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a b s t r a c t

Let n be any positive integer and F be a family of subsets of [n]. A family F ′ is said
to be D-secting for F if for every A ∈ F , there exists a subset A′

∈ F ′ such that
|A ∩ A′

| − |A ∩ ([n] \ A′)| = i, where i ∈ D, D ⊆ {−n, −n + 1, . . . , 0, . . . , n}. A D-secting
familyF ′ ofF , whereD = {−1, 0, 1}, is a bisecting family ensuring the existence of a subset
A′

∈ F ′ such that |A∩ A′
| ∈ {⌈

|A|

2 ⌉, ⌊
|A|

2 ⌋}, for each A ∈ F . In this paper, we study D-secting
families for F with restrictions on D, and the cardinalities of F and the subsets of F .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let n be any positive integer and F be a family of subsets of [n]. Another family F ′ of subsets of [n] is called a bisecting
family for F , if for each subset A ∈ F , there exists a subset A′

∈ F ′ such that |A ∩ A′
| ∈ {⌈

|A|

2 ⌉, ⌊
|A|

2 ⌋}. What is the minimum
cardinality of a bisecting family for any family F?We pose a more general problem based on the difference between |A∩A′

|

and |A ∩ ([n] \ A′)|. We say a family F ′ is D-secting for F if for each subset A ∈ F , there exists a subset A′
∈ F ′ such that

|A ∩ A′
| − |A ∩ ([n] \ A′)| = i, where i ∈ D, D ⊆ {−n, −n + 1, . . . , 0, . . . , n}. Let βD(F) denote the minimum cardinality of

a D-secting family for F . In particular, when D = {−1, 0, 1}, the family F ′ becomes a bisecting family for F . We study two
cases depending on D: (i) D = {−i, −i+ 1, . . . , 0, . . . , i}, and (ii) D = {i}, for some i ∈ [n]. Observe that if D = {i}, only those
sets A ∈ F for which |A| ∼= i (mod 2) can attain a value of i for |A ∩ A′

| − |A ∩ ([n] \ A′)|. So, we consider only those sets for
which |A| ∼= i (mod 2), when D = {i}. We define βD(n) as the maximum of βD(F) over all families F on [n] and βD(n, k) as
themaximum of βD(F) over all familiesF ⊆

(
[n]
k

)
. WhenD = {i} (D = {−i, −i+1, . . . , i}), we sometimes abuse the notation

to denote βD(F) by βi(F) (resp., β[±i](F)).
Consider an example family F which consists of all the 4-element subsets of {1, . . . , 6}. Note that since each subset

A ∈ F has an even cardinality, β0(F) = β[±1](F). Let F ′
= {{1, 2, 3}, {1, 2, 4}, {1, 3, 5}}. It is not hard to verify that every

4-element subset A ∈ F is bisected by at least one element in F ′. So, β0(F) ≤ 3, for F =
(
[6]
4

)
. In fact there is no pair of

subsets of {1, . . . , 6} such that every 4-element subset A ∈ F is bisected by one of them, which is asserted by Proposition 21.
Therefore, β0(F) = 3.
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Discrepancy and D-secting families

Bisecting families may also be interpreted in terms of ‘discrepancy’ of hypergraphs under multiple bicolorings. Let
G(V , E) be a hypergraph with vertex set V = {v1, . . . , vn} and hyperedge set E = {e1, . . . , em}. Given a bicoloring X ,
X : V → {−1, +1}, let CX (e) = |

∑
v∈eX(v)| denote the discrepancy of the hyperedge e under the bicoloring X . Then,

the discrepancy of the hypergraph G, denoted by disc(G), is defined as disc(G) = minXmaxe∈ECX (e). For definitions, results,
and extensions of discrepancy and related problems, see [2,5,9,13]. Below, we define βD(E) in terms of the discrepancy of
a hypergraph G(V , E), where D = [±i]. Let t ∈ N be the minimum number such that there exists a set of t hypergraphs
G1, . . . ,Gt on vertex set V = [n] with (i) disc(Gj) ∈ [±i], for 1 ≤ j ≤ t , and, (ii) ∪t

j=1Gj = G(V , E). Given an optimal D-secting
family F ′ of E, it is easy to construct a set of hypergraphs G1, . . . ,G|F ′| satisfying the above conditions. Again, given a set
of t hypergraphs G1, . . . ,Gt satisfying conditions (i) and (ii) under bicolorings X1, . . . , Xt , respectively, let (A+1

j , A−1
j ) be the

bipartition of V formed by the bicoloring Xj. Then, F ′
= {A+1

1 , . . . , A+1
t } is a D-secting family for E. Thus, β[±i](E) = t .

Moreover, the discrepancy of a hypergraph G([n], E) can be defined in terms of β[±i](E) as follows. The discrepancy of a
hypergraph G([n], E) is the minimum i ∈ N such that β[±i](E) = 1.

Separating and bisecting families

Given a family F of subsets of [n], finding another family F ′ with certain properties has been well investigated. One of
the most studied problem in this direction is the computation of separating families. Let F consist of pairs {i, j}, i, j ∈ N, i ̸= j
and F ′

= {A′

1, . . . , A
′
t} be another family of subsets on [n] (F can be viewed as the edge set of a graph on vertex set [n]). A

subset A′

l separates a pair {i, j} if i ∈ A′

l and j ̸∈ A′

l or vice versa, l ∈ [t]. The family F ′ is a separating family for F if every pair
{i, j} ∈ F is separated by some A′

∈ F ′. It is easy to see that F ′ is indeed a bisecting family for F . Let f (n) denote the size
of a minimum separating family F ′ for a family F consisting of all the

(n
2

)
pairs (edge set of a complete graph on n vertices).

Rényi [17] proved that f (n) = ⌈log2n⌉. Observe that f (n) is the minimum number of bipartite graphs needed to cover the
edges of a complete graph Kn. We note the following generalization of the above statement for arbitrary graphs.

Proposition 1 (Folklore). Let χ (G) denote the chromatic number of graph G. Then, ⌈log2χ (G)⌉ bipartite graphs are necessary and
sufficient to cover the edges of G.

Note that f (n) is equal to β0(n, 2), thus β0(n, 2) = ⌈log2n⌉. In fact, when the family F is the edge set of a graph G(V , E),
where V = [n], any bisecting family F ′ for F forms a covering of the edges of G with |F ′

| bipartite graphs. We state these
observations as a corollary below.

Corollary 2. For a graph G(V , E), β0(E) = ⌈log2χ (G)⌉. Thus, β0(n, 2) = ⌈log2n⌉.

See [10,17,19] for details on separating families.

1.1. Notations and definitions

Let [n] denote the set of integers {1, . . . , n}, ±i denote the set of integers {−i, i}, and [±i] denote the set of integers
{−i, −i + 1, . . . , i}. Let F denote a family of subsets of [n] and F ′ denote another family of subsets with some desired
intersection property with elements of F . Let

(
[n]
k

)
denote the family of all the k-sized subsets of [n]. We use β[±i](F) (resp.,

βi(F)) to denote βD(F) if D = [±i] (resp., D = {i}). We denote an n-dimensional vector R ∈ {0, 1}n (or {−1, +1}n) as
R = (x1, . . . , xn) where xj ∈ {0, 1} (resp., {−1, +1}). The weight of a vector R = (x1, . . . , xn) ∈ {0, 1}n (or {−1, +1}n) is the
number of xj’s which are 1 (resp., -1), 1 ≤ j ≤ n. Vector R ∈ {0, 1}n is even (resp., odd) if the number of 1’s in R is even (resp.,
odd). A vector R ∈ {−1, 1}n is even (resp., odd) if the number of −1’s in R is even (resp., odd). We use log to denote log2 in
the rest of the paper.

1.2. Our contribution

We begin by addressing the problem of bounding and computing βD(n), where D = [±i]. We demonstrate a construction
yielding an upper bound of ⌈ n

2i⌉ for β[±i](n). Further, we show using a polynomial representation for the parity function that
⌈

n
2i⌉ is also a lower bound for β[±i](n).

Theorem 3. β[±i](n) = ⌈
n
2i⌉, n ∈ N, i ∈ [n].

We study β[±i](F) for a family F on [n], in terms of i and |F|, using Chernoff’s bound.

Theorem 4. Let F be a family of subsets of [n] and let m = |F|. Let D = [±i], where i ≥

√
3n ln(2m)

t and t ≤
1
2 logm. Then,

βD(F) ≤ t.
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In particular, if i ≥
√
4.2n + 1 and |F| = O(nc), for c ∈ N, a D-secting family F ′ of cardinality O(log n) can be computed

for families F , thus improving the bound from Theorem 3 for this range of i and |F|.
Subsequently, we study βD(n), where D is a singleton set, i.e., D = {i}. Note that βi(n) = β−i(n). Moreover, when

D = {−i, i}, note that β±i(n) ≤ βi(n) ≤ 2β±i(n). Therefore, we focus on establishing bounds for βi(n). We demonstrate
a construction to show that β1(n) is at most ⌈

n
2⌉. We also show that β1(n) is at least ⌈

n
2⌉ using arguments similar to those

in the proof of Theorem 3 about β[±1](n). In Section 3.2, we establish a lower bound of n−i+1
2 for arbitrary i ∈ [n], i ≥ 2. We

demonstrate a construction establishing βi(n) ≤ n − i + 1. We have the following theorem.

Theorem 5. n−i+1
2 ≤ βi(n) ≤ n − i + 1, n ∈ N, i ∈ [n].

In Section 4, we consider families F , F ⊆
(
[n]
k

)
. We study β[±1](n, k) in detail when k is even; the analysis for βi(n, k) for

i ∈ [n] and for the case when k is odd is analogous.We have lower bounds for β[±1](n, k) given by Theorem 6, Observation 11
(see Section 1.3), and Theorem 7 which are useful when k is a constant, k is sublinear in n, and k is linear in n, respectively.
We establish the following theorem using entropy based arguments.

Theorem 6.

β[±1](n, k) ≥

⎧⎪⎨⎪⎩
log(n − k + 2), when k is even and

k
2
is odd,

⌈(log⌈
n

⌈
k
2⌉

⌉)⌉, for any k ≥ 2.

When cn < k < (1− c)n for a constant c , 0 < c < 1
2 , we establish an improved lower bound for β[±1](n, k) using a vector

space orthogonality argument, enabling us to apply a recent result of Keevash and Long [11].

Theorem 7. Let c be a constant such that 0 < c < 1
2 and n ∈ N. If cn < k < (1 − c)n, then

max
{
β[±1](n, k), β[±1](n, k − 1), β[±1](n, k − 2), β[±1](n, k − 3)

}
≥ δn,

where δ = δ(c) is some real positive constant.

Let F be a family of subsets of [n]. The dependency of a subset A ∈ F denoted by d(A,F) is the number of subsets Â ∈ F ,
such that (i) |A ∩ Â| ≥ 1, and (ii) A ̸= Â. The dependency of a family d(F) or simply d, denotes the maximum dependency
of any subset A in the family F . We study β[±1](F) for families F consisting of k-sized sets with bounded dependency and
using a corollary of the Lovász local lemma from [15], we prove the following probabilistic upper bound.

Theorem 8. For a familyF consisting of k-sized subsets of [n] and dependency d, β[±1](F) ≤

√
k
c (ln(d+1)+1), where c = 0.67.

We also study the case when F consists of all the subsets of [n] of cardinality more than k, k ∈ [n] and we have the
following bounds.

Theorem 9. Let F =
(
[n]
k

)
∪
(

[n]
k+1

)
. . . ∪

(
[n]
n

)
. Then, n−k+1

2 ≤ β[±1](F) ≤ min{
n
2 , n − k + 1}.

Note that when n − k is a constant, Theorem 9 gives better upper bounds for β[±1](F).

1.3. Some quick observations

In this section, we derive a few basic results on βD(F), βD(n) and βD(n, k). P is a property for a set system if it is invariant
under isomorphism.1 It is not hard to see that for any two isomorphic families F1 and F2 on [n], βD(F1) = βD(F2). So, βD is
a property of the set system. For any two families F1 and F2, F1 ⊆ F2, βD(F1) ≤ βD(F2). Therefore, βD(n) and βD(n, k) are
monotone with respect to n. However, βD(n, k) is not monotone with respect to k: β[±1](n, 2) = ⌈log n⌉ (see Corollary 2),
β[±1](n, n

2 ) = Ω(
√
n) (see Observation 11) whereas β[±1](n, n − 2) = 3 (see Proposition 21).

We note that for any integer t , ‘‘βD(F) ≤ t ’’ is not hereditary.2 This can be demonstrated with the following example.
Let F = {{1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}} be a family on {1, . . . , 5} and S = {1, 2, 3}. FS = {{1, 2}, {1, 3}, {2, 3}} is the
subfamily of F induced by S. It is easy to see that when D = [±1], βD(F) = 1 whereas βD(FS) = 2.

1 Two set systems H = (X; E1, E2, . . . , Em) and I = (Y ; F1, F2, . . . , Fm) are said to be isomorphic if they have the same numberm of subsets, and if there
exist a bijection ϕ : X → Y and a permutation π onM = {1, 2, . . . ,m} such that

ϕ(Ei) = Fπ (i) (i = 1, 2, . . . ,m).

See page 411 of [3] for related notions.
2 For a familyF = {A1, . . . , Am} on [n], and a set S ⊆ [n], the familyFS = {As

1, . . . , A
s
m} is called a family induced by S onF if As

j = Aj ∩ S, for 1 ≤ j ≤ m.
A property P is hereditary if F ∈ P implies FS ∈ P for every induced family FS of F , S ⊆ [n].
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Observation 10. Let F be a family of subsets of [n] and F ′
= {S1, . . . , Sr} be a D-secting family for F , r ∈ N and D = [±i].

Then, H = {H1, . . . ,Hr} is also a D-secting family for F , where Hi ∈ {[n] \ Si, Si}, 1 ≤ i ≤ r.

For the rest of the section, assume that n is even (since it does not effect the asymptotics). Note that when k is even (resp.,

odd), the maximum number of k-sized sets A ∈ F that can be bisected with any set A′
⊆ [n] is

( n
2
k
2

)2
(resp., 2

( n
2

⌈
k
2 ⌉

)( n
2

⌊
k
2 ⌋

)
),

k ∈ [n]. This gives a trivial lower bound for β[±1](n, k) using Stirling’s approximation, i.e.,
√
2πn( ne )

n
≤ n! ≤ e

√
n( ne )

n.

Observation 11.

β[±1](n, k) ≥

(n
k

)
2
( n

2
⌈
k
2 ⌉

)( n
2

⌊
k
2 ⌋

) = Ω

(√
k(n − k)

n

)
. (1)

The constant in the lower bound is C =

√
2π2.5

e4
≥ .45. When k =

n
2 , this corresponds to a lower bound of Ω(

√
n) for

β[±1](n, n
2 ). Moreover, using the monotone property, β[±1](n) ≥ β[±1](n, n

2 ) = Ω(
√
n). In what follows, we derive improved

upper bounds and lower bounds for βD(n). We start our discussion with the case D = [±i], i ∈ [n], followed by the case
D = {i}.

2. Bounds for β[±i](n)

Recall that β[±i](n) is themaximum of β[±i](F) over all familiesF on [n], where β[±i](F) denotes theminimum cardinality
of a [±i]-secting family for F .

2.1. Upper bounds

Lemma 12. β[±i](n) ≤ ⌈
n
2i⌉.

Proof. LetF denote the family consisting of all the non-empty subsets of [n]. Inwhat follows, we demonstrate a construction
that yields a [±i]-secting family of cardinality n

2i for F , assuming 2i divides n. Let B1 = {1, 2, . . . , n
2 }. The set B2 is obtained

from B1 by swapping the largest i elements of B1 with the smallest i elements in [n] \ B1. So, B2 = {1, 2, . . . , n
2 − i, n

2 + i, n
2 +

i− 1, . . . , n
2 + 1} (we write the swapped elements in descending order for convenience). In general, Bj+1 is obtained from Bj

by swapping the largest i elements of B1∩Bj (i.e., { n
2 − ij+1, . . . , n

2 − ij+ i}) with the smallest i elements of ([n]\B1)∩([n]\Bj)
(i.e., { n

2 + ij− i+ 1, . . . , n
2 + ij}). We stop the process at B n

2i
= {1, . . . , i, n− i, n− (i− 1), . . . , n

2 + 1}. Let F ′
= {B1, . . . , B n

2i
}.

We prove that F ′ is indeed a [±i]-secting family for F . For the sake of contradiction, we assume that there exists some
A ⊆ [n] such that |A ∩ Bj| − |A ∩ ([n] \ Bj)| ̸∈ D, for all Bj ∈ F ′. Let cj := |A ∩ Bj| − |A ∩ ([n] \ Bj)|, 1 ≤ j ≤

n
2i . From the

construction of Bj+1 from Bj, observe that |cj−cj+1| ≤ |Bj△Bj+1| = 2i, 1 ≤ j ≤
n
2i −1. Clearly, c1 = d, for some d ̸∈ {−i, . . . , i}.

Claim 13. c n
2i

≤ −d + 2i for d > 0 (resp. ≥ −d − 2i for d < 0).

Proof. Let B n
2i +1 be the set obtained from B n

2i
by swapping the largest i elements {1, . . . , i} of B1 ∩ B n

2i
with the smallest i

elements {n − i + 1, . . . , n} of ([n] \ B1) ∩ ([n] \ B n
2i
). Let c n

2i +1 = |A ∩ B n
2i +1| − |A ∩ ([n] \ B n

2i +1)|. Observe that since c1 = d
and B n

2i +1 is [n] \ B1, c n
2i +1 = −d. Moreover, |c n

2i
− c n

2i +1| ≤ 2i. So, c n
2i
is at most −d + 2i. The proof for the case of d < 0 is

similar. □

We now have these exhaustive cases.

1. d ≥ 2i (or d ≤ −2i): Note that D = {−i, . . . ,+i} and |cj − cj+1| ≤ 2i, for all 1 ≤ j ≤
n
2i − 1. Using Claim 13, c n

2i
≤ 0

(resp., c n
2i

≥ 0). Therefore, there exists at least one index l, 1 ≤ l ≤
n
2i − 1, such that cl · cl+1 ≤ 0. Observe that either

of cl or cl+1, or both lie in {−i, . . . ,+i}. This is a contradiction to our assumption that A is not D-sected by F ′.
2. i < d < 2i: From Claim 13, it is clear that c n

2i
< i. So, if there exists an index l, 1 ≤ l ≤

n
2i − 1, such that cl · cl+1 ≤ 0,

either cl or cl+1 or both lie in {−i, . . . ,+i}. Otherwise, c n
2i

∈ {0, . . . , i − 1} ⊂ D as desired.
3. −2i < d < −i: Similar to the previous case.

This establishes that β[±i](n) is at most n
2i , when 2i divides n. Note that when n is not divisible by 2i, we can construct F ′

of cardinality ⌈
n
2i⌉ with the same procedure, where B⌈

n
2i ⌉

= {1, . . . , p, n − p, n − (p − 1), . . . , n
2 + 1}, p = n mod 2i. This

completes the proof of Lemma 12. □

2.2. Lower bounds

To obtain a lower bound for βD(n), it is natural to remove one or two points from [n] and to proceed with induction.
However, we note that, even when D = {−1, 0, 1}, such a direct induction only yields a lower bound of log n, which is not
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useful (since we already have a lower bound of Ω(
√
n) from Section 1.3). In order to derive a tight lower bound for βD(n),

we use the vector representations of sets and a polynomial representation of Boolean functions.
For any subset A ⊆ [n], let (i) XA = (x1, . . . , xn) ∈ {0, 1}n be the incidence vector such that xi = 1 if and only if i ∈ A;

and, (ii)RA = (r1, . . . , rn) ∈ {−1, 1}n be the incidence vector such that ri = 1 if and only if i ∈ A. Observe that for any two
subsets A and A′ of [n], the dot product of XA = (x1, . . . , xn) with RA′ = (r1, . . . , rn), denoted by ⟨XA, RA′⟩, is equivalent to
|A ∩ A′

| − |A ∩ ([n] \ A′)|. For an even (resp., odd) cardinality subset A ∈ F , note that the corresponding incidence vector
XA = (x1, . . . , xn) is even (resp., odd). Let F be a family of subsets of [n]. Observe that for any even subset Ae ∈ F and
any arbitrary subset A′

⊆ [n],
⟨
XAe , RA′

⟩
≡ 0 mod 2, i.e.,

⟨
XAe , RA′

⟩
∈ {0, ±2, ±4, . . .}. Moreover, for any odd subset Ao ∈ F ,⟨

XAo , RA′

⟩
≡ 1 mod 2, i.e.,

⟨
XAo , RA′

⟩
∈ {±1, ±3, ±5, . . .}.

We demonstrate that the polynomial representation of Boolean functions [16,18] is useful to establish lower bounds for
βD(n). Let f : {−1, 1}n → {−1, 1} be a Boolean function on n variables,say y1, . . . , yn. For instance, the parity function on n
variables is simply equal to themonomial

∏n
j=1yj. Let sign : R\{0} → {0, 1} be a function defined as (i) sign(α) = 1 if α > 0,

and (ii) sign(α) = 0, otherwise, for α ∈ R \ {0}. A multilinear polynomial P(y1, . . . , yn) weakly represents f if P is nonzero
and for every Y = (y1, . . . , yn) where P(Y ) is nonzero, sign(f (Y )) = sign(P(Y )). The weak degree of a function f is the degree
of the lowest degree polynomial which weakly represents f . We have the following result that follows from Lemma 2.29 of
[18] originally proved by Minsky and Papert in [14].

Lemma 14. The weak degree of the parity function on n variables is n.

In what follows, we use the notion of weak degree of the parity function to establish Theorem 3.

Lemma 15. β[±i](n) ≥ ⌈
n
2i⌉.

Proof. Let F denote the 2n
− 1 non-empty subsets of [n]. Let F ′ be a minimum cardinality [±i]-secting family for F . Let R

be set of incidence vectors of sets inF ′, where each vector R inR is an element of {−1, +1}n. We start the analysis assuming
i is even and i > 0, and then extend to odd i. For every odd set Ao ∈ F , there exists a vector R ∈ R such that

⟨
XAo , R

⟩
− d = 0,

for some d ∈ {−i + 1, −i + 3, . . . , i − 1}. Let X = (x1, . . . , xn) ∈ {0, 1}n. We use X to denote the incidence vector of any
arbitrary set in F . Consider the polynomialM on X = (x1, . . . , xn) as

M(X) =

(∏
R∈R

(
(⟨X, R⟩)2 − 12) ∏

R∈R

(
(⟨X, R⟩)2 − 32) . . .∏

R∈R

(
(⟨X, R⟩)2 − (i − 1)2

))2

. (2)

From the definitions ofR andM , it is clear thatM(X) is (i) zero when X = XAo for all odd subsets Ao ∈ F; and (ii) positive
when X = XAe for all even subsets Ae ∈ F .

Domain conversion and multilinearization

Recall that a vector T ∈ {0, 1}n is even if the number of 1’s in T is even and a vector T ∈ {−1, 1}n is even if the number of
−1’s in T is even. Consider the polynomial N on Y = (y1, . . . , yn), where each yi = ±1.

N(y1, . . . , yn) = M(x1, . . . , xn), (3)

where xj =
1−yj
2 , 1 ≤ j ≤ n. Note that if yi = −1 (resp. 1), then 1−yi

2 becomes 1 (resp. 0). So, if some vector Y = (y1, . . . , yn)
includes an even number of−1’s, then the vector ( 1−y1

2 , . . . ,
1−yn
2 ) has an even number of 1’s, i.e., the reduction of the vector

(y1, . . . , yn) from the {−1, 1}n domain to ( 1−y1
2 , . . . ,

1−yn
2 ) in the {0, 1}n domain preserves the definition of evenness. Note

that (i) N(Y ) evaluates to zero, when Y = YAo ∈ {−1, 1}n for all odd subsets Ao ∈ F; (ii) sign(N(Y )) = sign(parity(Y )), when
Y = YAe ∈ {−1, 1}n for all even subsets Ae ∈ F . Let N ′(Y = (y1, . . . , yn)) be the multilinear polynomial obtained from
N(Y = (y1, . . . , yn)) by repeatedly replacing each y2i in the monomials by 1. deg(N ′(Y )) ≤ deg(N(Y )) and N ′(Y ) = N(Y ), for
vectors Y ∈ {−1, 1}n.

Clearly, N ′(Y ) weakly represents the parity function. Each term (
∏

R∈R((⟨X, R⟩)2 − j2))2, j ∈ {1, . . . , (i − 1)}, contributes
a degree of 4|R| to the degree of M(X), and, there are i

2 such terms. Therefore, the degree of M(X) is 2|R|i. Moreover, from
Eq. (3), deg(N ′(Y )) ≤ deg(N(Y )) = deg(M(X)). However, from Lemma 14, deg(N ′(Y )) ≥ n, which implies β[±i](n) = |R| ≥

n
2i .

If i > 1 is odd,M(X) is defined as∏
R∈R

(
(⟨X, R⟩)2

)(∏
R∈R

(
(⟨X, R⟩)2 − 22) ∏

R∈R

(
(⟨X, R⟩)2 − 42) . . .∏

R∈R

(
(⟨X, R⟩)2 − (i − 1)2

))2

.

Observe that M(X) vanishes for all even vectors and is positive for all odd vectors. The polynomial N on Y = (y1, . . . , yn),
where each yi = ±1, is now defined as

N(y1, . . . , yn) = −M(x1, . . . , xn). (4)

Note that degree ofM(X) is 2|R| + 4|R|
i−1
2 = 2|R|i and the rest of the arguments are same as the previous case.
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We are only left with the cases when i = 0 and i = 1. Observe that βD(n) for the case of D = {0} and D = {−1, 0, 1} is
same: any bisecting family for a family F1 consisting of only the 2n−1

− 1 non-empty even subsets of [n] must bisect all the
2n

− 1 subsets of [n]. In this case, takeM(X) =
∏

R∈R

(
(⟨X, R⟩)2

)
and proceed as before to get β[±1](n) ≥

n
2 . □

From Lemmas 12 and 15, Theorem 3 follows, which is restated below.

Statement. β[±i](n) = ⌈
n
2i⌉, n ∈ N, i ∈ [n].

Let F consist of 2n
− 1 non-empty subsets of [n]. Then, Theorem 3 asserts that the construction of [±i]-secting family of

cardinality ⌈
n
2i⌉ in Section 2.1 is indeed optimal.Moreover, Theorem3 implies that ifwe allow the imbalances of intersections

up to
√
n, i.e., D = [±

√
n], then a family F ′ of cardinality

√
n
2 is necessary and sufficient for F .

Corollary 16. For D = [±
√
n], n ∈ N, βD(n) = ⌈

√
n
2 ⌉.

In what follows, we demonstrate that D-secting families of cardinality much smaller than
√
n
2 can be computed when |F|

is small.

2.3. Computing β[±i](F) for arbitrary families

In Section 1, we discussed about the discrepancy interpretation of the bisection problems. Probabilisticmethod is a useful
tool in computing low discrepancy colorings. The following Chernoff’s bound is used extensively to establish upper bounds
on the discrepancy of hypergraphs.

Lemma 17 ([5]). If X =
∑n

i=1Xi is the sum of n independent random variables distributed uniformly over {−1, 1}, then for any
∆ > 0,

P[|X | > ∆] ≤ 2e−
∆2
2n .

In what follows, we obtain an upper bound on β[±i](F), when F is a family of arbitrary sized subsets, with a simple
application of Lemma 17.

Proof of Theorem 4

Statement. Let F be a family of subsets of [n] and let |F| = m. Let D = [±i], where i =

√
3n ln(2m)

t and t ≤
1
2 logm. Then,

βD(F) ≤ t.

Proof. We pick a set F ′ of t random subsets {A′

1, . . . , A
′
t} of [n], where for each j, 1 ≤ j ≤ t , a point a ∈ [n] is chosen

independently anduniformly at random intoA′

j . LetRA′
j
= (r1, . . . , rn) ∈ {−1, 1}n be the incidence vector corresponding toA′

j:
ri is 1 if and only if i ∈ A′

j . For any subsetA ∈ F , |A∩A′

j|−|A∩([n]\A′

j)| can be viewed as sumof |A| randomvariables distributed

uniformly over {−1, 1}. We say a subset A ∈ F is bad with respect to subset A′

j ∈ F ′ if ∥A∩A′

j|−|A∩ ([n] \A′

j)∥ >

√
3|A| ln(2m)

t .
Using Chernoff’s bound, the probability that a subset A ∈ F is bad with respect to a random subset A′

j ∈ F ′ is

P

[
∥A ∩ A′

j|−|A ∩ ([n] \ A′

j)∥ >

√
3|A| ln(2m)

t

]
≤ 2e−

3|A| ln(2m)
2t|A| = 2

(
1
2m

) 3
2t

.

Any subset A is bad with respect to F ′ if ∥A ∩ A′

j|−|A ∩ ([n] \ A′

j)∥ >

√
3|A| ln(2m)

t , for all A′

j ∈ F ′. So, A is bad with respect to

F ′ with probability at most 2t ( 1
2m )

3t
2t =

2t−1.5

m1.5 . Using union bound, the probability that some subset in F is bad with respect
to F ′ is at most m 2t−1.5

m1.5 . So, if 2t
≤

√
m (i.e., t ≤

1
2 logm), the probability that any subset in F is bad with respect to F ′ is at

most 1
2
√
2
. Since the failure probability is less than 1

2 , in expected two iterations, we can obtain a family F ′ of t subsets such

that for every A ∈ F , there is an A′

j ∈ F ′ with ∥A ∩ A′

j|−|A ∩ ([n] \ A′

j)∥ ≤

√
3n ln(2m)

t . □

Note that if i ≥
√
4.2n + 1 and |F| = O(nc), c ∈ N, a D-secting family for F of cardinality O(log n) can be computed as

discussed above. Note that this yields D-secting families of size much smaller than that guaranteed by Corollary 16 for F
provided |F| is polynomial in n.

3. Bounds for βi(n)

In Section 2, we established tight bounds for βD(n) when D = [±i]. In this section, we study βD(n), when D is a singleton
set, i.e., D = {i}.
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3.1. Tight bounds for β1(n)

Theorem 18. β1(n) = ⌈
n
2⌉, n ∈ N.

Proof. Asmentioned in Section 1,whenD = {1}, the familyF should consist of all the odd subsets of [n]. LetR be aminimum
sized set of {−1, +1}n vectors such that for every odd set Ao ∈ F , there exists a vector R ∈ R such that ⟨Ao, R⟩ − 1 = 0.
Consider the polynomialM on X = (x1, . . . , xn).

M(X) =

∏
R∈R

(⟨X, R⟩ − 1)2. (5)

Note that if N ′(Y ) is obtained from M(X) after domain conversion and multilinearization, N ′ weakly represents the parity
function. Using Lemma 14, deg(M(X)) = 2|R| ≥ deg(N ′(Y )) ≥ n and therefore |R| ≥ ⌈

n
2⌉. In what follows, we demonstrate

a construction of a family F ′ of cardinality ⌈
n
2⌉ such that for every odd subset A ∈ F , there exists some A′

∈ F ′ with
|A ∩ A′

| − |A ∩ ([n] \ A′)| = 1.
Consider the family F consisting of all the odd subsets of [n]. Consider the case when n is even; the odd case is similar

except the ceilings in the final expression. Note that if n ≤ 2, we can choose F ′
= {{1, 2}} to get the desired intersection

property. So, we consider the case when n ≥ 4. Let B1 = {1, 2, . . . , n
2 + 1}. B2 is obtained from B1 by swapping {

n
2 + 1} with

{
n
2 + 2}, i.e., B2 = {1, 2, . . . , n

2 ,
n
2 + 2}. In general, Bj+1 is obtained from Bj by replacing the point n

2 − j + 2 with n
2 + j + 1.

We stop the process at B n
2

= {1, 2, n, n − 1, . . . , n
2 + 2}. Let F ′

= {B1, . . . , B n
2
}.

Claim 19. (i) For any odd subset Ao ⊆ {3, . . . , n}, there exist some Bj and Bl in F ′ such that |A∩Bj| = ⌈
|A|

2 ⌉, and |A∩Bl| = ⌊
|A|

2 ⌋,
and (ii) For any even subset Ae ⊆ {3, . . . , n}, there exists some Bj in F ′ such that |A ∩ Bj| =

|A|

2 .

To see the correctness of the claim, consider an arbitrary set A, A ⊆ {3, . . . , n}, such that |A ∩ B1| − |A ∩ ([n] \ B1)| = d,
for some d ∈ N \ 0. Then, it follows from the construction that |A ∩ B n

2
| − |A ∩ ([n] \ B n

2
)| = −d. Observe that for any j,

1 ≤ j ≤
n
2 − 1, the difference between |A ∩ Bj+1| − |A ∩ ([n] \ Bj+1)| and |A ∩ Bj| − |A ∩ ([n] \ Bj)| is either -2, 0 or 2. So, the

claim follows.
Now, to complete the proof, we need to consider the following exhaustive case for an odd subset Ao.

1. Ao ⊆ {3, . . . , n}: Ao has the desired intersection property using Claim 19.
2. |Ao ∩ {3, . . . , n}| = |Ao| − 1: Using Claim 19, there exists some Bj in F ′ such that the even subset Ao ∩ {3, . . . , n} is

bisected by Bj. Clearly, |Ao ∩ Bj| = ⌈
|Ao|
2 ⌉.

3. |Ao∩{3, . . . , n}| = |Ao|−2: In this case, {1, 2} ⊂ Ao. FromClaim19, there exists some Bj inF ′ such that |A′
o∩Bj| = ⌊

|A′
o|
2 ⌋,

where A′
o = Ao ∩ {3, . . . , n}. Then, |Ao ∩ Bj| = ⌈

|Ao|
2 ⌉.

This establishes that β1(n) is at most ⌈
n
2⌉ and completes the proof of Theorem 18. □

3.2. Bounds for βi(n), i ≥ 2

In the following section, we extend the notion of β1(n) to arbitrary values of i. Note that when i = 0, β0(n) = β[±1](n) =

⌈
n
2⌉ (see Theorem 3). The case when i = 1 is resolved by Theorem 18. We assume that i ≥ 2 in the remainder of the section.

3.2.1. Proof of Theorem 5

Statement. n−i+1
2 ≤ βi(n) ≤ n − i + 1, n ∈ N, i ∈ [n].

Proof. Let F consist of all subsets of [n] such that A ∈ F if and only if |A| ∼= i mod 2 and |A| ≥ i. Let F ′
= {B1 = [i], B2 =

B1 ∪ {i + 1}, . . . , Bn−i+1 = Bn−i ∪ {n}}. Observe that F ′ is indeed an i-secting family for F . Therefore, βi(n) ≤ n − i + 1. In
what follows, we prove the lower bound for βi(n) assuming i to be an even integer greater than 1. The case for odd i can be
treated analogously.

We invoke the notion of weak representation of the parity function to establish a lower bound. Let F denote the 2n
− 1

non-empty subsets of [n]. Let F ′ be a minimum cardinality [±i]-secting family for F . LetR be the set of incidence vectors of
sets in F ′, where each vector R inR is an element of {−1, +1}n. So, for any even subset Ae ⊆ [n] with |Ae| ≥ i, there exists a
vector R ∈ R such that

⟨
XAe , R

⟩
− i = 0, where XAe is the 0–1 incidence vector of Ae. We define the polynomials P , M and F

on X = (x1, . . . , xn) as follows.

M(X) =

∏
R∈R

(⟨X, R⟩ − i)2. (6)

F (X) =

∑
S∈( [n]

i−1)

∏
j∈S

xj.

P(X) =M(X)F (X). (7)
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Observe that (i) P(X) evaluates to zero when X = XA, for all subsets A of size at most i − 2 (since F (X) vanishes for these
subsets), (ii) P(X) evaluates to zero when X = XAe , for all even subsets Ae of size at least i (since M(X) vanishes for these
subsets), and, (iii) P(X) is strictly positive when X = XAo , for all odd subsets Ao of size at least i− 1. Consider the polynomial
Q on Y = (y1, . . . , yn), where each yj ∈ [±1].

Q (y1, . . . , yn) = −P (x1, . . . , xn) (8)

where xj =
1−yj
2 , 1 ≤ j ≤ n. Let Q ′(Y ) be the multilinear polynomial obtained from Q (Y ) by replacing each occurrence of

a y2j by 1, repeatedly. Note that (i) Q ′(Y ) evaluates to zero for even subsets of [n], and (ii) if Q ′(Y ) is non-zero on some odd
subset Y , then sign(Q ′(Y )) = sign(parity(Y )). Therefore, Q ′(Y ) weakly represents the parity function. From Lemma 14, Q ′(Y )
has degree at least n, and deg(P(X)) = (i − 1) + 2|R| ≥ deg(Q ′(Y )) ≥ n. So, |R| ≥

n−i+1
2 . □

4. Bisecting k-uniform families

In this section, we discuss the problem of bisection for k-uniform families. We focus on establishing bounds for βD(n, k)
when D = [±1].

4.1. Some observations for β[±1](n, k)

Observation 20. Let n be an even integer and F ′ be an optimal bisecting family for a family F =
(
[n]
k

)
such that each subset

A′
∈ F ′ has cardinality n

2 . Then, β[±1](n, n − k) ≤ β[±1](n, k).

Proof. It is not hard to see that the bisecting family F ′ for F is also a bisecting family for F =
(

[n]
n−k

)
when n is even and each

subset in F ′ is a part of an equal-sized bipartition of n. □

From Corollary 2, we know that β[±1](n, 2) = ⌈log n⌉. Moreover, when n is of the form 2t , for some t ∈ N, we can obtain a
bisecting family F ′

= {A1, . . . , Alog n} for the family F =
(
[n]
2

)
in the following way. (i) For j ∈ [n], obtain the log n bit binary

code equivalent to j − 1 and assign it to j. (ii) Elements with lth bit as 1 form the set Al. Using Corollary 2, F ′ is an optimal
bisecting family for F , and |Al| =

n
2 , for all Al ∈ F ′. Using Observation 20, it follows that β[±1](n, n − 2) ≤ log n, when n

is a power of 2. However, when the difference between n and k is a small constant, we can achieve much better bounds for
β[±1](n, k) as follows.

Proof of Theorem 9

Statement. Let F =
(
[n]
k

)
∪
(

[n]
k+1

)
. . . ∪

(
[n]
n

)
. Then, n−k+1

2 ≤ β[±1](F) ≤ min{
n
2 , n − k + 1}.

Proof. The upper bound of n
2 follows from Lemma 12. Let x = n − k. We obtain a bisecting family for F of cardinality x + 1

in the following way. Let S and T denote two disjoint ⌈
k
2⌉ and ⌊

k
2⌋ elements subset of [n], respectively. Let c1, . . . , cx denote

the remaining elements of [n]. Let S0 = S, and for any j ∈ [x], Sj = Sj−1 ∪ {cj}. Let F ′
= {S0, . . . , Sx}. We claim that F ′ is a

bisecting family for a F . For any set A of cardinality k′, k ≤ k′
≤ n, that is not bisected by S0, |A ∩ S0| < k′

2 and |A ∩ Sx| ≥
k′
2 .

The upper bound follows from the observation that |A ∩ Sj+1| differs from |A ∩ Sj| by at most 1.
The proof of the lower bound n−k+1

2 for β[±1](F) is in the same spirit as the proof of the lower bound of Theorem 5;
we give the proof for completeness. We assume that k ≥ 2 and is even; the case when k is odd is analogous. Let F ′ be a
minimum cardinality [±1]-secting family for F . LetR be the set of incidence vectors of sets in F ′, where each vector R inR
is an element of {−1, +1}n. We define the polynomials P , M and F on X = (x1, . . . , xn) as follows.

M(X) =

∏
R∈R

(⟨X, R⟩)2 (note the difference from Eq. (6)). (9)

F (X) =

∑
S∈( [n]

k−1)

∏
j∈S

xj. (10)

P(X) =M(X)F (X). (11)

Observe that (i) P(X) evaluates to zero when X = XA, for all subsets A of size at most k − 2 (since F (X) vanishes for these
subsets), (ii) P(X) evaluates to zero when X = XAe , for all even subsets Ae of size at least k (since M(X) vanishes for these
subsets), and, (iii) P(X) is strictly positive when X = XAo , for all odd subsets Ao of size at least k − 1. Note that if Q ′(Y )
is obtained from P(X) after domain conversion and multilinearization, Q ′(Y ) weakly represents the parity function. From
Lemma 14, Q ′(Y ) has degree at least n, and deg(P(X)) = (k − 1) + 2|R| ≥ deg(Q ′(Y )) ≥ n. So, |R| ≥

n−k+1
2 . □

Note that using Theorem 9 for k = n − 2, we get, β[±1](n, n − 2) ≤ 3. This is surprising since (i) F =
(

[n]
n−2

)
has the same

number of subsets as F =
(
[n]
2

)
, (ii) the maximum number of sets of F and F that can be bisected by a single set A′

∈ F ′ is
( n2 )

2, and (iii) β0(n, 2) = ⌈log n⌉.
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Proposition 21. β[±1](n, n − 2) = 3, for every even integer n greater than 4.

Proof. We only need to show that β[±1](n, n − 2) > 2. Note that since the hyperedges are of cardinality n − 2, every set
in an optimal bisecting family F ′ is of cardinality n

2 − 1, n
2 , or

n
2 + 1. Consider an optimal bisecting family F ′

= {A1, A2} of
cardinality 2 for F =

(
[n]
n−2

)
. We know that β[±1](n, n − 2) ≤ 3. For the sake of contradiction, assume that there exists an

optimal bisecting familyF ′ forF consisting of sets of size only n
2 . Using Observation 20,F ′ is a bisecting family of cardinality

less than log n for
(
[n]
2

)
, a contradiction to Corollary 2.Without loss of generality, assume that |A1| ̸=

n
2 . Using Observation 10,

we can also assume that |A1| =
n
2 − 1. The rest of the proof is an exhaustive case analysis based on the cardinality of A2. Let

A1
= A1 ∩ A2 and A2

= A1 \ A2.

1. |A2| =
n
2 . At least one of A1 or A2 is of size at least two. The (n− 2)-sized subset missing two elements of [n] both from

either A1 or A2 is not bisected by F ′.
2. |A2| =

n
2 +1. If |A2

| ≥ 2, the (n−2)-sized subset missing two elements both from A2 is not bisected byF ′. So, |A2
| ≤ 1.

If A2
= {y}, then an (n − 2)-sized subset missing y and one element from A1 is not bisected by F ′. If A2

= ∅, then any
(n − 2)-sized subset missing one element each from A1 and [n] \ A2 is not bisected by F ′.

3. |A2| =
n
2 − 1. Using Observation 10, this case is identical to Case 2. □

4.2. Proof of Theorem 6

Note that the lower bound of Ω(
√

k(n−k)
n ) for β[±1](n, k) is given by Observation 11. However, when k is a constant,

Observation 11 asserts only a Ω(
√
k) lower bound on β[±1](n, k). An improved lower bound on β[±1](n, k) for constant k

given by Theorem 6 is proven below.

Statement.

β[±1](n, k) ≥

⎧⎪⎨⎪⎩
log(n − k + 2), when k is even and

k
2
is odd,

⌈(log⌈
n

⌈
k
2⌉

⌉)⌉, for any k ≥ 2.

Proof. We prove the first lower bound given in Theorem 6 under the assumption that k is even and k
2 is odd. Let F ′

=

{A′

1, . . . , A
′
t} be a bisecting family for the family F =

(
[n]
k

)
. For every A′

j ∈ F ′, let Fj be the collection of k-sized sets that
are bisected by A′

j . We estimate a lower bound for t . We associate a graph G(F) with the collection F of k-sized sets in the
following way:

V (G(F)) = {S ∈

(
[n]
k
2

)
: S ⊆ A, A ∈ F}

E(G(F)) = {{S1, S2} : S1 ∩ S2 = ∅, S1, S2 ∈ V (G(F))}.

Observe that G(F) is the Kneser graph KG(n, k
2 ) (for definitions and results related to Kneser graphs, see [1,4]). For every

k-sized subset A ∈ F , there are
( k

k
2

)
edges in E(G(F)): an edge between any two disjoint k

2 sets. From the definition of
F1, . . . ,Ft , ∪t

j=1G(Fj) = G(F).

Claim 22. Each G(Fj) is a bipartite graph.

Let A ∈ Fj. Consider a fixed k
2 sized subset S of A. If |S ∩ A′

j| > ⌊
k
4⌋, S is placed in the first partite set of G(Fj); otherwise

S is placed in the second partite set of G(Fj). Note that since k
2 is odd, |S ∩ A′

j| can never be equal to |S ∩ ([n] \ A′

j)|. It is now
easy to see that there is no edge inside the first or second partite set of G(Fj).

G(F1), . . . ,G(Ft ) are bipartite graphs whose union covers G(F). Since G(F) is the Kneser graph KG(n, k
2 ), its chromatic

number is n− k+2 (see [1,12]). So, using Proposition 1, we get, t ≥ ⌈log(n− k+2)⌉.3 That is, β[±1](n, k) ≥ ⌈log(n− k+2)⌉,
when k is even and k

2 is odd. This concludes the proof of the first lower bound given by Theorem 6.
To prove the second lower bound of Theorem 6, consider a bisecting family F ′

= {A′

1, . . . , A
′
t} of F =

(
[n]
k

)
. Observe that

for every ⌈
k
2⌉ + 1-sized set S ⊆ [n], there exists an A′

j ∈ F ′ such that S ∩ A′

j ̸= ∅ and S ∩ ([n] \ A′

j) ̸= ∅. For every A′

j ∈ F ′, let
Fj be the collection of ⌈ k

2⌉ + 1-sized sets that has a non-empty intersection with both A′

j and [n] \ A′

j . Observe that

t⋃
j=1

Fj =

(
[n]

⌈
k
2⌉ + 1

)
. (12)

3 Note that Proposition 1 does not guarantee equality since the ⌈log(n−k+2)⌉ bipartite graphs that cover G(F) as per Proposition 1may not correspond
to valid Fj ’s.
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Construct hypergraphs G1, . . . ,Gt , where V (Gj) = [n] and E(Gj) = Fj. To each point v ∈ [n], assign an t length 0–
1 bit vector: jth bit is 1 if and only if v ∈ Aj. Color the points in [n] with the decimal equivalent of its bit vector. Let
f : [n] → {0, 1, . . . , 2t

− 1} denote this coloring. We show that none of the
(

[n]
⌈
k
2 ⌉+1

)
sets remain monochromatic under

f . Assume for the sake of contradiction that S ∈
(

[n]
⌈
k
2 ⌉+1

)
is monochromatic under f . From Eq. (12), there exists an Fj such

that S ∈ Fj. From the definition of Fj, S has non-empty intersection with both A′

j and [n] \ A′

j . Therefore, the jth bits of the
t length 0–1 bit vectors of all the points in S cannot be the same. Therefore, S contains at least two points of different color
under f , i.e., S is not monochromatic. It is well known that the chromatic number of

(
[n]

⌈
k
2 ⌉+1

)
, χ (
(

[n]
⌈
k
2 ⌉+1

)
), is ⌈

n
⌈
k
2 ⌉

⌉. Since f uses

2t colors, we have, 2t
≥ ⌈

n
⌈
k
2 ⌉

⌉. Therefore, β[±1](n, k) = |F ′
| = t ≥ ⌈(log⌈ n

⌈
k
2 ⌉

⌉)⌉.

This completes the proof of Theorem 6. □

4.3. Proof of Theorem 7

We know that β[±1](n) = ⌈
n
2⌉ (see Theorem 3). The number of n

2 -sized subsets of [n] that can be bisected by a single

subset A′
⊆ [n] is at most 2(

( n
2
n
4

)
)2. This gives a trivial lower bound of Ω(

√
n) for β[±1](n, n

2 ). In this section, we prove a
stronger result using a theorem of Keevash and Long [11] which is an improvement over a theorem of Frankl and Rödl [8].
Given q ∈ N, a set C is called a q-ary code if C ⊆ [q]n, for q ≥ 2. For any x, y ∈ [q]n, the Hamming distance between x and y,
where x = (x1, . . . , xn) and y = (y1, . . . , yn), denoted by dH (x, y), is |{i ∈ [n] : xi ̸= yi}|. For any code C, let d(C) be the set
of all the Hamming distances allowed for any x, y ∈ C. A code is called d-avoiding if d ̸∈ d(C). We have the following upper
bound on the cardinality of a d-avoiding code C as given in [11].

Theorem 23 ([11]). Let C ⊆ [q]n and let ϵ satisfy 0 < ϵ < 1
2 . Suppose that ϵn < d < (1 − ϵ)n and d is even if q = 2. If

d ̸∈ d(C), then |C| ≤ q(1−δ)n, for some positive constant δ = δ(ϵ).

In what follows, we prove Theorem 7.

Statement. Let c be a constant such that 0 < c < 1
2 and n ∈ N. If cn < k < (1 − c)n, then

max
{
β[±1](n, k), β[±1](n, k − 1), β[±1](n, k − 2), β[±1](n, k − 3)

}
≥ δn,

where δ = δ(c) is some real positive constant.

Proof. Consider a bisecting family F ′
= {A′

1, . . . , A
′
m} of minimum cardinality for

(
[n]
l

)
, where cn < l < (1 − c)n is even

and l
2 is odd, for some constant c , 0 < c < 1

2 . Let XA denote the 0–1 incidence vector corresponding to a set A ⊆ [n]. Let
V denote the vector space generated by the incidence vectors of F ′ over F2. Observe that for any A ∈

(
[n]
l

)
, there exists an

A′
∈ F ′ such that |A ∩ A′

| =
l
2 . Since

l
2 is odd, ⟨XA, XA′⟩ = 1, i.e., XA ̸∈ V⊥, where V⊥ is the subspace of the vector space

{0, 1}n over F2 which contains all the vectors perpendicular to V . So, V⊥ is a subspace containing no vector of weight l. For
any XB, XC ∈ V⊥, XB + XC has weight |B△C | ̸= l. Moreover, l is even. Since cn < l < (1 − c)n, using Theorem 23, there exists
a positive constant δ = δ(c) such that |V⊥

| ≤ 2n(1−δ). So, dim(V⊥) ≤ n − ⌊δn⌋. It follows that dim(V ) ≥ ⌊δn⌋. To complete
the proof of the theorem, note that for any k, there exists an l ∈ {k, k − 1, k − 2, k − 3} such that l is even and l

2 is odd. □

4.4. β0(n, k) and computation of bisecting families

An important probabilistic tool used in this section is the Lovász local lemma [6]. Let F be a family of subsets of [n]. The
dependency of a set A ∈ F denoted by d(A,F) is the number of subsets Â ∈ F , such that (i) |A ∩ Â| ≥ 1, and (ii) A ̸= Â. The
dependency of a family F , denoted by d(F) or simply d, is the maximum dependency of any subset A in the family F . We
have the following corollary of the Lovász local lemma from [15].

Lemma 24 ([15]). Let P be a finite set of mutually independent random variables in a probability space. Let A be a finite set of
events determined by these variables, where m = |A|. For any A ∈ A, let Γ (A) denote the set of all the events in A that depend
on A. Let d = maxA∈A|Γ (A)|. If ∀A ∈ A : P[A] ≤ p and ep(d + 1) ≤ 1, then an assignment of the variables not violating any of
the events in A can be computed using expected 1

d resamplings per event and expected m
d resamplings in total.

Proof of Theorem 8

Statement. For a familyF consisting of k-sized subsets of [n] and dependency d, β[±1](F) ≤

√
k
c (ln(d+1)+1), where c = 0.67.
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Proof. Let F be a family of k-sized subsets of [n], F ⊆
(
[n]
k

)
, with dependency d. Assume that k is even. Consider a family

F ′
= {A′

1, . . . , A
′
t}: each A′

j ∈ F ′ is a random subset of [n] where each point x ∈ [n] is chosen into A′

j independently with
probability 1

2 . Let p be the probability that a fixed subset A ∈ F is bisected by some A′

j ∈ F ′.

p =

( k
k
2

)
(k
0

)
+
(k
1

)
+ · · · +

(k
k

) ≥
c

√
k
, where c = 0.67.

So, the failure probability that A is not bisected by A′

j is 1 − pwhich is at most 1 −
c

√
k
. Therefore, the failure probability that

A is not bisected by any A′

j ∈ F ′ is (1−p)t which is at most (1−
c

√
k
)t ≤ e

−
ct√
k . Using Lemma 24, we get t ≥

√
k
c (ln(d+1)+1).

This implies that there exists a bisecting family for any family F of k-sized sets of size
√
k
c (ln(d + 1) + 1), where d denotes

the dependency of family F .
In fact, if F is

(
[n]
k

)
and we choose the subsets A′

j ∈ F ′ of cardinality exactly n
2 uniformly and independently at random

from
(
[n]
n
2

)
, then p =

(
n
2
k
2
)
2

(nk)
≥ c1

√
n

(n−k)k (c1 ≥ 0.53). Therefore, the failure probability that A is not bisected by any A′

j ∈ F ′

is (1 − p)t . Using Lemma 24, we can compute a bisecting family for
(
[n]
k

)
of size 1

c1

√
k(n−k)

n (ln(d + 1) + 1). Therefore, using
Observation 11, β[±1](n, k) is O((ln(d + 1) + 1))-approximable.

The proof for the case when k is odd is similar to the above proof. In fact, we get a small constant factor improvement
over the bound given in Theorem 8. □

Letm = |F|. Since, d + 1 ≤ m ≤
(n
k

)
< ( enk )

k, we get, β[±1](n, k) ≤
1
c1

√
k(n−k)

n (lnm + 1) ≤
k
c1

√
k(n−k)

n ln( enk ).

5. Discussion and open problems

The discrepancy interpretation of bisecting families leads us to the investigation of β[±1](F) for recursive Hadamard set
systems.

Bisecting families for Hadamard set systems

Definition 25. A Hadamard matrix H is a n × n matrix with (i) each entry being either +1 or −1, and (ii) any two distinct
columns being orthogonal, i.e., HTH = nI, where I is the n × n identity matrix.

By convention, the first row and first column of H are all ones. By a recursive construction, H(k) of size 2k
× 2k can be

obtained from H(k − 1) of size 2k−1
× 2k−1 as follows:

H(k) =

[
H(k − 1) H(k − 1)
H(k − 1) −H(k − 1)

]
,

where H(0) = 1. Note that except the first row, every other row of the Hadamard matrix H(k) must contain equal number
of 1’s and -1’s, since the columns are orthogonal and H(k) is symmetric. Let A =

1
2 (H(k)+ J(k)), where J is the 2k

× 2k matrix
whose every entry is +1. The matrix A corresponds to the Hadamard set system HF (k), where HF (k) = {A1, . . . , A2k}, and,
j ∈ Ai if and only if the (i, j) entry of A is one. So, from construction, every subset Aj ∈ HF (k) except A1 is of cardinality
exactly 2k−1. It is a well known fact that a Hadamard set system HF of order n × n has a discrepancy at least

√
n−1
2 [13,

p. 106]. Therefore, β[±1](HF (k)) ≥ 2. In what follows, we show that β[±1](HF (k)) ≤ 2 for all Hadamard set systems
obtained from the recursively constructed Hadamard matrix H(k), k > 1. Consider the Hadamard set system HF (k), which
is represented by the incidence matrix A. Let B1 = {1, . . . , 2k−1

}. Observe that A1 through A2k−1 of HF (k) are bisected
by B1 due to the recursive construction. A2k−1+1 represented by the 2k−1

+ 1th row of A is not bisected by B1. In fact,
|A2k−1+1 ∩ B1| − |A2k−1+1 ∩ ([2k

] \ B1)| = 2k−1. The subsets A2k−1+2 through A2k of HF (k) are bisected by B1 since every
row, except the first row, of H(k − 1) and −H(k − 1) contains equal number of 1’s and -1’s. A2k−1+1 represented by the
2k−1

+ 1th row of A can be bisected by a second subset B2 = {1, . . . , 2k−2
}. So, this establishes β[±1](HF (k)) = 2, k > 1.

From the above discussion, it is clear that discrepancy of a set systemF can be arbitrarily large as compared toβ[±1](F). On
the other extreme, we know that discrepancy of a family of 2-sized subsetsF of [n] cannot exceed 2, whereas β[±1](F) can be
as large as log n. Thus, there exist familiesF and G where β[±1](F) and disc(G) are constants whereas disc(F) and β[±1](G) are
arbitrarily large. However, this does not rule out a possible relationship between these two parameters and other hypergraph
parameters. One possibility ofmaking progress in this direction is obtaining tight upper and lower bounds forβ[±1](F). Recall
that the discrepancy of a family F is the minimum i ∈ N such that β[±i](F) ≤ 1. Below, we demonstrate the usage of such
tight bounds where F = 2[n] and n is a power of 2. From Theorem 3, we have, n

2 ≥ β[±1](n) ≥ 2β[±2](n) ≥ · · · ≥ 2jβ[±2j](n).
So, when j = log( n2 ), we get, β[±2j](n) ≤ 1. This gives a known trivial upper bound for disc(F).

As mentioned in the introduction, β[±1](E) is ⌈logχ (G)⌉ for a graph G(V , E). We know that it is impossible to approximate
the chromatic number of graphs on n vertices within a factor of n1−ϵ for any fixed ϵ > 0, unless NP ⊆ ZPP (see Feige and
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Killian [7]). Therefore, it is not difficult to see that under the assumption NP ̸⊆ ZPP , no polynomial time algorithm can
approximate β[±1](E) for an n-vertex graph G(V , E) within an additive approximation factor of (1− ϵ) log n−1, for any fixed
ϵ > 0.

In Section 1.3, we have seen that βD(n, k) is not monotone with k in general. However, it is possible that βD(n, k) is
monotone with k in certain ranges, say when k ≤

n
2 . In Section 3.2, we established the lower bound of n−i+1

2 for βi(n).
However, the best upper bound we have for this case is just n− i+1. So, there is a gap between the lower and upper bounds
for βi(n).
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