition D
into Dy, D1, ..., D, such that
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e girth(D;) is large (> 9e(d/p), where p is a parameter to be determined)
o AT(D;),A=(D;) = (1£0(1))d/p.

In particular, each D; can be partitioned into (1 & o(1))d/p linear forests. So, D can be
partitioned into (1 + o(1))d/p.p = (d + o(d)) linear forests.

Remark. Note that any d-regular digraph has dla(D) < 2d.

As before, construct T bipartite such that (u,v") € E(Tp) if and only if (u,v) €
E(D). By Hall’s theorem, the graph T)» can be partitioned into d matchings, where each
matching of Tp gives rise to a disjoint union of cycles among the edges of D. We want
to obtain D; as an (almost) equitable split of every vertex. To get this, let p be a prime
(sufficiently large?!) and let x : V(D) — {0,1,...,p — 1} be a uniformly random map,
i.e. x(v) =1 with probability 1/p for each ¢ and independently for v € V(D).

Claim 91. With + probability for each v, and each i € {0,1,...,p— 1}, if

N*(v,4) = #{u: (v,u) € E(D) and x(u)
and N~ (v,i) = #{u : (u,v) € E(D) and x(u)

i}
i},
then Nt (v,i), N~ (v,i) = (1 £ 0(1))d/p.

For 0 <i < (p—1), let D; be those edges (u,v) such that x(v) = x(u)+i. Then note
that for 1 < i < p—1, girth(D;) > p. So we want, p> > 9ed, which reduces to p > Q(v/d).
So, armed with these observations, presciently(!) pick a prime p with,

10Vd < p < 20V/d.

Assume the claim holds with error term ¢t = 10d'/*(log(d))'/?. This gets us that for
dla(D;) < 1+d/p + 10d"*log(d)"/? (10.2)

Summing Chapter 10.2 over 1 <i <p—1,

n

dla( U D;) < 20Vd + d + O(d**log(d)*/?) (p < 20V/d)

=1

Further, we have
dla(Dy) < 2(d/p + O(d"*log(d)"/?*)) = O(Vd).
This gives that, dla(D) < d + O(d**log(d)'/?). Note that N*(v,i) ~ Bin(d, 1/p) i.e.

it is a sum of independent Bernoulli indicator variables. Fix v and i. We shall use the
following version of the Chernoff bound,
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Theorem 92 (Chernoff). Let X ~ Bin(n,p). For any 0 <t < np,

P(|X —np| > t) < 270/
= P(IN*(v,i) — d/p| > t) < O(e /D)

So we may take t = 10d'/*(log(d))'/? as the error term.

Remark. Note that Chernoff works only for a single vertex equitable split. If we apply
Chernoff for each vertex and then union over all, we bring n into the picture (not good!).
Since we only want +wve probability, local lemma serves the purpose.

So it suffices to prove Chapter 91. We will do this by the local lemma!
Proof of Chapter 91. Let A*(v,i) and B~ (v,4) be the BAD events where,
A (v,2) : [N*(0,3) — d/pl > 104/ (log(d))""?
B~ (v,7) : [N~ (v,7) = d/p| > 10d"(log(d))"?

By Chernoff, P(A"(v,4)), P(B~(v,j)) < O(1/d"). To ensure indpendence of the bad
events corresponding to vertices u and v, we want dist(u,v) > 3. It follows that the
maximum dependence degree is < O(d*/?) = O(d?p). Local lemma applies with room to
spare! [ |

Alon and others[?] brought down the error term in the conjecture to O(d*?). Following
is the best known result[?],

Theorem 93 (Ferber, Fox, Jain). We can get a sharper bound dla(D) < d + O(d*/3~%),
for some a > 0.

Remark: Alon’s original proof of the asymptotic directed linear arboricity conjecture
used the general version of the local lemma, where he proved that if D has ‘large girth,’
then the conjecture is true. In general, he asked: given a regular graph G of degree d,
can we find H C G of large relative girth? We want to prove something like this:

Conjecture 94. There exists an H C G such that for any v € V,
1. f(d) = g(d) < du(v) < f(d) + g(d)
2. Girth(H) > h(d).

) . . . . e f(d)
Proof. To show this, pick an edge of G to be in H independently with probability ~.
Therefore, Chernoff gives

Mwﬂw—fWM>gMD§2mp{
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10.4

An optimal choice of g(d) is approximately /C f(d)log g(d) so that

1
P(|dx (v) — f(d)] > /Cf(d)log g(d)) < :
= VCr@ o9
Suppose C'is a cycle in G of size k < n(d). Then,
k
P(C' is retained in H) = (@)
for 3 < k < n(d). Let A, := {|dug(v) — f(d)] > C)}, so that P(4,) < ﬁ and let

k
B¢ :={C is retained in H} so that P(B,) = (@) . Moreover

A, < A, ifand onlyif v+ w
A, < B, ifandonlyif veC
B. <> By ifand only if E(c)nE(d) #0

We now need to find the number of cycles of size k containing v.We use induction to see
that the number of k cycles containing v is less than d*~!. Similarly, for any edge ¢, the
number of cycles of length k containing é is less than d*~2. Using the general form of the
Lovasz Local Lemma tells us that

! h(d)
P(A,) < o <all - x) ’g(l — Ur) (10.3)

where 1 — x corresponds to adjacent vertices and 1 — ¥, corresponds to adjacent cycles.
We also obtain

Pie>k(Be) < (@) <ye(l—a) [T —w)™ (10.4)

>3

If there exists « and yx such that (10.3) and (10.4) hold then the Lovasz Local Lemma
works. A nice start is to try y, = #.
Alon actually proved the corresponding theorem with

h(d) = log d

o d) = log'® d d) = log®d.
2dToslog d f(d) =log g(d) = log

Another ‘twist’ to the Lovasz Local Lemma

Erdos and Spencer proved the following result. Suppose A is an n x n matrix filled with
integers such that each integer occurs at most k = ”4—;1 times. Then A admits a latin
transversal.
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Definition 95 (Latin Transversal). Let A = [a;;] be an n X n matriz whose entries
are integers. A latin transversal is a permutation m € S, such that the cells {a;u)|i =
1,...,n} are all distinct integers.

Furthermore, let BAD = {(c1, ¢2)|e1, ¢o are cells of A and are the same integer}. This
is simply the set of all pairs of coordinates which take the same value. Also, let D
be a directed graph with maximum degree d. Let V(D) = BAD and let there be an
edge between (ci1,cz), and (¢, c) if both of these pairs are in V(D). Next say that
(c1,¢9) <> (¢, cy) if and only if ({i1,i2} N{d}, 5} U({j1, j2} N{Jj1, 74}) # 0. This condition
says that two pairs of cells are adjacent if there is a common column or row. Thus, the
dependence of degree of (c1,c2) < 4nk. Notice that this is not tight, and could be
improved upon, but is sufficient for our purposes.

Proof. Pick am € S,, at random. We want P(Arcp ADZT) > 0, where A7 is the event that
the chosen permutation picks cells in T". Observe that the Lovéasz Local Lemma actually
proves that if we have events {Ay, ..., A,} and a directed graph D with maximum degree
d, such that P(A4; Varert Ajes, isj A;) < p. Then if pe(d+1) < 1 we have P(A, 4;) > 0.

Also, without loss of generality we can take ¢; = (1,1) and ¢ = (2,2) and consider
P(A(y e)| Ares Ar) < p where S C ([3,n] x [3,n]) N BAD. We need e-1-4k < 1. In
other words k < "4—;1. Hence, it is enough the show P(A, ,) Varert Areg Ar) < ﬁ
where S is fixed.

Call a permutation 7 eligible if it picks no bad pairs from S. Further, let
Sio = {m|m is eligible, w(1) = 1,7(2) = 2}.

Therefore

. k!
P(A Ar ) =
( (61,02)’ /\ T) # eligible sets

TeS

where S is the set of S;; = {7|r is eligible, 7(1) = ¢, 7(2) = j}. We know |Siz|n(n—1)| <
>izj |5ij| = # eligible sets. We also see that |S1o| < [Sj;| for all i # j. This is one of those
(rare!) cases where the Lovédsz Local Lemma works nicely in conditional probability. W

2-point concentration of x(G(n,p)) for p = n~1/2-0

The chromatic number of the random graph G(n, p) has been the topic of serious interest
for quite a well, and continues to be so. There have been two kids of results in this general
direction - either determine the threshold function for the concentration of G(n,p) or
describe a ‘small’ interval where x(G(n,p)) concentrates. One of the most interesting
results of the latter type is for sparse graphs, and here, it turns out that y(G(n,p)
concentrates on an interval of constant size. The sharpest result in this direction is the
following theorem of Alon and Krivelevich, which shows that with high probability, the
chromatic number concentrates on two consecutive integers for p = n="/2=9 for any § > 0.
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We present a special case of this result when § < 1/6. In a sense this is the densest among
the graphs of this sparse regime, but the essential idea here, surprisingly, goes via the
local lemma.

Theorem 96 (Alon-Krivelevich, 1997). Suppose § > 0 and € > 0. Then for n > 0, there
exists t = t(0,e,n) such that

P (G(n,p)) e {t,t+1}] > 1 ¢

for p=n=1279,

The proof of the theorem considers three different cases, viz., 0 < 6 < 1/6, 1/6 <
d < 3/8 and 3/8 < 6 < 1. We shall only see a proof of the first case, which is the most
interesting among the three. This is because for lower values of 9, the graph is ‘relatively’
more dense, making the result more impressive.

Before getting to the proof, we take a short detour and recap the ideas from the
Shamir-Spencer theorem ([?]) seen earlier.

Theorem 97 (Shamir-Spencer, 1987). Given € > 0, there exists u = u(e,p) such that
the following holds: Let o > 5/6 and consider G = G(n,p) with p=n~2, then

Pix(G) € {u,u+ 1L,u+2,u+3}>1—c¢.
The proof of the above was done in two steps:

1. Find the threshold ¢ such that x(G) < t with probability at least £. Then, using the
Azuma-Hoeffding inequality, show that there is a subset X C V that is t-colorable
and R =V \ X has size at most cy/n.

2. The remainder of the proof used the fact that for “small enough” values of p, the
probability that for a set of O(y/n) vertices, some subgraph of size i induces more
than 3i/2 edges is almost zero.

The first step of the proof follows the framework of Shamir-Spencer, but to prove this
stronger result, we make use of the Local Lemma.

Lemma 98. If G = G(n,p) withp = n~"*7% and if r = [1], then for anyc >0, i < cy/n
vertices induce fewer than ri edges a.a.s.
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Proof. Let Eman be the event that a collection of ¢ < ¢y/n vertices induces less than 74
edges. We want this to be a high probability event. So,

P(Eoma) ng (Z‘) (Sfj)p
<3 owtrn(-5-o)]

Cyn ;
< Z O(l)rn1+%(r71)7(%+6)r]

N 1
-3 0@y n| = o(1).

We now introduce some definitions and results about list-colorings.

Definition 99. A graph G = (V, E) is said to be k-choosable if for every collection of
lists {€(v) : |[€(v)| = k} of possible colors for each vertex v € V', there is a proper coloring
of the vertices of the graph G such that each vertex receives a color from the list associated
with .

A coloring as in the above definition is called a list coloring and we denote the list
Chromatic number of the graph by x¢(G). One can directly observe that for a graph G
with maximum degree A, x,(G) < A + 1. In fact, we can make a stronger statement.

Definition 100. The degeneracy of a graph G is defined as:

degeneracy(G) := max d(H)

HginducedG
and G is said to be d-degenerate if degeneracy(G) < d.

An equivalent definition of the above may be stated thus: A graph G is said to be
d-degenerate if every subgraph contains a vertex of degree at most d’. The following is a
familiar result:

Proposition 101. If a graph is d-degenerate, then it is (d + 1)-choosable.
Lemma 102. Any subgraph G’ of G induced by i < c\/n vertices is 2r-choosable a.a.s.

Proof. From 98, we know that for any ¢ > 0 and with n >> 0, the induced graph on any
i < cy/n vertices of G has fewer than ri edges whp, and so, each subgraph of the induced
graph G’ on any i vertices almost surely is such that each subgraph of G’ has a vertex of
degree at most 2r — 1, and thus G’ is 2r-choosable. |
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A sketch of the main idea is the following: From the initial stages of the Shamir-
Spencer analysis, find ¢ = #(d,¢,n) such that all but ¢y/n vertices are t-colorable with
probability at least 1 — ¢, and denote the uncolored set of size at most ¢/n by R. Now,
we want to find a set U D R, with |U| < 2¢y/n such that each v € V'\ U has fewer than
4r neighbours in U. If each subset of U has a large independent neighbourhood in V'\ U,
then we can color the graph efficiently.

Before getting into the above, we want to get an idea of how large ¢ should be.

Proposition 103. With high probability(asymptotically almost surely), x(G(n,p)) >
np
2logn

Proof. To show that the chromatic number is ‘large’; it suffices to show that there are no
‘large’ independent sets as if o denotes the size of the largest independent set in GG, then

X(G) >

13

So, we want to show that the probability that «(G) > ¢ is small, where ¢ = (2logn)/p.

l

<[() ]
=o0

(1) for £ = (2logn)/p.

Pla(@) > < )1 -

Thus, a.a.s x(G(n,p)) > 572 |

— 2logn’

Now, we get back to the main idea. From the first step of the Shamir-Spencer proof,
find the set R C V of size at most cy/n such that the induced graph on V'\ R is ¢t-colorable.
Now, we claim that we can find a set U D R of size at most 2¢y/n such that each vertex
in V' \ U has at most 4r neighbours in U. This set can be constructed as follows: Start
from the set U = R. If there is a vertex v € V' \ R with more than 47 neighbours in U,
then update U = U U {v}. This process stops at with |U| < 2¢4/n, as otherwise, we have
a vertex set U of size i = 2¢y/n which contains at least (¢y/n)(4r) > ir induced edges,
contradicting Lemma 98.

Now, as U has size O(y/n) and induces very few edges, by Lemma 102, U is 2r-
choosable with high probability.

Let U = {uy,...,ux} and N; = N(u;) N V(V \ U). Fix a t-coloring of V' \ U, call
it f. By the previous observations, G[U] is 2r-choosable. Therefore if we can make 2r
colors “available” at each w;, we can extend the coloring on V'\ U to U. Let us adjust all
constants and state a reformulation.
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A reformulation
Note that, WHP, G(n, p) for p = n~279 satisfies:
1. Any i < ¢y/n vertices induce < 77 edges.

2. Any vertex has degree < 3np. (This is because, probability of some vertex having
degree > 2np is <n - (32;;) ¥ = o(1).)

3. v(G) >t > 2

2logn "

4. There exists a U C V, with |U| < ¢y/n such that every vertex in V' \ U has < 4r
neighbours in U, and G[V \ U] is t-colorable.

5. There are < f(n,p) paths of length 3 between any two distinct vertices of G.
Here f(n,p) is a function that will be chosen later.

Proposition 104. For n sufficiently large, any graph G with n wvertices satisfying the
above conditions is (t + 1)-colorable.

The idea is, for any u; € U, pick a set I; from [t] randomly, made of 2r randomly cho-
sen elements (possibly with repetition). Let J; = {& € N; | f(z) € I}, and let I be the
union of all J;. We want to show that I is an independent set with positive probability.
Indeed, then we will be done, as we can color I with a new (¢ + 1)** color, and use the I;
to color the vertices of U using list coloring.

Rephrase in terms of an auxiliary graph. Let H be a graph with V(H) = LY, W,
where each W; is a copy of the corresponding N;. For any edge in G|V \ U], say between
x,y, put an edge between each copy of x and each copy of y in H. The t-coloring on
G[V \ U] extends to a coloring on H: Indeed, color all copies with the same color as the
original. Call this coloring f as well. It is enough to prove that I forms an independent
set in H.

We now define the bad events for pairs. Suppose e = wjwy where w; € W, and
wy € W; (i = j is possible). Then A, is the event that f(w) € I; and f(ws) € I;.

2r (4rlogn)?
— < (=) =
P(A) < (7 < S = o

logn

).

n2p2

What is the dependence degree? Note that A. only depends on edges with one vertex in
W; UW;. Also,
(Wil = |N;| < deg(u;) < 3np = o(v/n),

so by condition (1) in the reformulation, number of edges in W; is < 3rnp = O(np).
What about edges between W; and W, for | # 7 Note that any vertex in V' \ U has
at most 4r copies in H; in fact, number of copies of x in H is equal to the number of
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neighbours of = in U, which is at most 47 by condition (4). Hence every edge has at most
16r% copies in H. Further, any edge xy in the original graph where x € N; and y € N,
corresponds to a path u;xyu; of length 3 between u; and w;, of which there are at most
f(n,p). Adjusting for the blow-up factor, number of edges between W; and W, is at most
1672 f(n,p) = O(f(n,p)). Since [ can take k < cy/n = O(y/n) different values, we finally
get the dependence degree as d = O(np) + O(v/nf(n,p)).

To use Lovasz Local Lemma, it is sufficient to prove that P(A.) - d = o(1), equivalent
2
to O(%) + O(%ﬂg”) = 0(1). Since the first term is obviously o(1), it is enough to
n?2

focus on the second term. We will prove:

Lemma 105. For 0 < § < % and p = n~2%, WHP, G(n,p) satisfies the property that
there are O(n?p3logn) paths of length 3 between any two distinct vertices.

This will finish the problem because

log? !
w = O(n2plogn) = o(1).
n2p?

So now we prove the lemma.

Proof. Let ¢ = (%W First we show that, WHP, any two vertices are connected by < ¢
paths of length 2. Indeed, fixing two vertices u, v, we have to choose ¢y middle vertices,
SO

@)%H L
2 n3t4

:o(l

3

n
P(more than ¢y paths between u,v) < ( )pQCO <(
Co

So the probability of there existing a pair of vertices containing with more than cy paths
of length two between them is O(%) = o(1).

Similarly, fixing u, v, the probability that there are at least dy internally-disjoint paths
between u, v is at most

2 2do
n en e 1
AR 3do  (Z7)2do | ddo . 3do . n(§—36)d0'
(d0> R (do) o dg°

Explanation of the first term: We choose dy second vertices and dg third vertices in the
path between u and v, and we can match the second vertices to the third vertices in dp!
ways. In the above expression, if we put dy = n?p®logn = n2 =3 logn, we get the above
probability is < (loin)do. Since § < %, the exponent of n in dy is positive, so the above
probability is exponentially small; in particular it is o(-5). Therefore by union bound,
WHP, there are less than dj internally-disjoint paths of length 3 between any two vertices.
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10.6

Therefore it is enough to find a constant a such that, WHP, for any vertices u, v, if
there at least ady paths of length 3 between u, v, then there are at least dy internally-
disjoint paths between wu,v. Indeed, WHP any two distinct vertices are joined by < ¢
paths of length 2. Hence any vertex x # wu,v lies in < 2¢y paths of length 3 joining
u,v. Construct an auxiliary graph H, with vertices being paths of length 3 between
u,v, and two paths are adjacent only if they share an internal vertex. Then by the
previous observation, the degree of each path in Hy is at most 2 - 2¢y = 4c¢y (since there
are two internal vertices). This implies that Hy is (4¢o + 1)-colorable, and hence has an

|V (Ho)|

independent set of size at least Teoti Hence taking the constant o = 4¢y+ 1 works, and

we are done. [ ]

Graph connectivity codes

We now look at one instance where the general version of the Local lemma is used.

The notion of a graph-code is the following. Suppose we have a family G of graphs
all of them defined on the same vertex set - say [n], for simplicity. It is natural to think
of these graphs as 0-1 incidence vectors of length (g) A very natural coding theoretic
perspective then considers the sums of these graph-vectors: the ‘sum’ of graphs G; and
G5, denoted G @ G4 , with edge sets Ey, Ey, respectively, is the graph with edge set
E1AFE,, the symmetric difference of the sets F; and Fs.

This creates a natural extremal problem. Define the graph-code F = Fg to be a col-
lection of graphs on [n] such that for G; # G5 in F the graph G; & G5 € G. The natural
extremal problem considers the maximum size of a graph-code for ‘natural’ families G. In
fact this formulation covers many extremal problems about how large a family of graphs
on the same vertex set could be, subject to certain properties being preserved.

We restrict ourselves here to notion called connectivity-codes. For a connected graph
G on [n], let G be the collection of all connected subgraphs of GG, and we shall denote by
Feonn = Fg the maximum sized graph-code for this collection G. One easy observation
is the following: If G has minimum degree d, then | F .| < 2. Indeed, otherwise, there
must exist distinct graphs GG, G5 such that the set of edges of G; incident at a vertex v of
minimum degree are identical, so in G'; & G5 the vertex v is isolated. The same argument
actually shows that |Feoonn| < 29 where A(G) denotes the edge-connectivity of G. The
main result that we shall present in this section is a result of Alon that describes a fairly
large family of d-regular graphs that attain this bound.

In order to show this bound, suppose G, is d-regular and has some ‘nice’ properties
(our ideas towards a proof - or rather, Alon’s ideas - will reveal what they must be). One
way to construct a family F of 2¢ graphs on [n], all of them being subgraphs of G' is to
turn towards a standard coding theoretic trick and try to construct a ‘linear’ graph-code.
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One natural way to do that is to associate a distinct graph G, for each u € F¢ so that
for any vectors u # v the graph G, @ Gy is a connected subgraph of G. Our idea is to
describe these graphs in such a way that Gy, ® Gy = Gyyv, so that the graph-code is
indeed linear.

A very natural way to attempt this is to first assign to each edge e € F = E(G), a
vector v(e) € F4. If the edge set F, of Gy, is described in ‘some linear fashion’ (depending
on the assignments of the vectors v(e) and the vector u then this description makes the
code linear. A natural such description for G is given by

E,:={ec E:(v(e),u) =1}
where (-) is the usual bilinear form on Fg.

Why is this the natural choice? Or rather, why not set (v(e), u) = 0 as the condition
to determine &,7
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11

The Entropy Method

Let F' be a probability distribution over a finite set, i.e.

FN ayp Qg -+ QAp
P1 P2 - Pn

Then we define the entropy of F' to be:

H(F) = Zp os, (1)

Di

Note that the entropy of F' depends only on the probability values, and not on the set
over which it is defined.
We first state an easy proposition about entropy:

Lemma 106. H(F) < log,(n), and equality is achieved for the uniform distribution.

Proof. Write ¢(x) := —logy(x). Then ¢ is convex. Consequently, by Jensen’s inequality,
we have E[p(X)] < ¢(E[X]). Now, let X be a random variable which takes the value
— log,(p;) with probability p;. Then

Elp(X)] =Y pi- (—logy(p:)) < —log, (Zzﬁ)
i=1 i=1
By the RMS-AM inequality (using the fact that > p; = 1),
= L
: n
i=1
Finally, since x — — log,(z) is decreasing, we get that:
> pi- (—logy(pi)) = H(F) < —logy(1/n) = log,(n)
i=1

as desired. Finally, equality is achieved only when all the p;’s are equal, i.e. the distribu-
tion is uniform. [ ]
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We now make a few more definitions:

Definition 107. Let X, Y be jointly distributed random variables. Let the distribution of
X be Fx, Y be Fy, and the joint distribution be Fxy. Then we define:

H(X) := H(Fx)
H(X,Y):= H(Fxy)
H(X|Y =0b):=H(F(X|Y =b))
H(X|Y) = By[H(X]Y = )
We also state a few facts about the entropy function:

1. HX,Y) = H(X)+ H(Y|X). The ‘intuitive’ explanation is that the information
content of the joint random variable (X,Y) is equal to the information content of
the random variable X, added to the information content of the variable Y, but
conditioned on the fact that we already know what X is, i.e. X has been ‘exposed’.

2. From the first point, we have H(X,Y) > H(X).
3. H(X|Y) > H(X|Y,Z): The ‘intuitive’ explanation for this is that there is more
information remaining to be known about X given that we just know Y, as opposed

to if we know both Y and Z.

We will now see some applications of the entropy method.

11.1 Shearer's Lemma

Lemma 108 (Shearer’s Lemma). Let S C N3 be a finite set, i.e. |S| < co. Define the
projection of S onto the XY plane as:

Sxy = {(f,y) : (l’,y,Z) S S}

Similarly, we define Syz,Szx as:
Syz :={(y,2) : (v,y,2) € S}

Sxz :={(x,2): (x,y,2) € S}
Then

1S| < V/[Sxy| - |9vz| - [Sxz]
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Proof. Note that Shearer’s lemma is equivalent to proving that:
2log, [S| < logy |Sxy |+ log, [Syz| + log, |[Sxz|

Pick (z,y, z) € S uniformly at random. Then H(X,Y,Z) = log, |S|. On the other hand,
we also have:

H(X,Y,Z) =H(X)+H(Y|X)+H(Z|X,Y)
H(X,Y) =H(X)+H(Y|X)

H(Y,Z) = H(Y) +H(Z|Y)
H(X,Z) =H(X) +H(Z|X)

Thus,
HX,)Y)+HY,Z)+ HX,Z)-2H(X,Y,Z)

=(HY)-HY|X))+ (H(Z]Y) - H(Z|X,Y)) + (H(Z]X) - H(Z|X,Y)) 2 0
where all 3 terms are non-negative due to the fact that conditioning decreases entropy. W

Similar techniques allow us to prove a more general version of Shearer’s lemma. Before
that, we set up some notation:
Suppose X = (Xi,...,X,) € S; X --- x S,. For any I C [n], define:

X1 = (Xy)ier

Lemma 109 (Generalized Shearer’s Lemma). Suppose F C 2" is a set system satisfying
that each i € [n] is in > k members of F. Then

EH(Xy,..., X,) <Y H(X))

IeF

Proof. We will induct on k.
Thus, let k = 1. Write F = {F1,..., F,}. Now, if Fy, ..., F),, are pairwise disjoint, then
the above lemma is immediate: Indeed,

H(X,,.... X,) = H(Xp)+H (X, | X)) < H(X 4 H(Xppi,) < - < H(Xp ) +H(X5,)

If the sets aren’t pairwise disjoint, then define:
i—1
Fl =P, F=F\|JF,i>2
j=1

Since F{ C Fj, we have H(Xp,) > H(Xp), and thus Y7 H(Xp) > >0 H(Xp) >
H(Xy,...,X,), where the last inequality follows since F7y, ..., F! do indeed partition [n].
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For the induction step, we claim that it suffices to show H(Xg) + H(Xr) > H(Xgur) +
H(Xgnp) for any E, F € F. Indeed, if this holds, then we have

ZH(XI) > H(Xpnr) + HX(Rum)nr) + - + HX (po-0r,_onr,.) + H (Xon p)
TeF

Since every element occurs in the F;’s at least k£ > 1 times, U, F; = [n]. Consequently,
it suffices to show that

H<XF10F2) + H(X(F1UF2)0F3) +oee H<X(F1U-"Ume1)ﬂFm) > (k - 1>H(X17 B 7Xn)
But note that if we had i € F}, ..., F;, (where t; <ty < --- <), then we have
i€ (US'F) N Fy, ., (U E) N R,

In other words, if ¢ occurred in £ sets in F, then it occurs in ¢ — 1 sets in {F; N Fy, (F; U
F)NFs...,(FiU---UF,_1)NF,}. Consequently, since i occurred in > k sets in F, i
occurs in > k —1sets in {FiNFy, (FLUF)NFs, ..., (FFU---UF,_1)NF,}, and then
we're done by the induction hypothesis.

Finally, to finish the proof, we prove the following:

Claim 110. Suppose X = (Xy,---,X,) € S1 x---x Sy, and F :=2". Then ,VE,F €
.F, we have: H(XE> —|—H<XF> > H(XEQF) +H(XEUp>

Proof. We note the following inequatity due to conditioning:
H(Xpe|Xpvr, Xpar) < H(Xp\p| Xenr) (11.1)

Now, we have:

H(Xpur) = H(Xp\r; Xgar, Xr\g)
= H(Xpnr) + H(Xp\r|Xenr) + H(X 6| Xe\r, XEAF)
< H(Xgnr) + H(Xp\r| Xenr) + H(Xp\ | Xear), (from eq (1))
= H(Xgnr) + H(Xp\r, Xenr) — H(Xgar) + HXp\ g, Xear) — H(XEear)
= H(Xp) + H(Xr) — H(XEr)

(11.2)
whew the last two equalities follow since H(X,Y) = H(X) + H(Y|X), and H(Xaux) :=
H(Xa,Xp),vY
AN B = (. Thus, proof of our claim is complete. |

The above lemma can be rephrased slightly differently, as stated in the corollary
below. It immediately follows from generalized Shearer’s lemma.
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11.2

Corollary 111. Suppose F is a set of vectors taking values in Sy X ---x .S,. Also suppose
F C 2" such that each i € [n] is in > k members of F. If

Fr={fl;: f € F}

then

|| < (H fF|>1/k

FeF

Union-Closed Conjecture of Frankl

Let F C 2" be a set family. We say that F is union closed if for A, B € F, we have
AUB e F.

Frankl [?] conjectured in 1979 that if F was a union-closed family, then there was some
i € Uper I such that i belonged to > |F|/2 members of F.

This conjecture remained open for a very long time until Gilmer [?] resolved it upto
constant factors. More precisely, he proved the existence of i € |Jp.r F' such that i ap-
peared in > |F|/100 elements of F. His argument was immediately refined by a variety
of authors. We follow the presentation of Chase and Lovett [?] in our scribe. Chase
and Lovett tightened Gilmer’s arguments and improved the 0.01 factor to 0.38, which is
captured in the following theorem (whose proof we’ll now see).

Theorem 112 (Gilmer, Chase, Lovett). Let F be a union-closed family of subsets of [n],
ie F C 2" such that VA,B € F,AU B € F. Then, there is some element of [n] that
occurs in atleast 0.38|F| members of F.

Before we present their argument, we prove an analytic lemma.

Lemma 113. Define H(x) := —(zlogy x + (1 — ) logy(1 — x)) for x € [0,1]. Also define
the function f :[0,1]* — [0,1], where:

flx,y) = {Wgﬂm (z,y) € (0,1)?

1, otherwise

Then f is minimized at (¢, ), where o == (v/5 —1)/2. Furthermore, f(p, ) = 1/(2¢).

Proof Sketch of Lemma. By routine calculations, we can verify that, f is continuous in
0,1]%, and f(z,y) < 1,V(z,y) € (0,1)2. Thus, minimum is attained in (0,1)?. We define
g :(0,1) = RED as g(x) = @, then f(x,y) = %. We first show that, f is
minimized on a diagonal point.
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Assume that, f is minimized at some (z*,y*), and a = f(z*,y*). Define G(z,y) =
g(z,y) — alg(z) + g(y)). Then, G(z,y) > 0,V¥(x,y) € (0,1), and G(z*,y*) = 0. Thus
(x*,y*) is a stationary point of G, thus VG(z*,y*) = 0. Thus, we have:

aG * * _ / % Xk * ! * _aG
0—%(%3/)—9(9334)-1/ ag'(z*) = 9y

(2", y") = g (z"y").2" — ag'(y")

Defining F'(x) = z¢'(x), we see that the above condition gives F(z*) = F(y*). A simple
calculation gives F'(x) = w. Thus, F is strictly increasing and thus, z* = y*. Hence,
the minima lies on the diagonal. Restricting to points of the form (x,z), we get that,

f(z,x) = 221;;2) Using numerical simulations, it can be verified that, the minima occurs

at (0, ¢), and f(p, ) = 5. Thus, f(z,y) > 55, ¥(z,y) € [0,1]*. u

Proof of Union-Closed Conjecture. Sample A, B uniformly, and independently, from F.
Then H(A) = log, |F|. Now, since F is union closed, AU B € F. Furthermore, H(A U
B) < H(A). Since F is union closed, AU B is some distribution over F, whose enrtropy
is less than equal to entropy of uniform distribution ovewr F, which is the entropy H(A),
(since A is sampled uniformly at random from F).

Now from chain rule,

H(AUB)=H((AUB),...,(AUB),) = zn:H((AuBM(AUB)Q)

=1

where (AU B); is the indicator random variable which denotes if i € AU B. Also, from
data processing inequality,

Zn: H((AUB)i[(AUB)«) = Xn: H((AUB);|A<;, B<;)

i=1 =1

since revealing A_;, B-; reveals more information than merely revealing (AU B),;. Now,
fix some ¢, and for any z,y € {0,1}*"!, define:

p(x) :==Pr(A; = 0]Ao; = x),q(y) == Pr(B; = 0|B.; = y)
Then observe that
H((AUB);|Aci = x,B<; = y) = H(p(z)q(y))

Indeed, the above equation follows from the fact that (AU B); is a {0, 1} valued Bernoulli
random variable, and A, B are independent. From the Lemma 6, it follows that:

1

H(p(x)q(y)) > %(p(x)H (q(y)) +q(y)H (p(x)))

Taking expectations,

L., @) H(a) + o) Hp())]

H((AUB);|A.;,B<;) > 20
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11.3

Since x,y are independent, the RHS expression equals

Eq. [p()] - By [H(q(y))] + Ey [g(y)] - Ex [H (p(2))]

Now, suppose p = min;ejn Pracr(A; = 0), then our goal is to lower bound 1 — p. Then,
the above expressions imply that,

H((AU B);|A<i, B<i) > %(EBQ[H(CI(BQ)] +Ea_,[H(p(A<i))])

The avove expression follows from the definition that ¢(y) = Pr(B; = 0|B-; = y), and
similarly for p(z). Now, we note that, Eg_,[H(q(B<;)] = H(B;|B<;). Now, we once again
have from theb definition of conditiopnal entropy that,

H(Bi|B<i) = By[H(Bi|B<; = y)] = Y _Pr(Boi = y)H(Bi|B<; = y) = Ep_[H(q(B<))]

So, from the above expressions, we have that,

S H(AVB) A< Bo) 2 %@ H(AIA) + H(B|B<) = - (H(A) + H(B)

. Thus, we have,
log, || > H(AUB) > £ log, | 7|
2

This implies that,

S

3
2

p<e=3Jicn|st Pr(4;=0)<p=3Fien|st Pr(4,=1) > 1-p = ~ 0.38
Thus, 3i € [n], such that ¢ occurs in atleast 0.38 fraction of the sets in the family F.
This completes Chase and Lovett’s strengthened version of Gilmer’s proof for the union
closed conjecture. [

A Theorem of Brégman on permanents

Theorem 114. Suppose, M,y is a {0,1} valued matriz, and let the sum of ith row of

the matrix be d;. Then, per(M) < H?Zl(di!)d%, where per(M) denotes the permanant of
the matriz M.

Proof. (Radhakrishnan) We discuss the proof of Brégman’s theorem by Jaikumar Rad-
hakrishnan [?] which uses the entropic method.

Note that, the binary matrix M is equivalent to the bipartite graph G(U,V, E), where
\U| = |V| = n, and (w;,v;) € E <= M;; = 1,Vu;, € U,v; € V. Thus, per(M) is the
number of perfect matchings in G. Let M be the set of perfect matchings in G. We
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sample a 0 € M uniformly at random.

The entropy of the sampled perfect matching is given by H(o) = H(oq, -+ ,0,) =
log, |[M]| (since ¢ has uniform distribution over M). Thus, it’s equivalent to show that,

H(o) < 37 g; log(di!)

Decomposing H as sum of conditional entropies gives

H(o1,--+,0,) = H(01) +ZH(0i|01; L 0i1).

1=2

Suppose T € S, is a permutation of [n]. We process the u;’s according to the order of 7,

and we shall “reveal” the matching mates of uy, ug, - - - , u,, in the order o(7(1)), o (7(2)), - ,o(r(n))

to compute the entropy H(oq,---,0,) in terms of the successive conditional entropies
and then average on 7. Since a good choice of 7 is not clear, let us pick 7 € §,, uniformly
at random!

Thus, the entropy calculation becomes
H(o) = H(o(r(1)) + Y H(o(r(k))lo(r(1)),--- ,o(r(k = 1))).

For the kth summand, if 7(k) = i, then each summand is of the form

H(o(r(k))lo(r(1)),---,o(r(k = 1)) = H(o(@)]o(r(1)),--- o(r(ki — 1))).

Now for any given random variables X,Y we have: H(Y|X) = > H(Y,)Pr(X = a),
where Y, is the conditional distribution of Y given X = a. Moreover, if |[supp(Y,)| < j,
then H(Y,) < log, j, since entropy is maximum for uniform distribution (here, supp(X)
denotes support of the distribution of X). This suggests that we work with the sets

= {a € supp(X) : [supp(Ya)| = j}. So, H(Y|X) <}, Pr(z € Ej)log,j. Applying
th1s to our setup, we consider Y = o(i) and X = (o(7 (1)), - ,0(r(k; — 1))). Define

Ri(o,7) := Nbr(u) \ {o(7(1)),- - ,o(7(ki = 1))}. Then,

d;
H(o(i)|o(r(1)), - ,o(r(k; — 1)) Z (|Ri(o,7)| = j)log, j(where d; is the degree of wu;)
d;
— H(o) < Z Z Pr (|Ri(o,7)| = j)log, j(summing across i, averaging across 7)
TES 1=1 j=1

(11.3)

We now make the following crucial observation: for a fixed matching o, Pr.(|R;(o, 7)| =
j) = %, Vj € {l,---,d;}. Note that, the observation is followed by the proof of Brégman’s
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theorem since from equation (3), we get:

H(o) < — ol Z ZZ 10g2]

T7€S, i=1 j=1

~ L33 Loy (11.4)

TES’LlZ

S IR DIEED AL

i=1 Z ’TESn

which is exactly what we wanted to prove. Now, we provide proof of our observation to
complete the proof.

Lemma 115. For a fized matching o, Pr,(|R;(o,7)| = j) = +,Vj € {1,--- ,d;}

Proof. The cardinality of R;(o,7) depends on the permutation 7. Visibly, |R;(o,7)| = j
occurs according to the order of the set {07! (v) }uenbr(u,) under the permutation 7, where
the nodes 7(1),--- ,7(k; — 1) ‘eat up’ some of the neighbours of w;, leaving exactly j
choices. Since 7 € §,, is distributed uniformly, the “rank” of u; in the list of it’s 2-hop
neighbours being d; — 7 + 1 is equidistributed over j = 1,2, - - - d;, making the probability
uniform and equal to dii for all j € [d;]. [ |

11.4 Algorithmizing the Local Lemma: The Moser-Tardos algorithm

A significant challenge associated with the Lovasz Local Lemma (LLL) is its non-constructive
nature. While the lemma asserts the existence of low-probability events, it is quite difficult

to construct or identify these events. Moreover, due to their inherently low probability,
randomly sampling these events is often an inefficient approach for their discovery. In
the breakthrough work of Moser and later by Moser and Térdos, the authors made the
local lemma go algorithmic. We shall not prove the Algorithmic LLL in all its glory;
Rather, we try to convince the reader that it simply works. The technique is dubbed the
‘Entropy Compression Method’.

11.5 The k-SAT Problem

Let x1,25...x, be boolean variables. A [iteral is a boolean variable x; or it’s negation
—z;. A k-CNF (Conjuctive Normal Form) Formula is an AND of clauses, each clauses
being an OR of k-literals. Such a CNF formula f is said to be satisfiable if there exists
an a € {0,1}" such that f(a) = 1. We use the following notation for a k-CNF":
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11.6

f(xl,l’g...,l’n):/\Ci

where each clause C} is of the form

k
Ci=\v,
j=1
and
Y;

We also define the Support of a clause C' as the collection of variables whose literals
are present in the clause. It is denoted by Supp(C)

=T,

or x;.
J J

J

Theorem 116 (Folklore). Given a CNF f with clauses {C;}icy and suppose for each i,
Supp(C;) N Supp(C;) # 0

for at most 22 clauses, then f is satisfiable.

Proof. This is a rather straightforward application of LLL. Consider a sequence of n
coin tosses and each variable is assigned the a binary value on the basis of these tosses.
If some clause Cj fails, then each of it’s literal must be assigned the wrong value and
therefore the probability that clause evaluates to 0 is 1/2%. Furthermore, if C; and C;
have disjoint supports, the event of them failing are independent of each other. Therefore,
the dependency graph as degree at most 2¥~2. Since

2k72 + 1
6p(d+1):€XT<].
for k > 4 and therefore, by the symmetric form of LLL, none of the clauses fail with some
positive probability and hence our CNF formula f evaluates to 1. ]

This theorem is ‘non-constructive’ in nature. It doesn’t give us a clue on how to find
such input in polynomial time.

Theorem 117 ([?]). There exists a constant ¢ such that given a k-CNF formula f with
t clauses, none of which overlaps with more than r = 2*=¢ other clauses, one can find a
satisfying assignment for f in expected time polynomial in t.

In the original paper, the authors develop an algorithm that could handle a depen-
dence degree of 2¥=°. However, for the sake of convenience, we show a bound of 2+F~¢
where ¢ > 0 is some constant?

The Fix-1t Algorithm

A priori, it’s not obvious that this algorithm would even terminate.
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11.6.1

Algorithm 1: Moser’s Fix-It Algorithm

1
2
3
4
5

6
7

8
9
10

11

Input: k-CNF Formula f = f(x1,9,...,x,) with clauses C1,Cs,C5...Cy on n
variables with d < 2F—¢
Output: Satisfying assignment s € {0, 1}"
R < An assignment of (zq,22...,x,) from {0,1}", sampled u.a.r;
S <+ Set of all clauses in f;
T < Set of all unsatisfied clauses in f;
Function FIX(C)
Update the values of the k£ literal present in C, u.a.r, and update the value of R;
while 3D € T such that Supp(C) N Supp(D) # () do
| FIX(D)

end
while 3C € T,C # () do
| FIX(O);

return R;

Correctness and Termination of the Fix-It Algorithm

It is not hard to see the following observation:

Observation 118. If FIX(C) is called then it terminates with an assignment in which
C and all clauses sharing a variable with C' are satisfied.

Armed with this observation, we prove that if the algorithm terminates, the resulting

assignment must satisfy our k-CNF formula.

Lemma 119 (Correctness). A call to FIX that terminates cannot change some already
satisfied clause to an unsatisfied clause.

Informal Proof. Suppose that FIX(C) was called and after it’s termination and some
clause A switches from satisfied from unsatisfied. Then

e Supp(C) N Supp(A) = () as otherwise by Observation 118, A must have ended up
as satisfied. Therefore, any reassignments of literals in clause C' wouldn’t affect the
literals in clause A.

e Hence, while FIX(C) is being called, clause A cannot have any change as otherwise

Supp(C') N Supp(A) # 0.
]

Therefore, subsequent applications of FIX would eventually lead to a satisfiable as-

signment and we obtain the following theorem,

Theorem 120 (Correctness). If the Fiz-It Algorithm terminates, it must output a satis-
fiable assignment.
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11.6.2 Moser's Entropy Compression Argument

We only give a high level demonstration of the argument. At the start, we used n random
bits, 1 for each boolean variable, to initialize our random assignment R. Now imagine
that we start off with a huge reserve string, S, of uniformly sampled random bits. At
any stage of algorithm, if we call FIX, we splice the first k bits of our reserve string S
to randomly assign k& bits to the clause that the algorithm is working with. Using this
idea, fix a random string S of length n + Tk, where T' denotes the number of time the
algorithm runs, is large enough, and assume the algorithm uses the first n bits as the
initial assignment A, and k bits each to replace the variables in each FIX call.

The random string S is used in Step 1 of FIX(C) to replace the values of variables
in C' by freshly sampled random values, and each time next k bits of S are used. If we
know which clause is being fixed, we know the clause is violated so we know all the bits
of this clause and thus we learn & bits of S (recall that assignments used by an algorithm
are from the string S). We then replace those bits with another part of S. So we can
describe S by the list of clauses we fix plus the remaining n bits of the final assignment.
We can describe each clause C' such that FIX(C) is called by the Fix-It algorithm using
O(mlogm) bits.

If we can somehow encode the information about the neighbors of clause C' in the de-
pendency graph, say in k—c bits, then having this information, we can recover our original
string. However, randomly sampled string cannot be uniformly retrieved from a dras-
tically shorter string. This argument requires some heuristics from Kolmogorov Complex-
ity, but a rough idea is as follows: Pr[ some string of length k can be represented using a string of lengt:
c=1/2c"t—1/2F <1

Therefore, length of original string must be greater than the recovered string and
hence
n+Tk<n+T(k—-c+0O(n))+ O(mlogm)

Therefore,

T = O(mlogm)

11.7 A List-Coloring Generalisation of Thue's Theorem

A list is said to be non-repetitive if it doesn’t contain any adjacent identical blocks. In
1906, Thue proved that we can create an arbitrarily long non-repetitive list with numbers
{1,2,3}. We consider a List-Coloring Generalization of this theorem i.e.

Question 121. Giwen n and collection of n lists {L;}icp), does there exists a sequence

§=(81,82,-..,5n), si € L; Yi € [n] such that it contains no Consecutive Repeating
Blocks (CRBs)?
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11.7.1

Before proceeding, we first define Consecutive Repeating Blocks

Definition 122. A list § = (s1,82,...,5,) is said to contain a Consecutive Repeating
Block if 3i € [n] and h € N such that:

[Sz‘—h, Si—h41--- Si—ﬂ = [Sia Sit1 - 3i+h—1]

Theorem 123 ([?]). Given |L;| > 4 Vi € [n], there exists a list containing no Consecutive
Repeating Blocks.

The Algorithm

Consider the following randomized algorithm. The input is a sequence of lists {L£;}ic)-
Random elements are chosen independently with uniform distribution.

Algorithm 2: Choosing a non-repetitive sequence from lists of size 4

1 < 1; while i« <n do
s; < l;, a randomly sampled element from L;;
if s1,589,...,5; s non-repetitive then
| i+ 1
else
L There is only one repetition, say,
[Si—on, Si—oh41 - - - Sich—1] = [Sich, Sich41---8) i1 —h+1;

[ N

The idea behind this algorithm is same as the one behind the Fix-It algorithm, if the
algorithm works long enough for all evaluations of the random experiments, then a lot
of repetitions occur, based on which we can compress a random string to a better extent
than is actually possible

Proof of Theorem 125. Suppose for a contradiction that it is not possible to obtain a
non-repetitive sequence from {£;}icin). Set M to be a sufficiently large integer. We are
going to record, in two different ways, the possible scenarios of what algorithm does in
the first M steps.

Order the elements of £; for each ¢ randomly. Then, the algorithm picks a random
element from a list of size 4. Let r; denote the position of the j'th element in our sequence,
with respect to the original list. Then, ry,79,...,7 is a sequence of random variables
with 4M possible values. Fix a random sequence of length M from one of 4™ possible
values

Let d = (dy,ds, ... dy) be a running log of the algorithm where

g - 1 if the length of string increases 1
"] =(h—=1) if a repeated block of length h is found

Let 7; denote the tuple of first ¢ elements of 7 and ch denote the tuple of first j elements
of d. 3y = (81, 82, ... 5;) denotes our resulting string after M steps.
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Proposition 124. (dy, s);) uniquely recovers 7y
It is enough to show that we can recover (JM_l, Spr—1) from (CZM, Snr)-
e If dyy = 1, then, the last element of §y/(= s;) must be equal to ry; and therefore,
Sp—1 =3 \Tm

o If dyy = —(h —1) <0, then, we must have had a repeating block of length h after
the addition of 7y to sy;. Therefore, Syr1 = Sy + [Far—n, Tm—hat1 - - Tar—1)

Now note that
e V1<i<M,d; <1
o V1< k<M, Zle d; > 1 as the string can never have negative length.

The number of M-tuple such that (i) and (ii) holds, along with an additional condition
that Zf\il d; = 1 is known to be the very well known ‘Catalan Opening’. Let Dj; denote

the total possible number of tuples dy;. Then, Dy = %(2]37__12) = 0(4M). The number

of sequence satisfying conditions (i) and (ii) and Zf\il d; = k < n is certainly less than
Tyr. Note that since our sequence doesn’t terminate after M steps, dy; < n. Therefore,
the total possible number of tuple JM possible is < n - Ty;. For each instance of JM
corresponds to at most 4" non-repetitive strings but since the number of tuples 7, is
exactly 4™ and each 7, is uniquely determined by our logs,

4M < gqm o - Ty < o(4M)

which certainly doesn’t hold for a large enough M. |
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More sophisticated concentration: Talagrand's
Inequality

A relatively recent, extremely powerful, and by now well utilized technique in prob-
abilistic methods, was discovered by Michel Talagrand and was published around 1996.
Talagrand’s inequality is an instance of what is refered to as the phenomenon of ‘Concen-
tration of Measure in Product Spaces’ (his paper was titled almost exactly this). Roughly
speaking, if we have several probability spaces, we many consider the product measure on
the product space. Talagrand showed a very sharp concentration of measure phenomenon
when the probability spaces were also metrics with some other properties. One of the
main reasons this inequality is so powerful is its relatively wide applicability. In this
chapter, we briefly study the inequality, and a couple of simple applications. Suppose
(82, Py, p;) are metric spaces, where p; are metrics. We have, (T[7, Q. [Ty pis [ 11y Pi)
is the product (METRIC) probability space. Recall McDiarmid’s inequality,

Theorem 125 (McDiarmid). Let f: [[\_, ©; — R be Lipschitz, i.e.

(@) = F)l < plz,y), for any z.y € [ [ .

i=1

If x € TIi, Qi is picked according to [ P;, and if f is bounded, then
P(|f(x) = E(f(x))] > ) < 2e7/".

Remark. The above says that sufficiently smooth functions are heavily concentrated
around their mean in these product spaces.

Suppose (€2, ;) are probability spaces, consider the product space ([T, €, [[7, P;).
A “natural” metric for this comes from the Hamming metric (counting coordinates where
they differ),
dH(%aQ) = #{i 2 # Y}
This may not always be a smart choice! Suppose @; = {0,1}, V1 < i < n. Let
Q=T1[% ={0,1}" and A = {z € {0,1}" : |z| < (n/2)}, where |z| = #{i : z; # 0}.
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12.0.1

We have, P(A) = 1/2. Pick z at random according to P. Since the random variable |z|
is binomial, an application of Chernoff gives,

P(|lz| > n/2+1t) < e ¥/,

The above bound doesn’t take into account that there might be a LOT of points with
|z| = (n/2+t)! We want a notion of distance which takes this information into account.
This motivates the following,

Definition 126 (Talagrand convex distance). Given (;,P;), let A C Q =[], ; and
x €. Letr € R such that r > 0 and |||l = 1. We define,

po(;@? A) = max mi‘g(ﬁ h(l‘, y)>

T ye
Herer = (ry,ra,..., 1) 18 the ‘cost’ vector.
9 9 9

We define the set A; = {y € Q2 : po(y, A) < t}, for t > 0. Following is the main version
of Talagrand’s inequality [?],

Theorem 127 (Talagrand (95)). Let P =[[;_, P;. We have,

P(A) - (1 —P(A,)) < e P74,

A Combinatorialist's Version of Talagrand’s inequality

For the purpose of applications, we will look at a different formulation of the Talagrand
bound.

Definition 128. A random variable X : Q — R is f-certifiable (for a function f) if
whenever X > s, then there exists,

o X(wy,ws,...,wy,)>s
o [ Cn| with |I| < f(s) s.t. for any w" with w, =w; Vi€ I, X(w') > s.

Remark. The notion of f-certifiability becomes weak if the function [ attains large val-
ues.

Following is the widely used combinatorialist version of Talagrand,

Theorem 129 (Talagrand). Let Q@ = [[_, and P = [, P;. If X is lipschitz and
r-certifiable (i.e. f(s) =rs), then

P(|X —EX| >t 4 60VrEX) < e '/8EX,

If the expectation EX is linear in n, the above bound is similar to McDiarmid. If it
isn’t linear in n, the above bound is better! As some summary of our discussion so far,
we have the following remark,
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Remark. The shortcoming of Hamming is that it cannot tell if there are lots of points
at same distance away from the set. Talagrand takes this account and averages it out,
exploiting more information and hence giving a better bound.

Fix A C Q, x € Q and vector r = (ry,...,r,) > 0. The Hamming difference vector
(as seen earlier) is the binary vector h(z,y) = (h, he, ..., h,) such that h; = 1 if x; # y;
and 0 otherwise. For the rest of this section, we denote ||z| = ||z]|2 in R™.

Definition 130. Define the set,
Uy(x) = {h(z,y) € {0,1}" |y € A}.
Recall Talagrand’s notion of distance,

Definition 131 (Talagrand convex distance).

pr(x, A) == min{(r, h(x,y)) : y € A}
po(x, A) = mjix{pT(w,A) cr >0, ||r]| =1}

The following theorem gives an equivalent characterization for the Talagrand distance
po(x, A).
Theorem 132.
po(z, A) = min{||z|| : z € CHU(x))}
=min{||z|| : z € CHU(x))}
where Ua(z) denotes the UPSET' generated by Uy(x) and CH denotes the convex hull of

a set.
Proof. First we have the following claim,
Claim 133.
pr(x, A) = min{(r,z) : z € CHU,(x))} (12.1)
=min{(r,z) : z € CHUa(x))}. (12.2)
Proof. Suppose minimum of RHS in Chapter 12.1 is attained at z. Then z = >, \;h(z, y;),
for y; € A, Ay > 0and >, A = 1. So (r,z) = > . \(r,h(z,y;)), which gives that

(r,z) > (r,h(z,y;)) for some i. This gives Chapter 12.1. Similarly, suppose minimum of
RHS in Chapter 12.2 is attained at 2y = >, A;z;, where 2, € Ua(x). We have,

(r, z0) = Z Ailr, z) > Z Xi(r, h(z, ;)

where (r,z;) € Ua(x) and (r, h(z,y;)) € U)(z). We are done as before, proving the
claim. |

WUa(x) = {(21,- -+, 2n) : Hwn, ..., w,) € Uy(z)s.t. 2; > w; Vi}
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12.0.2

We have the following claim which completes the proof of the theorem,

Claim 134.

po(z, A) = max{p,(z,A) : r>0,|r|]| =1} (12.3)
= min{||z|| : z € CHU4(z))}. (12.4)
Proof. Chapter 12.3 follows from the definition of py(z, A). For r > 0, ||r|| = 1 and

z € CHUA(z)), we have
(r,z) < |||l

from Cauchy-Schwarz. This gives po(z, A) < min{||z|| : z € CHUa(z))}. Suppose the
minimum in Chapter 12.4 is attained at zyp € CH(U4(z)). Then for any z € CH(Ua(x))
and V0O < A <1, we have

Az + (1 — N)zp € CH(UA(x)).
Since ||zo|| is a minimum,
120]* < 1Az + (1 = A)zo*.
Following this, set p(\) = [[Az + (1 — X\)2o||*> which is a quadratic in A. Differentiating
and evaluating at the minimum of p(\) gives,

120lI* < (2, 20).

Since po(z, A) < zg, 20 = 0 gives po(z, A) = 0 and the claim is proved. Therefore, WLOG
let z9 # 0. Set r = zo/||20]|. Since p.(z, A) = min{(r, z) : z € CHU4(z))}, we have

<ZO7Z>
[Izoll
= pr(, A) 2 ||z
= po(z, A) = ||z0]l-

2 |20

This completes the proof of the claim. |

From the two claims above, proof of Chapter 132 follows. |

Talagrand's inequality
Forany A C Qandt >0, let A, = {w € Q: po(w, A) < t}. Recall Talagrand’s inequality,

Theorem 135 (Talagrand). For A, A; as above, we have
P(A)P(4,) < e /4.
Let w € Q and f: R — RT be some function. We have the following definition,
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Definition 136 (f-certifiability). A random wvariable X (= X(w)) is said to be f-
certifiable if X(w) > s = 31 C [n] with |I| < f(s) s.t. for ANY w' that agrees with
won I, X(w') > s as well.

The following is another version of the inequality,

Theorem 137. If X s 1-lipschitz and f-certifiable, then for any b, we have
P(X <b—t/f(0)P(X >b) <e /4,

Proof. Set A = {w : X(w) < b—ty/f(b)}. We shall show that {w : X(w) > b} C A,.
Then the conclusion will follow from Chapter 135. Suppose X (w) > b, we need to show
that w ¢ A;. Suppose not i.e. w € Ay, or equivalently po(w, A) < t. Since X is f-
certifiable, 31 C [n] with |I| = f(b) s.t. any w’ agreeing with w on I must also have
X(w') > b. Set

_ ]1161

\/mzln.

By our assumption that w € A;, there exists y € A such that (r, h(w,y)) <t . Then the
number of coordinates (in I) on which y and w disagree is no more than t+/|I] < t+/f(b).
Now pick z € €2 such that z; = y; for all « € [ and z; = w; for ¢« € I. Since z
disagrees with y on no more than ¢1/f(b) coordinates and X is 1-lipschitz, we have

| X (2)—X(y)| < t\/f(b). Butsincey € A, we have X (y) < b—t\/f(b), so by the closeness
of X(y) and X (z) we have | X(z)| < b. But since z agrees with w on the coordinates of
I, f-certifiability guarantees that X (z) > b, and we have a contradiction. |

Remark. In particular, if b = Med|X] in Chapter 137,

P(X < Med[X] — t\/f(Med[X]))
P(X > Med[X] +t\/f(Med[X]))

which essentially gives the concentration of the random variable X around its median.

Note that P(X < Med[X]) =P(X > Med[X]) = 1/2.

et /4 and

| /\

—t2 /4

| /\

We have the following Corollary to Chapter 137,
Corollary 138. If X is Lipschitz and r-certifiable (i.e. f(s) =rs), then
P(|X — EX| >t + 60VrEX) < e /55X,
FACT: If X is r-certifiable and Lipschitz, then |[EX — Med[X]| < O(VEX).
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12.1.1

First examples

1. Non-isolated vertices in random graphs

Suppose G is a d-regular graph on n vertices. Let H be a random subgraph of G with
each edge of GG being retained in H with probability p. Let X denote the number of
non-isolated vertices in H. By linearity of expectation,

E[X] =) Pldu(v) > 0] = n(1 - (1—p)*).

veV

The probability space in question is a product of the nd/2 binary probability spaces
corresponding to retaining each edge, so that the events are tuples representing the out-
comes for each edge. Changing the outcome of a single edge can isolate or un-isolate at
most two vertices, so X is 2-Lipschitz. Furthermore, for any value of H with X (H) > s,
we can choose one edge adjacent to each of s non-isolated vertices whose existence in
another subgraph H' of G will ensure that the same s vertices are not isolated in H’, i.e.
X(H') > s. Thus X is also 1-certifiable, and Talagrand gives us

P[1X — E[X]| > (60 + k)y/E[X]| < e/

so with high probability the number of non-isolated vertices is within an interval of length
O(v/E[X]) = O(y/n) about the mean. Compare this to the result using Azuma on the

edge-exposure martingale, which would only give an interval of size O ( (;)) = O(n)

about the mean.

An Application: Longest Increasing Subsequences in random permutations

Suppose m € S, is chosen at random, let X (7)) = length of a longest monotone sub-
sequence in m. The following theorem gives a lower bound on the longest monotone
subsequence in any sequence.

Theorem 139 (Erdés-Szekeres). Any real sequence of length (n® + 1) has a monotone
subsequence of length > (n+1).

From Chapter 139, we have X (7) > +/n — 1+ 1. Also, we will show that X (7) < 3y/n
holds WHP. Let X1, X5,..., X, X U[0, 1], this gives an uniform 7 € S,,. Note that,

n\ 1 _ (en)k 2F 2en\*
> k)< — < = (=
P(X_k)_(k:)'k!_ Kk Kk <k:2> '

Setting k = 31/ gives an upper bound of O((2¢/9)vV™), which tends to zero exponentially
quickly with increasing n. Continuing, we also have EX is O(y/n) since /n < X < 3y/n
holds WHP. The random variable X is 1-Lipschitz as changing the position of any one
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coordinate in the permutation m makes the length of the longest monotone subsequence
go up or down by atmost 1. We also have that X is 1-certifiable, which follows from
definition. Now we apply Talagrand bound on the random variable X. This will show
that X lies in an interval of length O(n'/*) around EX, WHP. Set t = Cn'/*\/log(n).
We have,

P(|X —EX| >t +60VrEX) < o—t2/BTEX
where r = 1. Since EX is O(y/n), we have the result.

Remark. Notice that McDiarmid is weak! Applying McDiarmid gives,
P(|X —EX| > t) < et/

To ensure concentration, we are forced to choose t >> \/n.

An Improvement of Brooks's Theorem

Let us recall Brook’s Theorem: For a connected graph G is neither K,, nor Coyq then
X(G) < A(G). But one might ask if this can be improved, especially if the maximum
degree is rather large. Indeed, that has been the subject of quite some interest, and here,
we note down two of the most well-known results (in chronological order):

e (J. H. Kim, 2002): For G with girth at least 5, x(G) < (1 + 0(1))105[).

e ( Johansson, 2004): For G which is triangle free,, x(G) < O(+25).

log D

Both these results (especially Johansson’s result) are quite non-trivial and involved, but
we can get a slight improvement on Brooks’s theorem for triangle free graphs, which is
what we shall see now.

Theorem 140. If G is triangle free and has mazimim degree D, then x(G) < (1 — a)D
for some a > 0.

Proof. Without loss of generality, let G be D-regular.

Scheme - We shall color the vertices uniformly at random from [c]. If two adjacent ver-
tices are colored the same, uncolor both.

WTS - With positive probability, each vertex v has > aD + 1 colors that are retained on
> 2 neighbors of v. If this is done, color each vertex greedily. The greedy algorithm will
complete the proof.

Let A, be the event that vertex v has < aD colors retained on > 2 neighbors of v.
A, <> A, are dependent for < D* choices of w. Therefore, if P(A,) = O(3s), then we
are through.

Let X, be the number of colors retained on > 2 neighbors of v,
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X! be the number of colors retained on exactly 2 neighbors of v, and

X, be the number of colors assigned on 2 neighbors of v and retained from the start.
Note that X, > X > X/

E(X!) > (5) (1 - )3D 3. If u,w € N(v) are assigned RED, then no vertext in V is

assigned REQUD where VU( (v )\{u,w}UN( YUN(w )) \

Now let C' = 8D = E(X}) > 251 L[(1 - 5)P71P > 2275, D> 0.

Let us note that X, is 1-Lipschitz and certifiable for X, > s.

Let us write X!/ = Ass, — Del, where Ass, is the number of colors assigned to 2 neighbors
of v and Del, is the number of colors asssigned to 2 neighbors but deleted from at least
one of these two. We can see that Ass, is 1-Lipschitz. If Del, > s, then 3 2s vertices
making color choices in pairs picking the same color and another <s neighbors of at least
one of each of these pairs that witnesses G discoloration. Therefore, Del, > s and Del,
is s-certifiable.

Lets us recall the following inequalities:
If X is 1- Llpschltz and determined by independent trials {11, ...,T,,}, then P(|X —EX| >

t) < e” fm. If X is also 7 certifiable, then Talagrand tells us that P(|.X — EX| >

+2
t+60VrEX) < e sExX
This implies that for t = C'v/Dlog D (for a suitable constant C') we have

2 c? logD

P(|Ass, — E(Ass,)| > t) < 2e™D = 2~

Similarly,

P(|Del, — E(Del,)| > t + 60+/3E(Del,)) < 2¢~ 7m0en

so we simply take § = %and that gives a = 2¢76. |

Almost Steiner Designs

In this section, we shall look now at a result due to Hod, Ferber, Krivelevich, and Su-
dakov [16], which achieves something very close to a Steiner design. Recall that a Steiner
t-design with parameters (k,n) (and denoted S(t, k,n)) is a k-uniform hypergraph on n
vertices such that every t-subset of the vertices is contained in exactly of the edges of the
hypergraph. A simple counting argument shows that the number of edges of a Steiner

t-design S(t, k,n) is %
t
We shall following [16] prove that, for n sufficiently large, there exists a k-uniform
hypergraph such that every t-subset of the vertex set is in at least one edge, and at most
2 edges, and also, the number of edges is asymptotically close to the correct number.
More precisely,
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Theorem 141. For n sufficiently large, and given fized integers k > t > 2 there exist
k-uniform hypergraphs H on the vertex set V' satisfying

.« e(H) = (1 —1—0(1))%.

o [wery t-subset of V is contained in at least one E € E(H) and is contained in at
most two edges.

This rather neat looking theorem has a relatively short proof.

Proof. For starters, one might want to start with an almost tight packing 7 and then
for each t-subset T' that was not covered by the packing, we would like to pick another
k-subset that accounts for covering T'. This motivates the following

Definition 142. For a k-uniform hypergraph H on [n] the Leave hypergraph associated
with H is the t-uniform hypergraph
Ly :={T Cn|:|T|=t,T ¢ E for any E € H}.

Thus for every T in the Leave Hypergraph we wish to choose another k edge from the
complete k-uniform hypergraph in order to cover every t-subset of [n]. In particular, one
would like that the size of L4, is small in comparison to the size of . This was already
achieved by Grable; in fact he proved

Theorem 143. (Grable, 1999) Let k > t > 2 be integers. There exists a constant
e = e(k,t) > 0 such that for sufficiently large n there exists a partial Steiner design
H = ([n], &) satisfying the following:

For every 0 < 1 <t every set S C [n] with |S| =1 is contained in O(n'~""%) edges of
the leave hypergraph L.

In particular, the size of £, is at most O(n'~¢). But by picking one edge arbitrarily
to cover each T' € £,, we run the risk of having some ¢ subset covered more than twice
- something we do not want. Thus we need to be a bit choosy in picking edges to cover
the edges of the leave hypergraph.

For each A € £y, define T4 := {E : |C| = k, A C C}. Firstly, note that we can form
a refinement of 74 as follows:

SA:ZTA\( U 7}3)-

BELqy,B£A

In other words, S4 consists of all £ € T, such that no other ¢-subset (other than A) of
the leave hypergraph is also in E. Suppose B € Ly, and |A N B| = i. Then the number
of sets E € T4 that are not in S (on account of B) is (Z:gii) Let

ni(A):=[{B € Ly:B#A|BNA =i}
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If we fix S = |AN B| is a subset of size i, it follows by the result of Grable that there are
at most O(n'~=¢) distinct B € L4, such that AN B = S. Since there are (f) choices for
S, it follows that n;(A) < (t)nt_i_a. Thus,

i

sz (0] - :iénim) (F o0 rr) =B = 0lt5) =0l

So, the sets Sy are all quite large.

Note also that by definition, the collections S4 are pairwise disjoint for different
A € L4,. Thus we have plenty of choice for picking £ € S, for distinct A € £,,. The
standard probabilistic instinct is to now pick E4 € S uniformly at random. But as
we will see, it is not a good idea. Note that if EF4, Eg have been picked from Sa,Sp
respectively, and suppose |E4 N Ep| > t. Then it is highly likely that a ¢-subset of the
intersection is contained in at least 3 of the sets, and that is not what we seek. So, it
seems imperative that the choices E4 must satisfy |E4 N Ep| < t. In fact, if such choices
can be made, then it is easy to see that the collection {E4 : A € Ly} along with 7 will
serve as the ‘almost’ Steiner design we seek.

But this casts a new problem vis-a-vis the choice for E4. Suppose E4 € S4 has been
chosen. Now if B € L, satisfies |A N B| = t — 1, then the probability that F' = Ep

n—k—1
will have |E4 N F| < t is at most © ((Z_i)) = O;+(1). In particular, if there are
k—t
several such B, then it is unlikely the choices for Eg made for all those will satisfy the
intersection size criterion that we have zoomed into. Hence, we need an alternate idea

about choosing the set F 4.

One of the interesting new perspectives of the probabilistic method that this proof
suggests is the following principle:

Instead of picking exactly one set E 4, we can instead offer a small set of choices for
Ey.

The heuristic idea here is that rather than one choice, if we are given a reasonable
set R4 of choices for E4 for each A € L4 then if for each pair (A, B) in £, there are
many compatible choices for (F4, F) then is likely that we are able to choose E4 € R4
so that all these choices are pairwise compatible. And to pick R4, we again resort to
randomness. In other words, let us pick a random collection R4 C S as follows. For
each E € Sy, pick it as a member of R 4 independently and with probability p (for some
suitably small p).

Now, if for each A, we decide to make the pick E4 € R4, we wish to show that
|EaN Eg| < tfor all A# B in the leave hypergraph. Showing that |[E4 N E| < ¢ for all
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E € R where
R= |J Rs
B£A,BELy,

is more uniform, so let us aim to do that.

Fix A € L4, and suppose R4 has been determined but suppose Rp for the other sets
of L4 are not yet made. Knowing Rp for all B € L3 \ {A} amounts to independent
trials made by the members of

s= |J ss

B#A,BELy

To say that we can make a choice £y € R4, we need good bounds on how many elements
of R 4 are poor choices, i.e., we need an estimate on

‘ﬁA::HEERA:\EﬂF|2tf0rsomeF€R}|.

Note that if we assume that R4 has already been chosen, then 914 is determined by
the outcome of |S| independent Bernoulli trials. Moreover, it is clear from the definition
that 914 is 1-certifiable. Indeed, if 914 > s, then there are Fy, FEs, ..., E, € R4 and at
most s sets Fiy, Fy, ..., Fy € S such that |E; N F;| > t. In order to obtain good concen-
tration, it would help if 914 were also Lipschitz.

But unfortunately, that may not be the case. Suppose B € Ly and |[ANB| =1t — 1.
Then for any F' € Rp and E € R4, we would have |[E N F| >t — 1, so the only way the
intersection has size strictly less than ¢ is if these sets are disjoint. Thus, it is conceivable
that a single trial F' € Sg can affect 914 substantially.

But now, we use an old trick of Bollobas, which ‘Lipschitzises’ this random variable,
i.e., considers another related random variable which is Lipschitz, and in addition is very
close to the random variable in question.

More precisely, suppose for each A, we pick a large enough sub collection Q4 C R4
by adding an element of R4 into Q4 as long as it does not intersect any of the members
already picked outside of A. Thus, Q4 is a subfamily of R4 in which any two sets are
pairwise disjoint outside of A itself. If R4 is large enough, then perhaps one can imagine
obtaining a large enough Q4 C R4 by this process.

If we set

No(A) :=[{E € Q4 : [ENF| >t for some F € R}|

then note that the same argument for 91,4 also works here, so 91g(A) is 1-certifiable. But
now, this is also Lipschitz. Indeed, if a certain choice F' € R is altered, then since the
sets in Q4 are pairwise disjoint outside of A, it follows that D9tg(A) changes by at most
k —t, so Mg(A) is k — t-Lipschitz. Hence by Talagrand, we have

P(Mo(A) > t) < 2e1% where ¢ > 2E(Ng(A)) + 80k+/E(Mg(A)).
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Let us estimate E(91g(A)) first. Note that (recall that we are assuming that R 4, and
Q4 are fixed)

No(4) = Z Ig

EcQa

where 1 counts the set E if there exists F' € S such that |[E N F| > t¢. Let us first fix
E € OQ4. Write

L\ (4} = B

where

B, ::{B€£H:\BHE| :l}
We wish to count the number of F' € S that trigger F and count in among 9g(A).

If B € B, we have

{FeSp:|ENF|>t} < {FeTp:|ENF| >t}
= {FeTs:|(ENF)\B|>t—1}]

Consequently,

k—t
kE—1 —k—t+1
[{F €8 :BCF for some B € B,|ENF| > t}| < Z( Z_ )(nk_t_;-)zo(nk—%ﬂ)'
i=t—

Indeed, pick a subset of E\ B of size i, where t — [ < i < k — t, then to get a choice
for F' € Sp, we need to pick the remaining k — (¢ + i) elements from the set [n]\ (E'U B).
Now, for fixed [ with 0 </ <¢—1, we have |B)| < (})O(n*~1=%) = O(n'~'=%). This is seen
by first fixing a set of E of size [ and then by the result of Grable stated earlier, there
are at most O(n*~1=¢) elements B € L4 that contains a set of size [. Hence, by a very

generous amount, we have
E(1z) = P(E leads to increment of Mg (A)) < pO(n* 2O (n'~17%) = pO(nF~t7¢)

E(MNo(A)) < |QalpO(n*~7).

Now suppose we had p = n*~%+¢/2: then the estimate above gives us that

E(Ng(A)) < [QalO(n*/?).
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Note that for this value of p we have with high probability |R4| ~ ©(n*/?) for all
A (standard Chernoff bounds). We shall now argue that the greedy process produces
|Q4] > (n°/3) for all A with high probability. We can then choose to stop at around this
stage while constructing Q4, so that we indeed do have |Q4| = ©(n*/3) This completes
the proof.

Suppose that the greedy process stops after m steps, with m < n/3. Then there exist
sets By, Ea, ..., Ey,, such that every set in S that is ‘disjoint’ from |J E; (i.e., disjoint
outside of A) is not picked into R 4. Now, if we set X = |J E; then | X| < kn*/3. We now
need to ensure that the number of sets of Sy that do not intersect X outside of A is of
the right order. In other words, the number of sets of 74 that meet X non-trivially is at

most %(’Xu_ t)(n__tp_ﬂz) Z@ Y phtt = o(nht)

i=1
which implies that the number of sets in Sa that are disjoint from X is M = ©(n*™).

Thus, the probability that there exists some set X of size at most kn/? that satisfies this
condition above is at most

(k:e/z) (1=p)™ < O™ )exp(—n' 20 (n" ")) = exp(n/* logn—O/(n/?)) < exp(—n®/")

for n sufficiently large, so the result follows. [ ]

12.4 Chromatic number of graph powers

Recall, for & > 1, the k" Graph Power G* is defined as follows:
o V(G*) =V(Q).
e For u # v, u < v iff dist(u,v)e < k.

In other words, two vertices are adjacent in G* if they are at most a distance k apart
in G. Let A(G) = d. One would like bounds on x(G*). The greedy algorithm tells us
x(GF) <dF +1.

Johansson improved Brooks’ theorem for triangle free graphs by showing that x(G) =
O(ﬁ). The following theorem below is a generalization of this extending to graphs
where the neighborhood of any vertex is sparse.

Theorem 144. (Alon-Krivelevich-Sudakov, 2002): If G has at most % edges in the
induced subgraph on N(v) for each v € V(G) then x(G) <

_d__
— log(t) "

This implies (follows easily) that for G with girth at least 3k + 1, x(G¥) < O ( <

dk
log :
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In particular one is interested to see if the above result is asymptotically best possible.
The following result of Alon and Mohar settles this in the affirmative.

Theorem 145. (Alon-Mohar 2001): For large d and any fized g > 3 there exist graphs

with maz degree A < d, girth at least g, and x(G*) > Q <ljgd).

Proof: First, we shall bound A and I'. We want to pick G = G,,,, such that for all

v € V(G), Eldeg(v)] = (n — 1)p < np. Let p = :£. Because this process is a binomial

distribution, we can bound the number of vertices with degree at least d using Chernoff.
d —(d/2)?

Pldeg(v) 2 d] < P|(deg(v) — E(d(v)) > 5)] < e @ = e /0

Now, let Nyoq = |{v € V|deg(v) > d}| =
E[Nbad] < ne_d/G

By the Markov inequality
P[Npag > 10ne” Y% < .1

Similarly, let No, = [{Cx C Glk < g} =

Again, Markov tells us that
P[N.y > 10d7] < .1

This implies that with probability at least .8, G satisfies Nyoq < 10ne~%6 and Ncgy < 10d9.
We shall assume n > d? + ne~%% so that we can remove an arbitrary vertex from all
small cycles and remove all vertices of degree more than d. If we want to ensure A = d,
it is simple enough to add some cycles of length g. Thus in order to get a condition on
the maximum degree and girth, all we need to do is delete a small number of vertices
from such a G.

To complete the proof we wish to show that a maximum independent set is not too

large. More precisely, we wish to show that a(G) = O(”E’Ed. This amounts to saying

that whp, every set U of this size is NOT independent in G*.

IN order to achieve this, what we shall do is this. If we could show that for any such
set U, there are several paths of length kbetween some two vertices w,v in U, then in
order to make the pair {u,v} a non-edge in G*, we should have deleted a vertex from
each of those paths between w,v. But if the number of such paths is way more, then
u,v is an edge in G* giving us what we want. But showing that the number of paths is
concentrated is a difficult task, so we shall try to show that there are several internally
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disjoint paths between two such vertices. This is again another instance of the same trick
that was mentioned in the previous section.

Let us get to the details. Let the path P be a U-path if the end vertices of P lie in U
and the internal vertices lie outside of U.Set U C V(G) such that

cxnlog(d)
\U| = =

Now, to show x(G*) > Q (ﬁ), we will show that a(G*) < ck%%(d) for some ¢ (as
outlined above) To do this, we will show that with high probability, for every U, II(G),
the number of internally disjoint U-paths of length k, is large. Specifically, we will show
that there are still many of these paths after we make vertex deletions for girth and

maximum degree considerations. This will bound independent sets in G*.
Let p be the number of U-paths of length k. It is easy to show that

227052 k=1 gk 2 2
T p . centlog®(d)n d cinlog(d)
E[u] = <2) (n — X)p_1p" > 2k 9 okpk okt k

Now, we need to say that E[v], the expected number of non-internally disjoint U-paths,
is much smaller than E[u]. For n > d > k, the expected number of U-paths which share
one endpoint and the unique neighbor is at most

_ _ ey logd
/mk 2pph=t — S

< p

It is easy to see that the number of other types of intersecting U-paths is smaller, implying
that

c2nlog?(d)

E[M] = ok+2 gk

Let us note that, because II(G) counts the number internally disjoint U-paths, removing
one edge can change II(G) by at most one. Therefore, II(G) is a 1-Lipschitz function.
Let us also note that II(G) is f-certifiable. That is, for f(s) = ks, when II(G) > s,
G contains a set of at most ks edges so that VG’ which agree with G on these edges,
II(G") > s. We can now use Talagrand’s inequality to bound the number of graphs with
insufficiently many U-paths.

For any b and ¢, Talagrand’s tells us that

pt2

Pl X —E[X]| > t] <e FX
for some 5 > 0. This implies that for ¢t = cE[Il], ¢ > 0,

-2 nlog? (d)
| < e P = o(1)

(1 —¢)cinlog?(d)
ok+2 Jk

P[II <
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Now, because the maximum number of sets U is at most

n en\? edt "\ ak B4 n. o
()< (@ ()™ comfusziod

Bec?
Qk——&-2k > 2kcy,

So, if

then, with probability 1—o(1), for every set U, there are at least E;E’f;kd pairwise internally

disjoint U-paths.
Now, forn > d >k

2
—d/10 enlog™d
10n2 + 1047 < Shragh
so we can remove all small cycles and high-degree vertices without destroying all U-paths

and therefore

—X(EH 20 (IOZ'E@)

as desired, and this completes our proof.
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13.1

13.2

Martingales and Concentration Inequalities

The theory of Martingales and concentration inequalities were first used spectacularly by
Janson, and then later by Bollobas in the determination of the chromatic number of a ran-
dom graph. Ever since, concentration inequalities Azuma’s inequality and its corollaries
in particular, have become a very important aspect of the theory of probabilistic tech-
niques. What makes these such an integral component is the relatively mild conditions
under which they apply and the surprisingly strong results they can prove which might be
near impossible to achieve otherwise. In this chapter, we shall review Azuma’s inequality
and as a consequence prove the Spencer-Shamir theorem for the chromatic number for
sparse graphs and later, study the Pippenger-Spencer theorem for the chromatic index of
uniform hypergraphs. Kahn extended some of these ideas to give an asymptotic version
of the yet-open Erdés-Faber-Lovasz conjecture for nearly disjoint hypergraphs.

Martingales

Suppose €2, B, P is underlying probability space. Fo C F; C ...F, C ... where F; is
o-algebra in B.

F=JF

X; is a martingale if X; is F; measurable and E(X;,4|F;) = X;.
In general, if X is F-measurable and E(X) < oo, then X; = E(X|F;) always gives a
martingale. This is called Doob’s Martingale Process.

Examples

e Edge Exposure Martingale
Let the random graph G(n,p) be the underlying probability space. Label the po-
tential edges {i,} C [n] by €1, ea, ..en, where m = (3). Let f be any graph theoretic
function. Then we can define martingale Xy, X1, X, ...X,, where:

X; =E(f(G)lej is revealed V1 < j < i)
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In other words to find X; we first expose ey, es, ..., €; and see if they are in G. Then
X; will be expectation of f(G) with this information. Note that X, is constant.

e Vertex Exposure Martingale

Again G(n,p) is underlying probability space and f is any function of G. Define

Xl, X27 ceey Xn by
X; =E(f(G)Vz,y <ieyy is exposed)

In words, to find X;, we expose all edges between first i vertices (i.e.

this information.

Azuma’s Inequality

Definition 146 (Lipshitz). A function f is K — Lipschitz if Yx,y |f(z) — f(y)|

K|z —y|. A martingale Xo, X1, ... is K — Lipschitz if Vi |X; — X;11| < K

Theorem 147 (Azuma’s Inequality). Let 0 = X, X1, ...X,, be a martingale with
| X1 — Xi| <1 (i.e.l — Lipschitz)
VO <7< m. Let A > 0 be arbitrary. Then

P(X,, > A\Wm) < e /2

Proof. Set a = A\/\/m. Set Y; = X;11 — X; so that |Y;| <1 and E(Y;|X;_1) = 0. Then

similar to argument used for proving Chernoff bound, we have:

E(e®Y'|X; 1) < cosh(a) < */?

Hence:

m—1
— E([ ™) B X 1))
i=1
m—1
< E(H eV 2 < ™2 (by induction)
i=1
and using this result we get:

P(X,, > M/m) = P(e2Xm > eeAvim)
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< ]E(eaXm)e—a)\\/ﬁ
ea2m/27a)\\/ﬁ

=e N2 (since a = A/v/m)

IN

Corollary 148. Let ¢ = Xy, X1, ...X,, be a martingale with
| Xiqn — Xi| <1
VO <1< m. Let A\ >0 be arbitrary. Then

P(| X — c| > Av/m) < 2/

13.4 The Shamir-Spencer Theorem for Sparse Graphs

Theorem 149 ([?]). Consider G = G(n,p) with p = n™*) for o > 2. Then for any
e > 0 there exists u = u(e,p) such that

PX(G) € {u,u+1L,u+2,u+3}) >1—¢
Proof. Pick p = p(p, ) such that

PX(G) <u) >e¢

PX(G)<pu—1)<e
ie. u=min{k € Z>o | PX(G) < u) > ¢}
Let Y be the largest sub-graph that is p-colorable (in terms of, say, Lexicographic

Order). Let R = V(G) \ Y. |R| denotes the number of vertices in R and note that
|R| = 0 = Graph was p-colorable.

Consider the vertex exposure martingale, that is the expected value of |R|, condi-
tioned on what vertices are ‘exposed’ to the us. Since any vertex will be either in R or
in Y, we have

X;=E(|R| | G[1,2...4]) ~» a Doob Martingale!

Now, Xy = £(R) and X,, = R. As addition of any vertex can change the value of X;
by 1 for all i € [n],

and hence by the Azuma-Hoeffding Inequality (Theorem 54), we have,
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P(||R| - E[R]]| > AWn) < 265 YA > 0

2
Pick A such that 2e== < e. Then, since |R| = 0 = G is p-colorable, P(|R| < 0) > ¢
and P(||R| — E[|R|]| < A\y/n) > 1 — ¢, these events cannot be disjoint and hence

0 € (E]R|] — A\Wn, E[|R[] + A/n)
and hence,
P(|R| > 2Av/n) < P(IE[|R|] — |R]| > AVn) < e
Therefore, |R| < 2Ay/n w.h.p. Now we make the following claim:
Proposition 150. Any 2\\/n-sized graph is 3-colorable w.h.p.
Before proving this, we make the following remark:

Proposition 151. If H is graph that is not k-colorable. Then, there exist an induced
subgraph H' such that H' is not k-colorable and 6(H') > k

We will not provide the proof for this assertion; however, interested readers can refer
to [?, Theorem 2, Chapter 5] for further details. Now we can start proving Proposition
150.

Proof. If G[T] is not 3-colorable, then there exists a 7" C T" such that §(7”) > 3. There-

fore,
! n 3
P(3T’ C G,|T'| < t,G[T"] is not 3-colorable) < Z <k) ( )p
k=3
NN
K)\3) "

3
as e(G[T"]) > 2. Using k <t < 2\/n, each term would be of the form

vl

wlE
vf$

VAN

A/~ L=

k

OnVEkp? )k = O(ni=%)k = o(1)
if & > 2. Hence, w.h.p, G[T] is at most 3-colorable. [ |

Combining Theorem 151 and fact that Y = V(G) \ R is p-colorable, we obtain that,
w.hop, X(G) € {p, 0+ 1, pp 42, pu + 3} u
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13.5

The Pippenger-Spencer Theorem

Let H be a hypergraph. We say that £(H) can be properly N — colored if £(H) can
be partitioned into N matchings in H. By a matching, we mean a set of mutually non-

intersecting hyper-edges.
The smallest NV for which £(H) can be N —colored is called chromatic index of H, denoted

by X'(H).
If G is a graph, we know that A(G) < x(G) where A(G) is max vertex degree.
Also from Vizing-Gupta Theorem we have \'(G) < A(G) + 1. Overall we know:

AG) <X(G) <AG) +1

for graphs.
However it is computationally hard to figure out if ¥'(G) = A(G) or A(G) + 1.

For H note that x'(H) > A(H) where A still denotes max degree in H i.e.:
A(H) = max{d(z)|x € V(H)}, d(x)=# of hyperedges containing x

Theorem 152 (The Pippenger-Spencer Theorem). Given ¢ > 0, 3 a 6 > 0 and Dy(e)
s.t. the following holds if n > D > Dqy and:

e D>d(x)>(1—-0)D
o d(z,y) < 0DVx,y € V. where D = A(H) *
Then x'(H) < (1+¢)D

Note: d(x,y) is codegree of x,y i.e. d(x,y) =|{F € E(H) s.t. {z,y} C E}|

The proof of this theorem due to Pippenger-Spencer follows the paradigm of the
‘pseudo-random method’ pioneered by Vojtech Rodl and the ‘Nibble’.

Proof of the P-S theorem:

Idea: Pick each edge of £ with probability & independent of each other. Form the sub-
collection that is obtained, &, throw away these edges and other incident edges to &;.
The resulting hypergraph is H;. Then with high probability H; also satisfies the same
the same 2 conditions x of Pippenger-Spencer for a different D.

From &, extract a matching M, i.e. pick those edges of £ that do not intersect any
other edges of £. By repeating this procedure we have:

H=H, S H, B H,. . B H,

Dy ~ De~¢k (where H is k-uniform) since

k
P(edge surviving) ~ [(1 - %)D} =e "

171



asymptotically. Now let:

t
MO = U M, (M; are disjoint by construction)

i=1
For an edge A:
t
P(Ae MV) =" P(Ae M) and

i=1

P(A e M) ~ %, P(A e My) = Dil(l - %)MD_I) ~ Dile_d“ in general :

IP’(A € MZ) ~ %e‘eHe(Fl)

¢
, 1—eft «

P(A 1)y — ¢k (3) e(i—-1) _ ,—eek <£> ~
— PlAe M) =e Dze c p)\1=¢)%D

—ek (1—e")
l1—es °

M® by repeating the same process and so on.

where a = a(e, t, k) = ce Now, we can generate a second independent matching

Just like the Rodl’s nibble start by picking a ‘small’ number of ‘independent’ match-
ings from H. Let 0 < # < 1 and pu = [0D] and generate independent matchings
MDD M MG MW with each M@ having:

: a
P(Ae MY)~ —
(e M)~ 2
Let PO = MO UM U MO U...u MW,
Ho=HO 2L ) P2 gy P gy

Here first ‘packing’ P(1) is u = #D-colorable since we can assign each matching M@
a separate color. Note that x/(H) < u+ x/(HW) (since chromatic number is subaddi-
tive). Similarly P® is §D®") — colorable and so on.

Hence so far we need D + DWW + ... + DD colors. After removing colored edges
(i.e. edges € some PW), very few edges will be left in H(®).

Bounding \/(H®)): For any k — uniform hypergraph H with max degree D, we have:
X(H)<k(D—-1)+1= X' (H®) <k(D® —1)+1

Hence:
s—1
total # of colors we used = GZ DY 40D+ k(D® —1)+1~D

=1
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s will be chosen as large as possible. Here we need to make sure that H¥ is similar to
HO~D (i.e. all degrees are almost equal and the co-degree is small). (In particular we’ll
be interested in i = 1 case).

Fix any = € H, what is the E(dV)(x))?

d(l)(iv) = Z ILAQPO)

A:x€ AcH(0)

= EdV@)= Y (- %)ﬂ ~D(1— Ly D1 — 2P x De=a? = pO)
A:xzc AcH )

Hence E(dY(z)) ~ DW = De=?
Use Azuma’s inequality to get a concentration inequality for d¥)(z). The art is to pick
the right filtration.

(We will consider the following martingale X; = E[d")(z) | MM, M . M)

Let F; = {M® M . M®} since M@ is a matching = at most one edge contain-
ing x is exposed.

Then E[dY(z)|F;] ;= X; is a 1 — Lipschitz martingale. So by Azuma’s inequality:
P(|dV(z) — DWV| > A/m) < e /2 (Here x is fixed and p = 0D = o(1)D)

Now question is: "How to guarantee this for all vertices?”. Use Lovasz Local Lemma

(LLL):
A, = dY(z) = DW| > X\y/o(1)DW

(A7)

We know: P(A4,) < 2¢~*/2. To compute the dependence degree among {A,|z €
VH)E | |
MO = MO uMP U mP

Want to show that:

(Distance between two vertices is the shortest number of edges one needs to go from
x to y.)

Note that each matching M® is generated by atoms 1z where each £ € H(® and whose
"distance’ from x < t. So if distance between x and y > 2t+1, A, and A, are independent.

= Dependence degree

<(k—=1)DO 42k =)D 1D+ 4r(k—1)"(D—1)" +---+2t(k — 1)*(D - 1)*
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13.6

S (2t+1)(k)D(0))2t+1
So for LLL, we need:

e2e X/2(2t + 1) (kD) * ! < 1

Put A = y/o(1)DW to get: <= e@UHLEDOT

eo()D() /2

Asymptotically DM beats t (big time), so condition for LLL will hold hence we are
in business.

Finally repeating the previous argument:

where p? = D@ and D% = e=*%D and x/(H)) bounded above as before. Then we
get:

X' (H) <OD(1+e e 20 4. e (57Deb) L g De~s?

D
S 1:9—eoﬂ+k9D€_sa9 — D(l—l—O(l))

ast — 00, § = 00, € — 00, etc. Thus we’ll have the desired result.

When we do the calculations, everything works out nicely.

A Conjecture of Erdés-Faber-Lovasz (EFL) and a theorem of Kahn

Definition 153. A hypergraph H is nearly-disjoint or linear if

VA#BeEMH), |[AnB| <1

Conjecture 154. If H is nearly-disjoint on n vertices, then x'(H) <n

Theorem 155 (Erdos-de Bruijn Theorem). If H is a hypergraph on n vertices with
IANB| =1 VA+#B

then |E(H)| < n.

As an aside, |E(H)| < n = x/(H) < n. This theorem is tight in the sense that if it
is a projective plane of order n, then n? +n + 1 colors are needed = \'(H) = |E(H)|.
(9. = projective plane of order n)
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Theorem 156 (Theorem - Jeff Kahn (1992)). The EFL conjecture is asymptotically true,
i.e. X'(H) <n(l+4o(1)) for H nearly-disjoint on n-vertices.

Note that in this general situation, the edge sizes need not be the same; in fact they
need not even be absolutely bounded, and as we shall see, that causes some of the trouble.

Firstly, we start with a simple observation. If there is an integer k such that for each
edge E in a nearly disjoint hypergraph H we have |E| < k, then we can ‘uniformize’
the edge sizes. This is a standard trick, so we will not describe it in detail. One may
form a bipartite graph G whose vertex sets are the vertices and edges of H, and (v, E)
is an incident pair iff v € F. Then the uniformization described earlier is equivalent to
embedding G into a bipartite graph with uniform degree over all the vertices £ € £ such
that the graph is Cy-free. This is a fairly standard exercise in graph theory.

If all the edges are of bounded size, ie., if 3 < b < |E| < a for all edges E then
the Pippenger-Spencer theorem of the preceding section proves the result claimed by the
aforementioned theorem. Indeed, for any x count the number of pairs (y, F') where y # x,
and z,y € E. Since H is nearly disjoint, any two vertices of H are in at most one edge
so this is at most n — 1. On the other hand, this is precisely > . (|E| — 1), so we have
(b—1d(z) <n—1=d(z) <= <2

Here is a general algorithm for trying to color the edges of ‘H using C' colors: Arrange
the edges of H in decreasing order of size and color them greedily. If the edges are
E\, Esy, ..., E, with |E;| > |F;41| for all ¢ then when FE; is considered for coloring, we
may do so provided there is a color not already assigned to one of the edges Ej;,j < ¢
for which E; N E; # 0. To estimate |[{1 < j < i|E; N E; # 0}|, let us count the number
of triples (z,y,j) where x € E; N E;,y € E; \ E;. Write |E;| = k for simplicity. Again,
since H is nearly disjoint, any two vertices of H are in at most one edge, hence the
number of such triples is at most the number of pairs (z,y) with € E;,y ¢ E;, which
is k(n — k). On the other hand, for each fixed E; such that 1 < j < i, E; N E; # 0,
E;N E; is uniquely determined, so the number of such triples is |E;| — 1. Hence denoting
T ={1<j<i|E;NE;#0} and noting that for each j € T |E;| > k, we get

k(n —k)
(k=1)|Z] <) (1B = 1) <k(n—k) = |T| < o1
JELT
In particular, if C' > Iﬂﬁ# for every edge E, the greedy algorithm properly colors H.

Upshot: For any nearly disjoint hypergraph H on n vertices x'(H) < 2n — 3.

k(n—k)
k—1

if |E| > a for some (large) constant a, then |Z| < (1 + 2)n. So, for a given e > 0 if we

The previous argument actually shows a little more. Since is decreasing in k
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a > 1/e, say, then for C' = (1 + 2¢)n, following the same greedy algorithm will properly
color all edges of size greater than a. This motivates us to consider

o & ={E e |E|l <b}
o & ={Eecf:b<|E|<a}.
o & ={Ec& |E|>a}

for some absolute constants a, b which we shall define later. We have seen that x'(H;) <
(14 2¢)n; also by a preceding remark, if we pick b > O(1)/e we have x'(H,,) < en. Thus,
let us do the following.

Let C' = [(1 + 4e)n]; we shall color the edges of H using the colors {1,2...,C}. Let
Cy ={1,2...,[(1 +3¢)m]}; Cy :== C\ Cy. Fix a coloring fi of H,; using the colors of
C1, and a coloring fy of H,, using the colors of C5. We now wish to color Hs. We shall
attempt to do that using the colors of C. For each F € H, let

Forb(E) :={c € C1|EN A # () for some A € H,, f1(A) = c}.
Then as before, |[Forb(E)| < [{A € H)JANE # 0} < @ <nD for n = a/b,D = n.

In other words, every edge of H, also has a (small) list of forbidden colors for it. If we
can prove a theorem that guarantees a proper coloring of the edges with no edge given a
forbidden color, we have an asymptotic version of the EFL.

At this point, we are motivated enough (as was Kahn) to state the following

Conjecture 157. Let k > 2, v >0, 0<n < 1. Let C be a set of colors of size at least
(1+v)D. There exists B > 0 such that if H is a k-uniform hypergraph satisfying

o (1—-p0)D < d(x) < D for all vertices x of H,
e d(x,y) < BD for all distinct pairs of vertices x,y,
o For each A € &, there is a subset Forb(A) C C with |Forb(A)| < nD.
then there is a proper coloring f of € such that for every edge A, f(A) & Forb(A).

Note that the first two conditions are identical to those of the PS theorem. Also, it is
important to note that there might be some additional constraints on 7, v which indeed
is the case. We will see what those are as we proceed with the proof.

To prove this conjecture, let us again recall the idea of the proof of the PS theorem.
The i step/iteration in the proof of the PS theorem does the following: Fix 0 < 6 < 1,
and let ¢, s be large integers. Starting with the hypergraph H¥(1 < i < s) which satisfies
conditions (1), (2) above with D@ := ¢=9% D with a = a(e, t, k) = ee=*3=22 with pos-

1—es
itive probability there is a random packing P+ = MSA U /\/lﬁ)1 U---U Mﬁif e H®
with g; = [#D® ], such that
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® IP)(A c 'P(Hrl)) ~

~ DO

e For all A € H® the event “A € PU+D” is independent of all events “B € P+ if
distance between A, B is at least 2t. Here, the distance is in the hypergraph H®.

The idea is to try to give every edge its ‘default color’ as and when we form the packings
P@. Since each such packing consists of up to y; different matchings, P can be (by
default) colored using f; colors, so that when we complete s iterations we have used ) . y;
different colors to color all the edges except those of H(*). The PS theorem finishes off by
coloring these edges greedily using a fresh set and colors by observing that the number
of edges in H®) is ‘small’.

To keep track of these let us write

C = U Ci; UC*, with Cjj := {cin, iy - -5 Cip }

1<j<pi,1<i<s

where these sets C;; are mutually disjoint and the matching Mgi)l is by default allocated
color c¢;;.

In our present situation, the default colors allocated to some of the edges may be forbidden
at those edges. More specifically, define

BY = {AcHDACc Mgi)l for some j and ¢;; € Forb(A)}.
For each vertex v, let BY := |{A € BO|v € A}|.

At each stage, remove the ‘bad edges’ from the packings, i.e., the ones assigned a for-
bidden color. After s iterations the edges that need to be (re)colored are the ones in
H = HOJ;_, BY and the colors that are left to be used are those in C*. Note that
for each vertex v we have dy (v) < D) + B,. The first term is o(D); if the second term
is also o(D) then we may finish the coloring greedily. Thus, if we can show that we can
pick our random packing at stage 7 in such a way that apart from the criteria in the
PS-theorem, we can also ensure that B is ‘small’ (compared to the order of D) then
we are through (there is still some technicality but we will come to that later).

Hence to start with, we need to show that at each step ¢ of the iteration, we can get
a random packing PU*1) such that

e |dD(v) — DD| < o(DW) for all v.
o BY < &(BY) + o(D)

The proof of this part is identical to that of the PS theorem; use the same martingale,
the same filtration, and use Azuma’s inequality.
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To complete the proof, we need to get an (over)estimate of £ (Bl(,i)). For each A € HO,
Ais not in B if and only if for each ¢;; € Forb(A) we have A ¢ MY, Denoting
Forb®(A) := {j|c;; € Forb(A)} we have

[Forb(®) (A)| 0
Oy 1 (1__“ alForb™(A)]
P(Ae BY)=1 (1 D(i>) < DO .

Hence,

E(B{)= Y  P(AeBY)

veAeH ()

Y [Forb®(4)]

D@
vEAEH®

IS

Let i(A) := max{0 < i < s|A € H?}. Note that for any fixed 1,
HA € H|v e A i(A) =i}| < e " D.

Hence we have

SEB) SaY o O [ForbO(4)
=0

=0 vEACH®

< ao(1) Zeo‘ei|{A|U € A, i(A) =i}

=0

The last term in the above expression can be made ‘small’. This completes the proof
of Kahn’s theorem.
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14

14.1

Algebraic Rigidity versus Randomness

Algebraic constructions have a
form of rigidity that allow us to
define distributions with
sharply curtailed distributions.

In 2016, Bukh and Conlon [%] proved the long-standing open problem posed by Erdés
(albeit in a slightly weaker form): Given 1 < r < 2 with r € Q there exists a family %
of graphs such that ex(n; ) = ©(n") for sufficiently large n. The original conjecture of
Erdés posited the same for a single graph H instead of a family 2.

The main new idea here involves a randomized construction with an algebraic twist.
This chapter illustrates this principle with two instances of this principle. Both these are
results in extremal graph theory.

The Turan number for K

An old (though elementary) argument of Kovari-Sés-Turdn establishes the still-best-
known bound for the Zarankiewicz problem, which is basically the question of deter-
mining the Turdn number for complete bipartite graphs. For fixed constants s < ¢, and
n sufficiently large,

ex(n; Ky) < Ogaln*1).

The hard problem concerns a matching lower bound' for ex(n; K;). To see why this is
a much harder problem, let us first attempt a straightforward randomized construction.
Suppose V = LU R with |L| = |R| = n and consider the random graph with edge proba-
bility p = n~1/%. Then for any set U C L of size s, and a fixed v € R |N(U)| ~ Bin(n, 1/n)
so the Poisson approximation for the Binomial tells us that the probability that there is

no U with |N(U)| at least t is o(1) only if t = Q (@%), and this is unfortunately too

large for us to be of any use. This is in some sense a fundamental obstruction; since the

Tt is universally believed, and for good reason too, that this bound is asymptotically tight, upto
constants that depend on s, t.
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14.2

Poisson distribution has a smooth tail,? this construction is fundamentally doomed.

Another interesting open problem of a similar spirit is the Faudree-Simonovits con-
jecture: Let Oy, denote the graph which consists of ¢ internally vertex-disjoint paths of
length k each, between two fixed vertices. Then ex(n; ©y) < Ogo(n'*/*)as was shown
by Faudree & Simonovits. But a construction of a graph that matches a corresponding
lower bound (at least asymptotically) is still open.

Algebraic Rigidity

We are often interested in studying a finite subset of F™ (where I is a finite field) as a
zero set of some (small degree) polynomial f € F[X;,..., X,]. In this regard, we have
two very important facts:

Lemma 158 (Parameter Counting). Let F[X,..., X,] be the ring of polynomials in n
variables over F. For any f € F[Xy,...,X,], denote by Z(f) :={a € F" : f(a) = 0} the
zero-set of the polynomial f. Then:

1. Suppose S C F", then there exists a non-zero polynomial f € F[Xy,...,X,] of
degree < D such that S C Z(f) if |S] < (”JTFLD). In particular, |S| < (”J;LD) holds
for D =n -S|/

2. Let L be a collection of lines in F™. Then there exists a non-zero polynomial f €
F[X1,...,X,] of degree < D such that £ C Z(f) for all ¢ € L if (D+1)|L] < ("*7).
In particular, (D + 1)|£] < (”J;LD) holds for D = (2n + 1) - |£|/(=1),

Proof. Let f = > a; X' be a generic polynomial of degree < D, where i = (iy,...,1,)
is a multi-index with i; > 0,37, i; < D, and X* denoting Xj'--- Xj». f has ("}")
coefficients, and the equalities f(s) = 0 for each s € S lead to |S| linear equations in
those coefficients. Since the number of variables ((";D)) is greater than the number of
equations (|S]), there exists a non-trivial solution to those equations, which corresponds
to a non-zero polynomial of degree < D whose zero set contains S, as desired.

Now, note that every line ¢ in F" is of the form ((t) := ag + a;t for some ag,a; € F".
Thus, for any f € F[Xy,...,X,] of degree < D, f|, is a univariate polynomial of degree
< D. Thus, if f|,is 0 on D + 1 points on ¢, then f|, = 0, since a non-zero univariate
polynomial of degree < D over a field has < D roots.

Thus, for every ¢ € L, arbitrarily choose D+ 1 points on ¢, and set f to 0 on those points.
Then we have (D + 1)|£| linear equations, and once again if (D + 1)[£] < ("*7), we're
done. ]

Note the dichotomy that a degree D polynomial can either vanish on at most D points
on a line, or it must vanish everywhere on the line. We shall exploit this dichotomy to
prove some interesting results now. But before that, some definitions:

2The Poisson distribution is a discrete distribution, but the distribution function goes down smoothly
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Definition 159. Let L be a collection of lines in F™. Define
deg(L) := min{deg(f) : Z(f) 2 ¢ for all ¢ € L}
Also, forr > 2, define:
P.(L) :={p € F" : > r lines from L pass through p}
The points in P,.(L) are also known as the r-rich points of L.

Theorem 160. Suppose L is a collection of lines in T2, and write |L| = L. Suppose each
¢ € L has > A 2-rich points. Then deg(L) = O(L/A).

Remark 1: Note that planes are degree 1 curves. Thus, the above result should be
interpreted as imposing some sort of ‘approximate planarity’ (especially if A ~ L) on £
purely from local, combinatorial information.

Remark 2: If A = Q(\/f), then the above result is asymptotically the best possible.

Proof. Note that if A= O(v/L), then L/A = Q(v/L), in which case we're done, since by
158 we have a polynomial in F[X;, X, X3] of degree O(v/L) whose zero set contains all
lines in £. Thus WLOG assume A > 100v/L. Also set D = 103L/A.

The key idea is that although 158 will only allow us to cover O(D?) lines with a polynomial
of degree D, the prevalence of 2-rich points on other lines will ‘force’ them to lie in the zero
set of f: More precisely, suppose f covers (i.e., contains in its zero set) a sub-collection
L' C L of lines, which we call ‘RED’. All points on red lines are called red. Now, if some
non-red line contains D + 1 red points, then that line also lies in the zero set of f!

To formalize the above idea, set p := D?/(100L) = 10*L /A% and pick a p-random subset
L' of L. Then E|L'| = D?/100, and by the Chernoff bound ?,

D2
Pr(|L] = D?/50) < exp (—ﬁ)

Thus, with probability > 1 — exp (—1D—5Z), |L'| < D*/50 = 7+/|L'| < D. Consequently,

by 158, there exists a non-zero polynomial f € F[X;, Xs, X;3] of degree < 7+/|L'| < D
such that (J,.. ¢ C Z(f).
Now, for every ¢ € L\ L', define:

RED, := {z € { : z is red}

Now, let = be a 2-rich point on ¢. Then z € ¢, for some ¢, € L\ {¢}. Furthermore, if
x #y € {, then {, # {,, since two distinct lines can have at most one point in common.
Furthermore, ¢, is red with probability p. Thus,

E|RED,| > Ap = 10°L/A

3we use the following version: If X is a binomial RV with mean u, then Pr(X > (1 + 0)u) <
exp(—2p1/ (2 + )
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Once again, by Chernoff *,

Pr(|RED; | = 5000L/A) > 1 — exp (_#)
Thus, by an union bound over £\ L', we get:
Pr(|RED, | > 5000L/A for all ¢ € L\ L) > 1 — Lexp <—¥>
Finally,
Pr (|£’| < D2/50/\ |RED; | > 5000L/A for all £ € L\ ﬁ’) > 1—Lexp (—#) —exp <

1, 1250L
_— — e —_——
9 *P A

where the last inequality holds for D > 0.

Thus, if A < 1250L/1In(2L), then with positive probability all lines in £\ £ have >
5000L/A > D + 1 red points, and thus belong to the zero set of f, as desired.

For the remaining A, we're going to prove the statement by induction. Assume A >
1000L/In(L) °. Let L', f be as defined above, and define Ly := {{ € L : { ¢ Z(f)}.
Now, note that ¢ ¢ Z(f) can only happen if | RED,| < D. Thus, (keeping in mind that
A<L)

3 Chernoff 4050L
Pr(C ¢ Z(f)) < Pr(|RED, | < D) = Pr(|RED, | < 10°L/4) " < exp (— =~

< exp (—4050) < oo
Thus E|£2| < L/1000, and thus by Markov’s inequality with probability > 0.9, |Ls| <
L/100. Now, for each ¢ € Lo, the number of 2-rich points arising solely due to intersection
of lines within £ is > A — D (since the other red lines intersect any line in £5 at most D
times). Thus by setting L' := L/100, A’ := A — D and invoking the induction hypothesis
on Ly, we get a function f’ € F[X;, Xy, X3] such that deg(f') < O(L'/A’) and J,ep, £ €
Z(f"). But then note that (J,..¢ C Z(f - f'), and deg(f - f') < deg(f) + deg(f’) =
O(LJA)+ O(L'JA") = O(L/A) + O(LJ/A) = O(L/A), as desired. [ |

“note that the the occurrence of each 2-rich point = in REDy is an independent Bernoulli random
variable with probability p, once we have fixed a choice of ¢,. Also, we use the following version of
Chernoff: If X is a binomial RV with mean p, then Pr(X < (1 —§)u) < exp(—d2p/2)

®Note that 1000L/In(L) < 1250L/In(2L) for L > 0
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14.3 A brief tour into results from Algebraic Geometry

Definition 161. A wvariety(affine) over a field F defined by polynomials fi,..., fs €
FIXy,..., X, is given as V=V (f1,..., fs) ={x € F": fi(x) =0,i € [s]}.

Definition 162. A variety V.=V (f1,..., fs), fi € F",Vi € [s] is said to have complexity
at most M if s,n,deg(f;) < M,Vi € [s].

Definition 163 (Dimension of a Variety V). dim(V) is defined as the longest chain of
distinct nonempty (irreducible) subvarieties in V. If dim(V) = r, then Vo C V1 C Vo C
- CV, =V. We note that if | V| = O4(1), then dim(V) = 0.

Note: It should be mentioned that, any variety V corresponds to anideal Z C F[X1, ..., X,,],
Z(V):={f: f(z) =0for all z € V}.

Note: R :=F[Xy,...,X,]/Z(V) is known as the co-ordinate ring of the variety V.

But, what actually is dim(V), anyway?

For a vV € F", V = (f) means that V = {x € F" : f(x) = 0}. Note that, V(f) can
be represented as some kind of a “surface” in F”. Dimension of a variety V is then, the
minimum number of “co-ordinate functions” that will specify any point of the variety.
Now, we take a look at the “General Algebraic Geometry chart”, which provides corre-
spondence between algebraic and geometric interpretations.

Algebraic view Geometric view
Ideals in k[ X, ..., X,] subsets of k"

Ul

Radical Ideals, Z = v/Z Affine varieties

Ul

Prime ideals Irreducible varieties

Note: V is a reducible variety if V' = V;UV5,, where V; and V5, are non-trivial sub-varieties
of V.

Theorem 164 (Lang-Weil Bound). Suppose W be a variety of complexity M defined
over IF, (algebraic closure of F,). Then:

o [W(F,)| < On(q™™)

e If f is absolutely irreducible (i.e irreducible over the algebraic closure F,, for example
F(z,y,2) = 2® + xy + 2z is irreducible over both RED and C), then |W(F,)| =

gdimW) (1 + OM(\/%)) — qim(W) OM(qdim(W)—%)
We now give the following proposition:

Proposition 165. W be an affine variety over Fq of complexity at most M. W C
(F )" W = {fi,..., fm) for fi € F,[Xy,...,X,] Then, 3 absolutely irreducible varieties
Yi,...,Ys such that W(F,) = J;_, Yi(F,). Moreover, both s and the complezity of Y;,Vi €
[s] is Opr(1).
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Proof. Write W as the union of its Fy-irreducible components, let W (F,) = X; U X, U
-+ U X,, where each X; is [F, irreducible variety. Pick such a [, irred. component X.
If X is not absolutely ireducible, let Y7, ..., Y; be the absolutely irreducible components,
i.e X(F,) = J'_, Yi. Now, the Frobenius map ¢ : F, — F, : @ + 29 preserves each of the
fi € F[X1,...,X,] that defines W, hence preserves the expressions W (F) and W (F,) as
well. (Note: ¢ : F, — F, fixes elements of F, pointwise, and only those of F,).

Now, we observe that, ¢(Y;) = Y, for some j(this follows by absolute irreducibility,
otherwise if there was some intersection or ¢(Y;) C Yj, then the Y;’s won’t be absolutely
irreducible). Also note that, ¢ acts transitively on the ¥;’s. If not, we take an orbit
O of this action. But then, ij co Y; is fixed by ¢(by the definition of orbit under the
action of ¢). Since this is fixed by ¢, we must have ij co Y; € Fy, which contradicts the
irreducibility of X, unless the orbit includes all the Y;’s that constitute X.

Since X € F, is fixed by ¢, by the previous argument, we have X (F,) C Y;(F,) N
Y5(F,)N---NY;(F,). Hence, we may thus replace X (IF,) by (), Y;(F,). But, (), Yi(F,) has
lower dimension than W(F,). Thus, we may iterate this process again by now starting
with (), Yi(F,), and moreover the initial complexity of W (F,), and each of Y;(F,) is Op(1).
Thus, this process must necessarily terminate in Oy;(1) steps, and hence the statement
of the proposition follows. |

The Lang -Weil bound together with the above proposition gives the following di-
chotomy theorem:

Theorem 166. Suppose, W and D are varieties defined over F, of complexity at most
M. Then, if g > 0 then one of the following holds:

1. [W(F,) \ D(F,)| < ¢, where ¢ depends only on M
2. [W(Fy) \ D(Fy)| > 3

Proof. The proof requires the following fact from algebraic geometry:

Fact: Suppose, W is absolutely irreducible and defined over I, and suppose dim (V) > 1.
Then, for any other variety D, wither W C D or W N D as an [F, variety has lower
dimension than W (F,)

Now, following 165, we write W (IF,) as union of absolutely irreducible varieties: W (IF,) =
U, Yi(F,), where Y;(F,)’s are absolutely irreducible of complexity Oy;(1). Now, suppose
dim(Y;) > 1 for some i. By 164, we get that |Y;(F,)| = ™09 — Oy (¢@™O9-2). By the
fact above, Y; C D, or dim(Y; N D) < dim(Y;) — 1. We now consider the following cases:
Case-1: If dim(Y; N D) < dim(Y;) — 1 (i.e Y; € D), then:

[YilFy) \ D(F,)| > q“"0 — Oar(q#m0077) = Oay (g0

14.1
> %,Vq>>0 ( )

Since Y;(F,) € W(F,), we have that, |W(F,) \ D(F,)| > [Yi(F,) \ D(F,)| > £, and
statement-2 of the theorem follows.
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14.4

Case-2: If Y; C D, the contribution of Y; to W (F,) \ D(F,) is nill. Since complexity of
W is at most M, if all Y;’s fall in this case, statement-1 of the theorem would follow.
Thus, proof of the theorem is complete. |

Bukh's construction for ex(n; Ky¢) for t >, 0

What we really seek is a distribution (i.e. a random graph model) that does not admit a
slowly vanishing tail distribution. The connection with algebraic structures arises thus:
Since geometric objects often display some forms of rigidity, we need a geometric per-
spective in the required random model. We illustrate this point with a simple example:
If f(x) is a polynomial of degree d in n variables, and suppose f vanishes on more than
d points on some line (over some field F) then f vanishes on the whole of the line. This
sharp dichotomy - either the polynomial has at most d zeroes on the line or vanishes
identically on the line - is an algebraic consequence.

Let us explore this a bit more, with an eye on the lower bound for ex(n; K ;). Inciden-
tally, the lower bound asymptotically matches the upper bound (at least, the exponent)
for t > (s —1)!, and that is a result of Alon-Ronyai-Szabo, which incidentally comes from
what are called ‘norm graphs’.

Suppose f(X,Y) be a polynomial in 2s variables over [F,. Since polynomials also
describe functions, we may think of f as a function f : Fy x F; — F,. Define the bi-
partite graph Gy = (L, R, F) with L = R =TF;, and (u,v) € L x R is an edge in G iff
f(u,v) = 0. In other words, the affine variety defined by f describes the graph G/.

We now turn to note some facts from Algebraic Geometry. Some of these results are
simple (not necessarily elementary!) but some other facts (the Lang-Weil bound) are
quite non-trivial and we shall not get into their proofs.

Now we are in a position to see some applications of this dichotomy theorem.

Theorem 167 (Algebraic Dichotomy). Let q be a prime power and let W, D be affine
varieties defined over F, having complexity at most M. Then, if ¢ > 0, ezactly one of
the following holds:

1. [W(E,)\ D(E,)| < C = C(M).
2. [W(F,)\ DF,)| > q/2.

Now, we shall see some applications of the above theorem in extremal combinatorics.
For a positive integer n and a graph H on m < n vertices, let ex(n, H) denote the
maximum number of edges an n-vertex graph can have so that it contains no copy of H.
A classic extremal problem posed by Zarankiewicz is to compute ex(n, Ks;) where K,
denotes the complete bipartite graph where one part has s vertices and the other has .
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Theorem 168 (Kovari-Sés-Turan). Given n and s <'t,
ex(n, Kyy) < Og(n*73).

Although the above upper bound has been known for more than 60 years now, we do
not yet know whether or not the widely believed and conjectured lower bound

ex(n, Kyy) = Qg y(n*%) (14.2)

is true. However, there exist proofs for this in some very special cases. One such case
is when (s,t) € {(2,2),(2,3),(3,3)}. Another was proved in 1999 by [?] and is stated
below.

Theorem 169 (Alon-Rényai-Szabd). Ift > (s — 1)! + 1, then 14.2 holds.

The proof of this result goes through some highly involved geometric constructions
that use ‘projective norm graphs’ which we shall not address here. We instead study the
following result from [?] which uses the probabilistic method and 167 to give a much
simpler proof of a similar result.

Theorem 170 (Bukh). Given s € N, there exists a constant C = C(s) such that for
any t > C, ex(n, K;;) = Q&t(nz_%).

Remark: In the process of simplifying the proof, Bukh loses the precision that comes
with explicitly stating C'(s) in the statement (as a matter of fact, this constant is the C
from the statement of 167), but as long as it is a constant depending only on s, this is
not an issue.

Now, we proceed with the proof of 170. Let ¢ be a prime power. Construct a graph
G = G(LUR,E) with L = R = F;. Let the number of vertices in this graph be
N = 09(¢®). For a polynomial p € F,[X;, Xs,... X, Y1, Ys, ..., Y], the edges of G = G,
are defined as (@, 0) € E if and only if p(a,v) = 0. Pick a uniformly random polynomial
of degree at most d = d(s) (d will be fixed later). By this, we mean that the coefficients
of p are picked uniformly at random and independently from F,. Let

p = jg: adﬁ)(fl...)(gs.§G?1...y2%
&f|a|+|6|<d

We want to estimate the number of edges in this graph G,. To do so, we try and compute

E(e(Gy) = 3 Prip(a, ) = 0.

a,0eF;
Proposition 171. For any 4,0 € F,, Prlp(a,0) = 0] = 1/q.
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Proof. Sampling a random polynomial (satisfying the degree bound) can be thought of
as sampling a random polynomial p = py + a where py is such that py(0,0) = 0 (in other
words, pp does not have a constant term). Now, once such a py has been sampled, there is
exactly one choice of a € F, for which the polynomial vanishes, completing the proof. W

So, we have

1 1
B(e(Gy) = -4 = ¢! = (v ),

which matches the extremal number we are going for. We are still left with the task to
verify that this graph does not contain a K.

Let U C L be a fixed set of s vertices. Define the common neighbour set N(U) =
{v € R:p(a,v) =0forall u € U}. We want to calculate the expected size of this set
N(U). Observe that if [N(U)| > t for some integer ¢, this implies the existence of a K,
inside the graph GG. Now,

IN(U)| = Z 1p(a;,5)=0 viels] (14.3)
o€l
— |N(U)|" = Z 1p(a;,5;)=0 viels]je[r) (for some integer ) (14.4)
VY yenny ’U’,«EFZ
= EINWU)["= Y Prlp(i;, ;) =0Vie[s],j €[r]]. (14.5)
015...,0r EFY

Assume for the time being that the events p(t;, 0;) = 0 are jointly independent, then the
above probability (Pr[p(i;, ;) = 0 Vi € [s],j € [r]]) is ¢7'%, where [ is the number of
distinct v;s.

Now, we try and view E|N(U)| from a different lens. For a fixed U (as above), let
fitYh, ..., Ys) = p(@;, Yr,...,Ys) and W be the variety (fi,..., fs). This W = W(F,) is
a variety defined over F, of complexity at most M = M (s). Then, by 167, either

1. W] <C=C(s)or
2. [W[=>q/2.

For V.={0,...,9,} asin 14.4 (a set where p(@;, ;) = 0Vi € [s],j € [r]), clearly V C W.
Now, we use a neat trick which follows as a simple application of Markov’s inequality.
For a suitably chosen A > 0,

BN©)| 2 ») = Pr(N@) > ¥) < ST

Setting A = C'(s) as in our formulation of the algebraic dichotomy, this gives us that

BN ()"

@2y (14.6)

PINU)| > C(s)] = P[IN(U)| = /2] <
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Fix 1 <1 < randlet V = {01,...,9}. Modulo the assumption that the events
{p(@;,v;) = 0}, ; are jointly independent, we have that Pp(a;,0;) =0 Vi € [s],7 € [l]] =
¢~ '*. Now, returning to 14.5, we have

r

. _~—~ (N 1 M,
E|N(U)| SZ([)MZ’T% SZT: Ms,r
=1 )

=1

where M, denotes the number of surjections from [r] — [I]. Thus E|N(U)|" < M, (this
is fine as r = r(s)), and so from 14.6, we have

2" M,
PIN(U)| > C] < —=

(where C' = C(s) is the constant from the dichotomy threshold).
Call a set U C L of size s ‘BAD’ if [IN(U)| > C.

: B

S q s!

s QTMS . 5271”MS 2T
E(number of BAD sets) < (q ) . r <4 TZ =

So, there exists a polynomial p such that G, has at most B = O,,(¢°~") BAD subsets(of
L) of vertices. From each BAD subset of such a graph, delete one vertex, this leaves
the remaining graph with no BAD subsets. Additionally, such a graph will have at least
¢t — Oy, (¢ ") - ¢° edges’.

Now, choosing s?+s—r < 2s—1 is sufficient to achieve the desired bound. For simplicity,
set 24+ s —r=2s—2, thatisr =52 — s+ 2.

Now, it remains to choose the degree d = d(s) suitably and argue the joint inde-
pendence of the events {p(u;,0;) = 0};;. The following lemma shows that d = rs =
s(s? — s +2) is enough:

Lemma 172. Suppose f is a uniformly randomly chosen polynomial of degree at most d
in F[X1,..., X, and suppose G, ..., Y are distinct points in IFZ such that d > m — 1
and q > (’;) Then

- . 1
PLf(3:) = 0 Vi] = e
q
Proof. Suppose first that y11, 921, . . ., Ym,1 are pairwise distinct (i.e., the first coordinates

are pairwise distinct). Write f(X) = g(X) 4+ h(X), where g(X) = S7",' a; X} consists

of all terms with only X, and h(X) consists of all other terms. Hence, if coefficients of
h are fixed, then by Lagrange interpolation, there is a unique value of a; that satisfies
f(y;) = 0 for all j. Since there are m coefficients that are fixed, the probability of a

random f satisfying the condition is qim.

6This can be argued by viewing [e(G) — (number of BAD subsets)] as a random variable and com-
puting its expectation.
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Now consider the general case. The idea is to find an invertible linear transform 7T
such that (7'g;); are pairwise distinct. Then, f chosen uniformly at random is equivalent
to fi = f © T~! chosen uniformly at random, and f;(T%;) = f(7;), so we’ll be done by
the first part.

To that end, consider a; € [F, to be chosen later, and let (Tf( 1 =X;+ Z;Q o; X,
and (TX ); = X for all j > 2. Since determinant of 7" is 1, T is invertible.

If (ng)l = (ng)l, then

t t
Yiq + Z QYir = Yj1 + Z QY-
1=2 1=2

Note that if y;; = y;; for all [ > 2, then we get y;1 = y;1, which is impossible since
¥; # y;. Hence y;;, # y;i, for some [y > 2. So if o is fixed for [ # Iy, then there is a
unique value of [y that makes (T'g;); = (T'9;)1. Therefore there are at most ¢~ tuples
(ag,...,aq) for which (T'y;)1 = (T'9;)1. Summing over all pairs 4, j, the number of bad
tuples is at most (7)¢'™? < ¢'~!, so there is a tuple (as,..., ;) for which (T'g;); are
pairwise distinct, as required. [ |
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