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Abstract

This article deals with the consensus problem of agents communicating via time-

varying communication links in undirected graph networks. The highlight of the

current work is to provide practically computable rates of convergence to con-

sensus that hold for a large class of time-varying edge weights. A novel analysis

technique based on classical notions of persistence of excitation and uniform

complete observability is proposed. The new analysis technique for consensus

laws under time-varying graphs provides explicit bounds on rate of convergence

to consensus for single integrator dynamics. In the case of double integrators

a minor modification to the standard relative state feedback law is shown to

guarantee exponential convergence to consensus under similar assumptions as

the single integrator case. The consensus problem is re-formulated in the edge

agreement framework to which persistence of excitation based results apply. A

novel application of results from Ramsey theory allows for proof of consensus

and convergence rate estimation under switching graph topology. The current

work connects classical results from nonlinear adaptive control and combina-
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torics to the modern theory of consensus over multi-agent networks.

Keywords: Consensus, Time-varying systems, Cooperative control, Adaptive

control, Persistence of excitation, Ramsey theory, Combinatorics.

1. Introduction

Convergence analysis of consensus algorithms is an important research prob-

lem and has received attention in recent times. Classically, proof of consensus

in directed and undirected switching graph networks has been accomplished

by utilizing notions of Stochastic Indecomposable Aperiodic (SIA) matrices (see

for example Ren and Beard [1]). The aforementioned approach however, did

not yield an estimate of the convergence rate in switching graphs. For static

graphs, the convergence rate is well established and known to depend on the

second smallest eigenvalue of the graph Laplacian [2, Chapter 2]. For discrete

dynamics with time-varying graphs Cao et al. [3] were able to utilize notions

of SIA matrices to propose results on the convergence rate to consensus. They

however discuss graph composition rather than the more practical graph union

to arrive at the convergence result. Further, an assumption on existence of self-

arc at each vertex is made implying that each agent knows its own state.

More recently Martin and Girard [4] employed a novel persistent connectivity

and cut-balance interaction assumption to prove consensus and evaluate the

convergence rate for single integrator dynamics. However, computation of a

bound on convergence rate based on the aforementioned result requires explicit

function form of the edge weights (aij(t)) or their value at each time instant.

Further, Shi and Johansson [5] have proposed a continuous and a discrete time

update law to achieve consensus in single integrator agent dynamics communi-

cating via directed persistent graphs while also estimating convergence rates to

consensus. Their result however, assumes a stringent arc-balance [5, Sec. III]

assumption and the rate depends on cycle edges i.e., arcs which are not persis-

tent. Both [4] and [5] utilize the notion of persistent graphs to arrive at their

results. In the context of double integrator dynamics, Zhu et al. [6] illustrate
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a generalized feedback law based on the local position and velocity along with

distributed relative information to achieve consensus in linear, periodic and pos-

itive exponential second order agent dynamics. Additionally, they infer that in

the periodic consensus problem for undirected graphs, convergence rate depends

on the largest and the second smallest eigenvalues of the graph laplacian. The

feedback law is however, not practicable in cases where adequate localization

sensors are not available.

The current article presents results on convergence rates in consensus by con-

sidering multi-agent systems to be copies of linear systems with time-varying

control gain of the form [7],

ẋ = g(t)u (1)

The time-varying scalar gain g(t) is assumed to satisfy the persistence of excita-

tion condition [8, p. 72] which implies that although the signal may pass through

singular phases over several instants of time, there exists a window of time Tper,

over which, the signal is active. Stability of the aforementioned dynamics has5

been well documented in [9], [10]. Morgan and Narendra [9] establish a novel

adaptive update law u = −g(t)x and also propose that, persistence of excitation

of g(t) is both necessary and sufficient to ensure exponential stability for the

above dynamics. Notable contributions in stabilizing control design for above

dynamics with drift, i.e. ẋ = Ax + g(t)u can be attributed to authors of [10]10

and [11]. However, the aforementioned references do not address the stability

in the context of multi-agent systems. In a multi-agent framework, the time-

varying scaling g(t) represents the on-off nature of inter-agent communication

(edge weights). The central objective of this article is to provide persistence

based analysis of the consensus protocols for single and double integrator agent15

dynamics and establish a bound on convergence rates for the same. Diverse

inter-agent communication topologies are considered using gi(t) as the time-

varying weight associated with edge ei.

A preliminary investigation of the persistence based consensus analysis tech-

nique has been carried out by the authors in [12] for single integrator agent20
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dynamics. The analysis is based on the edge agreement framework for undi-

rected graphs [13] and utilizes notions of persistence of excitation (PE) and

Uniform Complete Observability (UCO) [8], to obtain an explicit convergence

rate estimate for consensus. The results in [12] are however restrictive in their

practical applicability due to the assumption of repetition of the same spanning25

tree in the union graph. The current work significantly extends [12] in two

ways, (a) the convergence rate bound is estimated for the more practical case of

the union graph containing different spanning trees by employing results from

Combinatorics, specifically Ramsey theory [14], (b) a convergence rate bound is

also computed for the double integrator consensus dynamics that represent the30

structure of most mechanical systems.

The consensus law used in the analysis of double integrator dynamics is

inspired by [15] where the authors suggest a local velocity feedback in addition

to relative information for achieving consensus in switching digraphs.

The article unfolds as follows. In section 2 an overview of graph theory and35

Ramsey theory with some fundamental ideas regarding Persistence of Excita-

tion (PE) and stability theory are covered. The main results are proposed in

section 3 with supporting proofs. Section 5 presents the simulation results for

two different test problems. The conclusions of this work are summarized in

section 6.40

1.1. Nomenclature

Throughout the article ∣ ⋅ ∣ operator denotes the absolute value of a scalar

argument; ∣∣ ⋅ ∣∣ denotes the Euclidean norm for vectors and matrices; Z+ denotes

the set of positive integers excluding zero; for a symmetric matrix, M ∈ Rn×n,

λmin(M) and λmax(M) denote the minimum and the maximum eigenvalue of45

M ; M ≥ N (respectively M > N) for symmetric matrices M and N implies that

M−N is positive semi-definite (respectively positive definite); tr(M) denotes the

trace of M ; In is the identity matrix of dimension n; Bh(x) denotes a closed ball

of radius h > 0 centered at x ∈ Rn and defined as, Bh(x) = {y ∈ Rn ∶ ∣∣y − x∣∣ ≤ h}.

An arithmetic progression is defined as a sequence of n ∈ N numbers, ak =50
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{a0 + kd}n−1
k=0 such that the differences between successive terms is a constant

d ∈ N. Duty cycle (D = Ton
Ttot

) of a periodic signal is specified as the percentage of

one time period over which a signal is active, where, Ton is the time duration of

signal activity and Ttot is the total time period. The notation square(T ) refers

to a square wave of time-period T with an associated duty cycle.55

2. Mathametical Preliminaries

2.1. Algebraic graph theory fundamentals

In this section, some preliminary ideas of algebric graph theory are intro-

duced. An elaborate discussion of the same is available in [16]. An undirected

graph (G) is a pair (V,E) where, V = {v1, v2,⋯, vn} is a finite non empty node

set and E = {e1, e2, . . . , em} is an edge set. {vi, vj} ∈ E is an undirected edge if

agents vi and vj exchange information with each other. If there exists an edge

between vertices vi and vj then, we call them adjacent and denote it by vi ∼ vj .
In this case, edge {vi, vj} is called incident with vertices vi and vj . A path

of length p in graph G is given by a sequence of distinct vertices vi0 , vi1 ,⋯, vip
such that for k = {0,1,⋯(p − 1)} the vertices vik and vik+1 are adjacent. In this

case, vio and vip are called end vertices of the path and vi1 ,⋯, vip−1 are called

the inner vertices. When the vertices of the path are distinct except for its end

vertices, the path is called a simple cycle. A graph is connected, if for every

pair of vertices in V (G), there is a path that has them as its end vertices. Any

graph G̃ = (Ṽ , Ẽ) is a subgraph of G = (V,E) if Ṽ ⊆ V and Ẽ ⊆ E. A tree is

defined as a connected graph without any cycle. If for a subgraph V = Ṽ , then

it is referred to as a spanning subgraph. A spanning tree for a graph G is thus a

spanning subgraph of G that is also a tree. The incidence matrix D(GO) ∈ Rn×m

of an undirected graph G with arbitrary orientation O is defined as,

D(GO) = [dij]

where,

[dij] = −1 if, vi is the tail of ej
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[dij] = 1 if, vi is the head of ej

[dij] = 0 otherwise

The graph laplacian matrix L(GO) ∈ Rn×n of an arbitrarily oriented graph GO

is defined as,

L(GO) =D(GO)D(GO)T (2)

For a weighted graph the graph laplacian matrix is redefined as,

L(GO) =D(GO)WD(GO)T (3)

where, W ∈ Rm×m is the diagonal matrix with the weights w(ei), i = {1,2, ....,m}
on the diagonal entry. The symmetric graph laplacian matrix is invariant with

respect to choice of orientation. The edge laplacian Le(GO) ∈ Rm×m matrix is

defined as,

Le(GO) =D(GO)TD(GO) (4)

For a weighted graph G = (V,E ,W ) the weighted edge laplacian matrix is de-

fined as [17], Le(GO) ∶=W
1
2D⊺(GO)D(GO)W 1

2 and is also orientation invariant.

Since, the current article deals only with undirected graphs and all choices of

orientation lead to the same Laplacian, the more cumbersome D(GO) notation

will be exchanged for D(G). The graph laplacian matrix is positive semi-definite

with eigenvalues ordered as,

0 = λ1(G) ≤ λ2(G) ≤ ⋯ ≤ λn(G)

The graph G is connected, if and only if λ2(G) > 0. For an undirected graph

λ2(G) is defined as the algebraic connectivity and determines the convergence

rate of the time invariant consensus algorithm.60

Remark 1. In the text that follows, it will invariably be assumed without loss

of generality, that in representing the laplacian corresponding to a time-varying

graph (L(G̃(t)) =D(G)W (t)D(G)T ), the incidence matrix D(G) in (3) is con-

stant while the edge weight matrix W (t) captures the time-varying nature. The
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graph (G) corresponding to the laplacian D(G)D(G)T (i.e. W (t) = Im) will65

be referred to frequently as the underlying graph. W (t) is assumed to be at

least piecewise continuous. Further, in section 3.3 a switching graph topology

is simulated by designing D(G) to represent the incidence matrix of a complete

underlying graph corresponding and W (t) are the respective edge weights that

serve to turn the edge on or off at time instant t. Therefore, starting from a70

complete underlying graph any general communication graph can be obtained by

appropriate assignment of edge weights, W (t). However, theorems 5 and 6 hold

for all connected underlying graphs, G including a complete graph.

2.2. Fundamental results

In this section, we introduce fundamental notions and results from system75

theory and combinatorics to be used later. The following is an important result

from Ramsey theory [14, p. 29] namely Van der Waerden’s theorem.

Theorem 1. [14, p. 29] For any two given positive integers r and k there

is some natural number N such that, if the integers [1,N] = {1,2,⋯,N} are

colored, each with one of r different colors, then there are at least k integers in80

arithmetic progression of all the same color.

The current best known upper bound on least possible N , given (r, k) (called

Van Der Waerden’s number S(r, k)) is [18],

S(r, k) ≤ 22r
22
k+9

The following two definitions and theorem introduce persistence of excitation of

signals and uniform complete observability under output injection.

Definition 1. [8, p. 72] The signal g(⋅) ∶ R≥0 → Rn×m is Persistently Exciting

(PE) if there exist finite positive constants µ1, µ2, Tper such that,

µ2In ≥ ∫
t+Tper

t
g(τ)g(τ)T dτ ≥ µ1In ∀t ≥ t0 (5)

The notion of persistence of excitation is common in systems identification.

Although the mathematical formulation is identical, in the current context it85
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will be used to determine union graph connectivity. We also define a notion

called finite-time persistence of excitation. Finite-time persistence of excitation

requires the existence of tf > t0 + Tper > 0 such that condition (5) holds for all

t ∈ [t0, tf − Tper].

Definition 2. [8, p. 35] Consider the linear time-varying system [C(t),A(t)]
defined by,

ẋ(t) = A(t)x(t) x(t0) = x0

y(t) = C(t)x(t) (6)

where, x(t) ∈ Rn, y(t) ∈ Rm and A(t) ∈ Rn×n, C(t) ∈ Rm×n are piecewise con-

tinuous functions of time.The system defined in equation (6) is called uniformly

completely observable (UCO) if there exist finite and strictly positive scalar

constants β1, β2, δ such that, for all t0 ≥ 0

β2In ≥ ∫
t0+δ

t0
ΦTA(τ, t0)CT (τ)C(τ)ΦA(τ, t0)dτ ≥ β1In

Here, ΦA(τ, t0) ∈ Rn×n is the state transition matrix corresponding to A(t)90

starting at t0.

Theorem 2. [8, pp. 73-74] Consider the linear time-varying system [C(t),A(t)]
as follows,

ẋ(t) = A(t)x(t) x(0) = x0

y(t) = C(t)x(t)

where, x(t), y(t),A(t) and C(t) are as per Definition 2 and [C(t),A(t)+K(t)C(t)]
is the system with output feedback given by,

ẋ(t) = (A(t) +K(t)C(t))x(t)

y(t) = C(t)x(t)

In the above, K(t) ∈ Rn×m is the time-varying output feedback gain. Now,

assume that, for all δ > 0, there exists Kδ ≥ 0 such that for all, t0 ≥ 0,

∫
t0+δ

t0
∥K(τ) ∥2 dτ ≤Kδ
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Then, the system [C(t),A(t)] is uniformly completely observable if and only if

[C(t),A(t) + K(t)C(t)] is uniformly completely observable. Moreover, if the

observability gramian of the system [C(t),A(t)] satisfies,

β2In ≥ ∫
t0+δ

t0
ΦTA(τ, t0)CT (τ)C(τ)ΦA(τ, t0)dτ ≥ β1In

for all t0 ≥ 0 then the observability grammian of the system [C(t),A(t) +
K(t)C(t)] also satisfies the above mentioned inequalities with identical choice

of δ and,

β̃1 =
β1

(1 +
√
Kδβ2)

2

β̃2 = β2e(Kδβ2)

The following results state the standard exponential stability theorem in the

sense of Lyapunov and its converse for linear systems.

Theorem 3. [8, pp. 31-32] Let, Bh(0) be a closed ball of radius h centered at

0 ∈ Rn. If there exists a function V (t, x) ∶ R≥0 × Rn → R and strictly positive

scalar constants α1, α2, α3, δ such that for all x ∈ Bh(0), t ≥ 0

α1∥x(t)∥2 ≤ V (t, x) ≤ α2∥x(t)∥2

dV (t, x(t))
dt

≤ 0

∫
t+δ

t

dV (τ, x(τ))
dτ

dτ ≤ −α3∥x(t)∥2

then, x(t) ∈ Rn converges exponentially to 0 ∈ Rn. Further, V (t, x) evolves

according to,

V (t, x(t)) ≤mve−αv(t−t0)V (t0, (x(t0)) t ≥ t0 ≥ 0

where,

mv =
1

(1 − α3

α2
)

αv =
1

δ
ln

1

(1 − α3

α2
)

Thus, 0 ∈ Rn is uniformly exponentially stable.
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Theorem 4. [19, p. 120] Consider the linear time-varying system defined by,

ẋ(t) = A(t)x(t) x(t0) = x0 (7)

where, x(t) ∈ Rn and A(t) ∈ Rn×n. Suppose that, the linear state equation (7)

is uniformly exponentially stable, and there exists a finite and strictly positive

scalar constant β such that, ∣∣A(t)∣∣ ≤ β for all t ≥ t0. Then, there exists a matrix

function P (t) ∈ Rn×n that for all t is symmetric, continuously differentiable and,

P (t) = ∫
∞

t
ΦTA (τ, t)ΦA (τ, t)dτ (8)

Further, the P (t) ∈ Rn×n as stated satisfies,

ηIn ≤ P (t) ≤ ρIn

AT (t)P (t) + P (t)A(t) + Ṗ (t) ≤ −In

In the above theorem, ΦA(τ, t) ∈ Rn×n is the state transition matrix for A(t),95

In is the identity matrix of dimension n and η, ρ are finite and strictly positive

scalar constants.

3. Analysis of time-varying Consensus Protocols

3.1. Consensus control for single integrator dynamics

Consider n identical single integrator agent dynamics as [2, p. 25],

ẋi = ui i = 1,2,⋯, n (9)

with a feedback law of the following form,

ui = −k
n

∑
j=1

aij(t) (xi − xj) aij(t) ≥ 0 (10)

Combining the control laws, u(t) = [u1 u2 ⋯ un]
T

∈ Rn defined in (10) for

individual agents, the closed loop agent dynamics x(t) = [x1(t) x2(t) ⋯ xn(t)]
T

∈
Rn comes out as,

ẋ(t) = −kL(G̃(t))x

= −kD(G)W (t)D(G)Tx (11)
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where, k > 0, D(G) ∈ Rn×m, is the time-invariant incidence matrix for the100

underlying graph G and W (t) = diag [g2
1 g

2
2 . . . g

2
m]T ∈ Rm×m represents the

edge weights. W (t) as defined codes the notion of time-varying and diverse

inter-agent communication topology. It is assumed that the underlying graph

G (i.e. for W (t) = Im) is connected. G therefore contains a spanning tree

and it is possible to partition W (t) ∈ Rm×m as two block diagonal matrices,105

W (t) = diag [Wτ(t) Wc(t)] where, Wτ(t) ∈ Rp×p represents the weighting func-

tions corresponding to the spanning tree edges whereas, Wc(t) ∈ R(m−p)×(m−p)

represents the weights corresponding to the cycle edges. Here, p (= n − 1 for

undirected graphs) is the number of spanning tree edges. With this background

we are now ready to state the first result in this paper.110

Theorem 5. Consider the closed-loop consensus dynamics (11). Assume that,

the underlying graph G (W (t) = Im) is connected. The states of the closed-

loop dynamics x(t) with time-varying communication topology characterized by

W (t), achieve consensus exponentially, if there exists a spanning tree with cor-

responding edge-weight matrix Wτ(t) persistently exciting. Further the conver-

gence rate αv to consensus is bounded below by,

αv ≥
1

2Tper
ln

1

[1 − 2kλmin(Λ)µ1

(1+k
√
p∥Λ∥µ2)

2 ]

where, Tper, µ1 and µ2 are the constants appearing in Definition 1 and Λ is a

diagonal matrix containing the eigenvalues of the spanning tree edge-laplacian

matrix.

We begin with a transformation to the edge laplacian and the edge agreement

protocol as defined in [13], [16] to prove the aforementioned theorem. Consider

the following transformation to the edge states,

xe =D(G)Tx (12)
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Differentiating (12) leads to the resulting expression,

ẋe =D(G)T ẋ

= −kD(G)TD(G)W (t)D(G)Tx

= −kL̃e(G)W (t)xe (13)

In the above expression, L̃e(G) ∈ Rm×m is used to represent the edge laplacian

matrix of the underlying graph G. The edge agreement problem pertains to

stabilization instead of the consensus problem in node states. Since G is a con-

nected graph it can be described as the union of two sub-graphs as Gτ ∪Gc, where

Gτ represents the spanning tree and Gc, the cycle edges. Using an appropriate

permutation of the edge indices we can partition the incidence matrix of G as,

D(G) = [D(Gτ) D(Gc)] (14)

It is useful to represent the edge-laplacian matrix, defined in equation (13), in

terms of this new permutation,

L̃e(G) = [D(Gτ) D(Gc)]
T

[D(Gτ) D(Gc)]

=
⎡⎢⎢⎢⎢⎢⎣

D(Gτ)TD(Gτ) D(Gτ)TD(Gc)
D(Gc)TD(Gτ) D(Gc)TD(Gc)

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

L̃e(Gτ) D(Gτ)TD(Gc)
D(Gc)TD(Gτ) L̃e(Gc)

⎤⎥⎥⎥⎥⎥⎦
(15)

As mentioned earlier, W (t) ∈ Rm×m can also partitioned into two block diagonal

matrices,

W (t) =
⎡⎢⎢⎢⎢⎢⎣

Wτ(t) 0

0 Wc(t)

⎤⎥⎥⎥⎥⎥⎦
(16)

The edge state vector can be identically partitioned as,

xe =
⎡⎢⎢⎢⎢⎢⎣

xτ

xc

⎤⎥⎥⎥⎥⎥⎦
(17)
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The columns of the cycle edges D(Gc) ∈ Rn×(m−p) are linearly dependent on the

columns of D(Gτ) ∈ Rn×p. This relationship can be expressed as follows,

D(Gτ)Z =D(Gc) (18)

where, the matrix Z ∈ Rp×(m−p) is defined as,

Z = (D(Gτ)TD(Gτ))
−1
D(Gτ)TD(Gc) (19)

Substituting (15), (16) and (17) in (13) we have,

ẋe = −k
⎡⎢⎢⎢⎢⎢⎣

L̃e(Gτ) D(Gτ)TD(Gc)
D(Gc)TD(Gτ) L̃e(Gc)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Wτ(t) 0

0 Wc(t)

⎤⎥⎥⎥⎥⎥⎦
xe (20)

Therefore, the states corresponding to the spanning tree edges (xτ ∈ Rp) and

the cycle edges (xc ∈ R(m−p)) evolve according to,

ẋτ = −kL̃e(Gτ)Wτ(t)xτ − kD(Gτ)TD(Gc)Wc(t)xc (21)

ẋc = −kD(Gc)TD(Gτ)Wτ(t)xτ − kL̃e(Gc)Wc(t)xc (22)

The aforementioned transformation to edge dynamics precisely mimics refer-

ences [13], [16] and presented here for reference. Our interest is in the behavior

of the edges corresponding to the spanning tree since they represent the minimal

edge subset that must go to zero for consensus to be achieved. The cycle edges

can be reconstructed from the spanning tree edges as follows,

xc(t) = ZTxτ(t) (23)

With the aforementioned transformation, (21) reduces to,

ẋτ = −kL̃e(Gτ)Wτ(t)xτ − kD(Gτ)TD(Gc)Wc(t)xc

= −kL̃e(Gτ) [Wτ(t) +ZWc(t)ZT ]xτ

= −kL̃e(Gτ) [Ip Z]
⎡⎢⎢⎢⎢⎢⎣

Wτ(t) 0

0 Wc(t)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Ip

ZT

⎤⎥⎥⎥⎥⎥⎦
xτ

= −kL̃e(Gτ)RW (t)RTxτ (24)
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where, R = [Ip Z] ∈ Rp×m. It is evident that L̃e(Gτ) ∈ Rp×p is symmetric and

positive definite. Therefore, it can be decomposed as L̃e(Gτ) = ΓΛΓT , where

Γ ∈ Rp×p is an orthogonal matrix and Λ ∈ Rp×p is a diagonal matrix with positive

real entries. Substituting into (24) yields,

ẋτ = −kΓΛΓTRW (t)RTxτ (25)

We can now introduce a set of modified states (say, y ∈ Rp) defined by the

similarity transformation, y = ΓTxτ , with dynamics,

ẏ = ΓT ẋτ = −kΛΓTRW (t)RTΓy (26)

In order to prove of exponential convergence, we define a Lyapunov-like function

V (⋅) ∶ Rp → R,

V (y) = yTΛ−1y (27)

The time derivative of V (y) along closed-loop dynamics (26) can be written as,

V̇ (y) = yTΛ−1ẏ + ẏTΛ−1y

= yTΛ−1 (−kΛΓTRW (t)RTΓ) y + yT (−kΓTRW (t)RTΓΛT )Λ−1y

= −2kyT (ΓTRW (t)RTΓ) y (28)

Integrating both sides we get,

∫
t+Tper

t
V̇ (σ, y)dσ = −2k∫

t+Tper

t
yT (σ)ΓTRW (σ)RTΓy(σ)dσ

= −2k∫
t+Tper

t
yT (σ) (ΓTRW (σ) 1

2 ) (W (σ) 1
2RTΓ) y(σ)dσ

(29)

Lemma 1. Let Γ ∈ Rp×p be an orthogonal matrix and R = [Ip Z] ∈ Rp×m.

Then, Wτ(t)1/2 is Persistently exciting (PE) implies that RW (t)1/2 is Persis-115

tently exciting (PE) which in turn implies ΓTRW (t)1/2 is Persistently exciting

(PE).
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Proof. We assume that the persistent signal Wτ(t) has its smallest eigenvalue

bounded below by µ1 > 0, and the persistence window is Tper ∈ [0,∞), ∀t ≥ t0
as per Definition 1. In order to prove the above, we begin by establishing

persistence of RW (t)1/2 ∈ Rm×p.

∫
t+Tper

t
RW (σ)RT dσ = ∫

t+Tper

t
[Wτ(σ) +ZWc(σ)ZT ]dσ

Consider, any vector α such that ∥α∥ = 1,

αT {∫
t+Tper

t
[Wτ(σ) +ZWc(σ)ZT ]dσ}α

= αTdiag [∫
t+Tper

t
g2

1(σ)dσ, . . . ,∫
t+Tper

t
g2
p(σ)dσ]α

+ (ZTα)T diag [∫
t+Tper

t
g2
p+1(σ)dσ, . . . ,∫

t+Tper

t
g2
m(σ)dσ] (ZTα)

≥ µ1α
Tα = µ1

Similar arguments can be employed to prove that a similarity transform does

not impact the persistence of excitation of a signal and therefore ΓTRW (t)1/2 ∈120

Rp×m is also persistently exciting with identical Tper and µ1 > 0.

From the PE and UCO Definitions 1 and 2, it is evident that [W (t)1/2RTΓ,0]
is UCO. Now define, K(t) = −kΛΓTRW (t)1/2. The integral of K(t) ∈ Rp×m over

a window of time, Tper can be evaluated as,

∫
t+Tper

t
∥K(σ) ∥2 dσ = ∫

t+Tper

t
k2 ∥ ΛΓTRW (σ)1/2dσ ∥2

≤ k2 ∥ Λ ∥2 [tr∫
t+Tper

t
ΓTRW (σ)RTΓdσ]

≤ k2 ∥ Λ ∥2 pµ2

Now, as per Theorem 2 the system [W (t)1/2RTΓ,0] is UCO if and only if

[W (t)1/2RTΓ,−kΛ(ΓTRW (t)1/2)(W (t)1/2RTΓ)] is UCO. The observability gram-

mian for this modified system with, A(t) = −kΛΓTRW (t)RTΓ and C(t) =
W (t)1/2RTΓ is as follows for all, t ≥ 0,

µ̃2In ≥ ∫
t+Tper

t
ΦTA(τ, t0)CT (τ)C(τ)ΦA(τ, t0)dτ ≥ µ̃1In (30)
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where,

µ̃1 =
µ1

(1 + k√p ∥ Λ ∥ µ2)
2

µ̃2 = µ2ek
2p∥Λ∥2µ2

2

Therefore, for all t ≥ t0, the integral defined in equation (29) evaluates to,

∫
t+Tper

t
V̇ (σ)dσ = −2kyT (t) [∫

t+Tper

t
ΦTA(σ, t)CT (σ)C(σ)ΦA(σ, t)dσ] y(t)

(31)

which by equation (30) evaluates to,

∫
t+Tper

t
V̇ (σ)dσ ≤ − 2kµ1

(1 + k√p ∥ Λ ∥ µ2)
2
∥y∥2 (32)

Now, comparing the result in (32) with the exponential stability Theorem 3, we

have,

α3

α2
= 2kλmin(Λ)µ1

(1 + k√p ∥ Λ ∥ µ2)
2

mv =
1

(1 − α3

α2
)
= 1

[1 − 2kλmin(Λ)µ1

(1+k
√
p∥Λ∥µ2)

2 ]

2αv =
1

δ
ln

1

(1 − α3

α2
)
= 1

Tper
ln

1

[1 − 2kλmin(Λ)µ1

(1+k
√
p∥Λ∥µ2)

2 ]

and the explicit solution can be computed as ∀t ≥ t0,

V (y(t)) ≤mve−2αv(t−t0)V (y0)

⇒∥ y(t) ∥ ≤
⎧⎪⎪⎨⎪⎪⎩

¿
ÁÁÀλmax(Λ)mv

λmin(Λ)

⎫⎪⎪⎬⎪⎪⎭
e−αv(t−t0) ∥ y(t0) ∥ (33)

The bound on convergence rate follows,

αv ≥
1

2Tper
ln

1

[1 − 2kλmin(Λ)µ1

(1+k
√
p∥Λ∥µ2)

2 ]
(34)

y(t) and xτ(t) are related to each other via the similarity transformation, and

therefore the spanning tree edges converge at an identical rate.
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Note 1. The decay rate expression (33) will continue to hold for an interval125

[t0, tf) if Wτ(t) satisfies only a finite-time persistence of excitation condition.

This makes it possible to compute the bound on convergence rate if all parameters

in Eq. (34) are known only over a finite future time-horizon.

Remark 2. The connected underlying graph, G required for proof of Theorem 5

may have more than one spanning tree that is persistently excited. In such an130

event the convergence rate can be computed based on the ‘fastest’ spanning tree

to get a tighter lower bound.

A pertinent query regarding (34) is the possibility of influencing the bound

on convergence rate solely by changing the value of gain k ∈ R>0. For a time

invariant graph network, arbitrarily pushing up the value of k improves the rate135

of convergence. However, this does not hold true in the time-varying scenario

where increasing k, increases the convergence rate to an extent, but the incre-

ments saturate for larger k values. The effect of the scalar gain is evident from

(34) and will be illustrated through simulations later.

3.2. Convergence analysis for the second-order consensus protocol140

We now consider the class of multi-agent systems with double integrator

dynamics as follows [2, p. 78],

ẋi = yi

ẏi = ui i = 1,2,⋯, n (35)

and feedback,

ui = ui1 + ui2 (36)

where,

ui1 = −κyi(t) (37)

is the local velocity feedback, with feedback gain κ > 0 and,

ui2 = − α
n

∑
j=1

aij(t) (xi(t) − xj(t)) − γ
n

∑
j=1

aij(t) (yi(t) − yj(t)) (38)
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where, aij(t) ≥ 0 are the elements of the adjacency matrix. By combining the

control laws, u(t) = [u11 u21 ⋯ un1
]
T

+ [u12 u22 ⋯ un2
]
T

∈ Rn defined

in (37) and (38) for individual agents, the overall closed loop dynamics can be

expressed similar to (11) as,

ẋ = y

ẏ = −κy − αL(G̃(t))x − γL(G̃(t))y

= −κy − αD(G)W (t)D(G)Tx − γD(G)W (t)D(G)T y (39)

Here, α > 0, γ > 0 are constant scalar gains. D(G) ∈ Rn×m and W (t) ∈ Rm×m

are as defined in the single integrator case. The following theorem outlines the

extension of the single integrator convergence result to double integrator agent

dynamics.

Theorem 6. Consider the closed-loop consensus dynamics (39). Assume that,

the underlying graph G (W (t) = Im) is connected and edge weights are uniformly

bounded. The states of the double integrator dynamics, x(t) and y(t) with a

time-varying communication topology qualified by W (t), achieve consensus ex-

ponentially, if the spanning tree weight matrix Wτ(t) is persistently exciting.

Moreover, the convergence rate is lower bounded by,

ξ ≥ min{κ, 1

2λmax(P (t))} ∀t ≥ t0

where κ and P (t) are defined in Eq. (37) and (56) respectively.145

Proof. We consider as in the single integrator case, a transformation to the edge

state vectors as follows,

xe1 =DT (G)x (40)

xe2 =DT (G)y (41)
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Differentiating (40), (41) results in the following edge dynamics,

ẋe1 =DT (G)ẋ = xe2 (42)

ẋe2 =DT (G)ẏ

= − κDT (G)y − αDT (G)D(G)W (t)D(G)Tx − γDT (G)D(G)W (t)D(G)T y

= − κxe2 − αL̃e(G)W (t)xe1 − γL̃e(G)W (t)xe2 (43)

where, L̃e(G) ∈ Rm×m is the time-invariant edge laplacian matrix corresponding

to the underlying graph G. The consensus problem is reduced to the classical

stabilization problem in edge states as before. The underlying graph G, has

been assumed to be connected. Therefore, it can be represented as the union of

two sub-graphs Gτ ∪ Gc. The edge state vectors can be partitioned as,150

xe1 =
⎡⎢⎢⎢⎢⎢⎣

xτ1

xc1

⎤⎥⎥⎥⎥⎥⎦
xe2 =

⎡⎢⎢⎢⎢⎢⎣

xτ2

xc2

⎤⎥⎥⎥⎥⎥⎦
(44)

where, the notations xτ1 ∈ Rp, xτ2 ∈ Rp are used to represent the edge states of

the spanning tree corresponding to the position and velocity interaction topology

associated with xi and yi. Similarly, xc1 ∈ R(m−p), xc2 ∈ R(m−p) denote the

states symbolizing the cycle edges for the same. The columns of the cycle edges

D(Gc) ∈ Rn×(m−p) are linearly dependent on the columns of D(Gτ) ∈ Rn×p and

the corresponding relationship has been previously noted in equations (18) and

(19).

Expanding out (42) and (43) we have,

ẋe1 = xe2 (45)

ẋe2 = −κxe2

− α
⎡⎢⎢⎢⎢⎢⎣

L̃e(Gτ) D(Gτ)TD(Gc)
D(Gc)TD(Gτ) L̃e(Gc)

⎤⎥⎥⎥⎥⎥⎦
W (t)xe1

− γ
⎡⎢⎢⎢⎢⎢⎣

L̃e(Gτ) D(Gτ)TD(Gc)
D(Gc)TD(Gτ) L̃e(Gc)

⎤⎥⎥⎥⎥⎥⎦
W (t)xe2 (46)
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As before we are interested only in the behavior of the spanning tree edges,

since they represent the minimal edge subset that must go to zero for consensus

to be achieved. Employing the following relation between spanning tree and

cycle edge states,

xc1(t) = ZTxτ1(t)

xc2(t) = ZTxτ2(t) (47)

the dynamics of xτ1 and xτ2 can be written as,

ẋτ1 =xτ2 (48)

ẋτ2 = − κxτ2 − αL̃e(Gτ)RW (t)RTxτ1 − γL̃e(Gτ)RW (t)RTxτ2 (49)

where, R ∈ Rp×(m−p) is as defined for the single integrator dynamics. For a

connected graph, L̃e(Gτ) ∈ Rp×p is symmetric and positive definite. Therefore,

with the eigenvalue decomposition L̃e(Gτ) = ΓΛΓT and modified states defined

by the following similarity transformation,

⎡⎢⎢⎢⎢⎢⎣

z1

z2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

ΓT 0

0 ΓT

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

xτ1

xτ2

⎤⎥⎥⎥⎥⎥⎦
(50)

we obtain,

ż1 = z2 (51)

ż2 = −κz2 − αΛΓTRW (t)RTΓz1 − γΛΓTRW (t)RTΓz2 (52)

We are now left to prove the exponential convergence of (51)-(52) instead of

(48)-(49). For this purpose, we define a time-varying potential function V (⋅, ⋅) ∶
Rp ×R≥0 → R,

V (z, t) = (z2 + κz1)T P (t) (z2 + κz1) (53)

where, P (t) = PT (t) > 0 will be defined later. The time derivative of V (z, t)
along closed-loop dynamics (51)-(52), can be written as,

V̇ (z, t) = (z2 + κz1)T P (t) {−ΛΓTRW (t)RTΓ (γz2 + αz1) − κz2 + κz2}

+ {−ΛΓTRW (t)RTΓ (γz2 + αz1) − κz2 + κz2}
T
P (t) (z2 + κz1)

+ (z2 + κz1)T Ṗ (t) (z2 + κz1) (54)

20



In the aforementioned equation, the design parameters are chosen as α = γκ.

Equation (54) is reduced to,

V̇ (z, t) =ζT (t) {P (t)M(t) +MT (t)P (t) + Ṗ (t)} ζ(t) (55)

with, ζ(t) ≜ (z2(t) + κz1(t)) ∈ Rp and M(t) = −γΛΓTRW (t)RTΓ ∈ Rp×p is an

exponentially stabilizing matrix under the assumption that Wτ(t) ∈ Rp×p is

persistently exciting and underlying graph G is connected (from Theorem 5).

Furthermore, ∣∣M(t)∣∣ bounded as long as we assume a bounded weight matrix

W (t). From converse Lyapunov theorem 4, we have existence of a continuously

differentiable and symmetric matrix P (t) ∈ Rp×p such that,

{P (t)M(t) +MT (t)P (t) + Ṗ (t)} ≤ −Ip (56)

Therefore, the solution of (55) evolves according to,

V̇ (z, t) ≤ −ζT (t)ζ(t)

≤ −{ 1

λmax(P (t))}V (z, t) ∀t ≥ t0 (57)

which implies,

V (t) ≤ e−
1

λmax(P (t)) (t−t0)V (t0)

⇒ ∣∣ζ(t)∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩

¿
ÁÁÀλmax(P (t0))

λmin(P (t))

⎫⎪⎪⎬⎪⎪⎭
e−

1
2λmax(P (t)) (t−t0) ∥ ζ(t0) ∥ (58)

It is possible to re-write ζ(t) ∈ Rp using (51) as follows,

ζ(t) = ż1(t) + κz1(t) (59)

It is evident that ζ(t) is bounded for all time due to boundedness of V (t).
Furthermore, it has been shown that ζ(t) exponentially converges to zero. This

implies, from the definition of ζ(t), that z1(t) ∈ Rp remains bounded for all

time and converges to the origin exponentially. This also implies exponential

convergence of z2(t) ∈ Rp to the origin. From equation (59), the solution of

z1(t) evolves according to,

z1(t) = e−κ(t−t0)z1(t0) + ∫
t

t0
ζ(δ)e−κ(t−δ)dδ (60)
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Keeping in mind the exponential decay of ζ(t), it can be concluded that the

convergence rate for z1 and z2 is,

ξ ≥ min{κ, 1

2λmax(P (t))} ∀t ≥ t0 (61)

Note 2. The convergence rate bound (61) depends on λmax(P (t)). Here, P (t) ∈
Rp×p is defined as the symmetric positive definite solution of a Lyapunov equa-

tion. The following straightforward computation helps bound λmax(P (t)). The

single integrator spanning edge convergence expression (33) states that,

∥ y(t) ∥≤
⎧⎪⎪⎨⎪⎪⎩

¿
ÁÁÀλmax(Λ)mv

λmin(Λ)

⎫⎪⎪⎬⎪⎪⎭
e−

αv
2 (t−t0) ∥ y(t0) ∥

⇒∣∣ΦM (τ, t) ∣∣ ≤ Ωe−
αv
2 (τ−t)

where Ω ≜
√
λmax(Λ)mv/λmin(Λ). Since, P (t) is symmetric, we have from the

choice of P (t) in (8),

λmax(P (t)) = ∣∣P (t)∣∣ ≤ ∫
∞

t
∣∣ΦM(τ, t)∣∣2dτ ≤ Ω2

αv

As is evident from above, the convergence rate of the double integrator algo-

rithm is closely related to the single integrator case. Therefore, the convergence

rate saturation pointed out for the single integrator case still exists and arbi-

trarily increasing γ in (38) does not result in faster convergence to consensus155

beyond a point.

3.3. Consensus in networks with switching topology

The previous sections outline the proof of consensus of the classical algo-

rithm [2] along with determination of an explicit bound on rate of convergence.

However, the relationship between the sufficient condition (PE of the spanning160

tree weight matrix Wτ(t)) to an actual multi-agent system is not directly evi-

dent. In this section, we present corollaries to Theorem 5 and 6 that establish

the aforementioned relation. The following special case has been proved in our

earlier work [12, Corollary. III.1] and presented here for reference.
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Corollary 1. [12, Corollary. III.1] Let, t1, t2,⋯ be the infinite time sequence165

of graph switching instants with, τi = ti+1 − ti, i = 0,1,⋯. Let Gn(ti) be the

undirected graph at time t = ti with non-negative edge weights where Gn(t) is

assumed piecewise continuous and bounded. Considering the agent dynamics

(9), the continuous time update laws (10) achieve consensus asymptotically, if

there exists an infinite sequence of contiguous, nonempty and uniformly bounded170

time intervals [tij , tij+1); j = 1,2,⋯ starting at ti1 = t0, with the property that the

union of the undirected graph across each such interval has the same spanning

tree.

The aforementioned corollary is a special case of the more general result

in [2, pp. 45–46]. Our result however allows for estimation of bounds on con-175

vergence rate to consensus.

Sketch of Proof : We give a gist of the proof here. For details, the reader is

referred to [12]. Let us assume that the underlying graph G complete (i.e. all

nodes are in the neighborhood of the other). It is possible to write the laplacian

corresponding to any graph Gn(t) as, L(Gn(t)) = D(G)W (t)D(G)T by appro-180

priate choice of edge weights W (t) which cycle between zero and positive values.

The only variable quantities in the aforementioned description are the diagonal

entries of W (t). Now, we have to prove that the conditions in the corollary

imply that Wτ(t) ∈ Rp×p is persistently exciting. We have already assumed that

all contiguous intervals with union graph containing the spanning tree are uni-185

formly bounded (say by tmax). Moreover, union of graphs in each contiguous

interval contain the same spanning tree, which implies that the spanning tree

edge states remain unaltered between intervals (i.e. xτ and xc signify the same

edge states in (17) over all intervals).

If we now carefully choose, Tper > 2tmax in Definition 1 and integrate Wτ(t)
over any window of time Tper (integration of Wτ(t) over a time window is

uniquely identifiable with taking the union of graphs over the same period) we

can show that it satisfies a positive definite lower bound as required by (5). This

proves PE of Wτ(t) and Theorem 5 can be directly applied to prove convergence.
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Moreover, It was also established that the spanning edge dynamics converge as

in equation (33) which is repeated here for convenience,

∥ y(t) ∥ ≤
⎧⎪⎪⎨⎪⎪⎩

¿
ÁÁÀλmax(Λ)mv

λmin(Λ)

⎫⎪⎪⎬⎪⎪⎭
e−

αv
2 (t−t0) ∥ y(t0) ∥ (62)

The above-mentioned corollary is restrictive as it assumes the repetition of the190

same spanning tree in successive time intervals. The following corollary extends

above to the general case where different spanning trees out of a finite set po-

tentially appear on successive time intervals. Similar theorems for directed and

undirected graphs have been proven in the past (for example [2, pp. 45-46], [20]).

The distinction here being the ability to compute a practically verifiable bound195

on convergence rate to consensus. Before stating the corollary we define the no-

tion of distinct graphs. Two graphs G1 and G2 will henceforth be called distinct

if there exists an edge weight gi(t) that is strictly positive for one graph and

exactly equal to zero for the other.

Corollary 2. Let t1, t2,⋯ be the infinite time sequence of graph switching in-200

stants with, ti+1 − ti ≥ tL for some positive tL, and i = 0,1,⋯. Let Gn(ti) be

the undirected graph at time t = ti with non-negative edge weights which are

piecewise continuous and bounded in nature. Considering the agent dynamics

(9) and (35), the continuous time update laws (10) and (36) achieve consensus

asymptotically, if there exists an infinite sequence of contiguous, nonempty and205

uniformly bounded time intervals [tij , tij+1); j = 1,2,⋯ starting at ti1 = t0, with

the property that the union of the undirected graph across each such interval has

a spanning tree. Furthermore, the bounds on convergence rate are governed by

(34) and (61) respectively, computed corresponding to the slowest spanning tree.

Note 3. In the context of the above theorem, the slowest spanning tree is the210

one that results in smallest possible lower bounds in (34) and (61) assuming all

other quantities (k, γ, µ1, µ2, κ, p) remain constant.

Proof. Since the multi-agent system has finite number of nodes the possible set

of distinct graphs is finite. Therefore let, Ḡj = {G1,G2,⋯,Gj} denote the set of
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all possible distinct undirected graphs by which the agents communicate with

each other. Likewise, consider, Ḡs to be the set of all possible distinct spanning

trees. Since, Ḡs ⊂ Ḡj , the set of distinct spanning trees is also finite. We assume,

r to be the cardinality of Ḡs .

The fact that union of graphs over each interval [tij , tij+1) contains a spanning

tree Gs ∈ Ḡs implies in terms of our mathematical setup that, the edge weight

matrix Wτ(t) ∈ Rp×p corresponding to Gs satisfies, ∫
tij+1
tij

W 2
τ (t)dt ≥ µ1Ip for

some µ1 > 0. Therefore, the decay rate expression (62) will continue to hold

for each interval [tij , tij+1), if Wτ(t) satisfies only a finite-time persistence of

excitation condition (Definition 1). The notion of the existence of a spanning

tree in the union graph over contiguous intervals can be identified with col-

oring the natural numbers with a finite set of colors. Therefore by the Van

der Waerden’s theorem (Theorem 1) given r ∈ Z+ as the number of spanning

trees and k ∈ Z+ being a positive integer of our choice, there exists an interval

[t0, t) = [ti1 , tis) and a specific spanning tree Gs ∈ Ḡs that appears in an arith-

metic progression of length k within [t0, t). In case of a switching graph sce-

nario, an arithmetic progression of length k is defined as a set of intervals of the

form, A = {[tia , tia+1) , [tia+d , tia+d+1) ,⋯, [tia+(k−1)d , tia+(k−1)d+1)} where [tia , tia+1)
denotes the initial block of time when the union graph contains the spanning

tree Gs and d signifies the distance between two successive appearances of Gs in

the union graph.

We denote the uniform upper and lower bounds on the contiguous time intervals

by tmax and tmin respectively, with the assumption that, tmax > tmin > 0 . There-

fore if we re-define the contiguous intervals of time as [tia , tia+d) , [tia+d , tia+2d)
and so on we have the appearance of the same spanning tree Gs in the union

graph over all contiguous intervals from [t0, t) thus satisfying the assumptions

of Corollary 1. Further, the persistence window (Definition 1) can be chosen

as, Tper = (d + 1)tmax + σ for any σ > 0, to ensure Wτ(t) is persistently exciting

over interval [t0, t) as required by Theorem 5. Therefore, a norm decay rate

expression as given by Equation (34) holds for ∣∣y(t)∣∣ (and hence by linearity

for ∣∣xτ(t)∣∣). However, the rate expression holds true only for finite final time
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tf = tis .
Based on the preceding arguments, it is evident that we only need to resolve

the exponential decay of the norm to zero asymptotically. Let us assume to the

contrary that ∣∣y(t)∣∣ as in Equation (33) does not attain a value below some

ε > 0. By continuity of solutions we can assume that there exists some time,

t∗ such that, ∣∣y(t∗)∣∣ = ε + δ for any small positive δ. The interval [t∗,∞) thus

contains contiguous, non-empty, uniformly bounded intervals containing a span-

ning tree in the union graph as per the assumptions of the corollary. Since the

number of spanning trees is still finite, Van der Waerdens theorem can still be

applied and for a sufficiently large k∗ of our choice an interval obtained (say

[t∗, t′)) containing k∗ contiguous intervals with an identical spanning tree as

before. Thus a decay rate as follows can be obtained,

∥ y(t) ∥ ≤ βe−αv(t−t
∗
) ∥ y(t∗) ∥ ∀t ∈ [t∗, t′) (63)

Since β > 0 as defined in Equation (33) is independent of initial time, it is

evident from above that we can choose k∗ large enough to ensure ∣∣y(t′)∣∣ < ε thus

contradicting our assumption on a positive lower bound for ∣∣y(t)∣∣. This implies215

that we will have exponential convergence of ∣∣y(t)∣∣ and by virtue of a linear

transformation that of ∣∣xτ(t)∣∣ to the origin. Further the rate of convergence

denoted by αv as in Equation (34) will be at least as fast as that corresponding

to the slowest spanning tree. The extension from the finite time decay to the

asymptotic convergence can also be accomplished directly by employing the220

Rado selection principle [21, p. 77].

The proof for the double integrator dynamics (35) with control law (36) follows

immediately as evident from the proof of theorem 6.

The convergence rate is bounded as in expressions (34) and (61) correspond-

ing to the slowest spanning tree (i.e., the spanning tree resulting in the smallest225

convergence rate). In each of these computations the persistence window is,

Tper = (d + 1)tmax + σ for any σ > 0 based on the proof to the corollary. Here

d = (S(r, k) − 1) /(k − 1). The dependence on the Van Der Waerden number,
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S(r, k) makes the bounds conservative. However, the computation of S(r, k) is

independent of sequence of graphs appearing at each time instant as required230

by [4]. The computation can therefore be carried out offline and only requires

knowledge of number of spanning trees expected. S(r, k) has indeed been com-

puted exactly for several special cases.

4. Discussion

A comparison with some prevalent assumptions in proof of consensus for235

continuous time systems is made in this section.

Assumption 1 (Martin and Girard [4]) (Persistent Connectivity) The graph

(N ,Ep) (called Persistent Graph) is strongly connected where

Ep = {(j, i) ∈ N ×N ∣∫
∞

0
aij(s)ds = +∞} (64)

with aij(t) being the elements of the edge weight matrix W (t) in our terminol-

ogy.

In the current work we make the persistence of excitation assumption (Defini-

tion 1) on the spanning tree edge weight matrix (Theorems 5–6 and Corollar-240

ies 1–2). The assumption in this article is identical in spirit to the one made by

Moreau [22]. The notion of persistent graphs is a weaker assumption compared

to persistence of excitation of spanning tree edge weights. Authors in [4] have

cited an example of a two agent system with edge weight aij(t) = 1/t to illustrate

a case which does not satisfy the persistence of excitation condition in Eq. (5).245

The above choice of aij(t) however does form a persistent graph as per (64) and

the agents achieve consensus. On the other hand, our assumption on persistence

of excitation of Wτ(t) implies that the spanning tree graph satisfies the persis-

tent connectivity assumption. However, the primary highlight of current work

is to provide a bound on the convergence rate. Practical computation of con-250

vergence rate using techniques in [4], requires a time-rescaling to be evaluated

that relies on exact information of edge weights aij(t) for all future times ([4,

Eq. (6)]). On the other hand, the convergence rate bound presented in Eq. (34)
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relies only on global properties of edge weights like Tper, µ1 and µ2 rather than

the actual value of aij(t) for all time. Therefore convergence rates to consensus255

for a class of signals with identical Tper, µ1 and µ2 are equal. For the switching

graph case, there is additional dependence on the Van Der Waerden number,

S(r, k) which depends only on the number of agents in the system.

Assumption 2 ( Hendrickx and Tsitsiklis [23]) (Cut-Balance) There exists

a constant K ≥ 1 such that for all t, and any nonempty proper subset S of

{1,2, . . . , n}, we have

K−1 ∑
i∈S,j/∈S

aji(t) ≤ ∑
i∈S,j/∈S

aij(t) ≤K ∑
i∈S,j/∈S

aji(t) (65)

Hendrickx and Tsitsiklis [23] utilize the cut-balance assumption along with weak

connectivity (equivalent to connectivity for undirected graph networks) to prove260

consensus. However, their work does not provide a rate of convergence. In the

context of the current work since the communication topology is assumed to be

undirected, the cut-balance assumption is automatically satisfied.

Assumption 3 (Shi and Johansson [5]) (Arc Balance) There exists a constant

P > 1 such that for any two edges (j, i) and (m,k) in the persistent graph Ep

and t ≥ 0, we have

P −1aij(t) ≤ akm(t) ≤ Paij(t) (66)

The above assumption along with continuity of edge weights and a rooted di-

rected spanning tree in Ep is shown to be sufficient to achieve consensus by Shi

and Johansson [5]. In the current work too a rooted spanning tree is required

in the persistent graph for consensus. However, the persistence of excitation

condition does not require the edge weights to satisfy an arc balance condition.

This can be illustrated with a 3 agent network example. Let us consider the

following edge weights,

a12(t) = 1, a23(t) = {
0 [2k,2k + 1), k ∈ N
1 [2k + 1,2k + 2)

a31(t) = 0

It is evident from above that the edges (1,2) and (2,3) form a rooted spanning

tree and the corresponding edge weights satisfy the persistence of excitation265
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condition (5). Consensus is therefore achieved as per Theorem 5. However, over

intervals of time, [2k,2k + 1) the arc balance condition (66) cannot be satisfied

between a12(t) and a23(t) for any P > 1 and therefore results from [5] cannot

be applied. The continuity of edge weights is also not required in current work.

5. Simulation Results270

In this section, we consider illustrative examples to validate Theorem 6,

Corollary 1 and 2. Simulations corresponding to Theorem 5 are available in [12].

First, let us look at a multi-agent system with four agents and dynamics as

follows,

ẋi = yi

ẏi = ui

where, xi, yi ∈ R. denote the position and velocity state respectively, of the ith

agent. The underlying graph G of the communication topology (with arbitrary

orientation) for the above mentioned multi-agent system is shown in Fig 1 with

g2
i (t) representing the weights corresponding to edge ei. The incidence matrix

is computed as follows,

Figure 1: Information-exchange topologies between four agents (underlying graph G)
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D(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1

−1 1 0 −1 0

0 −1 1 0 −1

0 0 −1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The weight matrix is chosen as, W (t) = diag[g2
1(t), g2

2(t), g2
3(t), g2

4(t), g2
5(t)]

where g2
i (t) = {square(8(t − di)) + 1} sin2(it) for i = {1,2,3,4,5} with a duty cy-

cle of 0.2 (defined in Section 1.1) and time shift di = 0,0.157,0.316,0.4724,0.62

seconds respectively. The design parameters are chosen as, κ = α = γ = 1.

The initial conditions for the position and velocity coordinates are selected as,275

xi = yi = [0.1,0.2,0.4,0.7]T . The control law defined in (36) directs the agents

to move from their respective initial positions and velocities, smoothly to the

consensus value as shown in Fig. 2 and Fig. 3 as expected. Fig. 4 plots the

convergence of the spanning edge states along with the exponential envelope.

The spanning edge state trajectories always lie within the estimated exponential280

convergence rate envelope as illustrated by our theoretical analysis.

Figure 2: Position trajectories of the four agents

For the double integrator dynamics above, consider the controller defined

in (36) with incremental values of gain γ to verify convergence rate. Fig. 5

shows plots of the theoretical convergence bound and actual rate versus γ. The

theoretical bounds are computed using (61) while the actual rates are obtained285

via curve fitting. The plots show that the theoretical bounds reach a peak and

start to decay. The actual bound on the other hand exhibits saturation on
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Figure 3: Velocity trajectories of the four agents

Figure 4: Double integrator convergence envelope

increasing γ.
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Figure 5: Convergence rates vs control gain, γ
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The next set of simulations aim to illustrate Corollary 1 and Corollary 2. A

system of four agents with single integrator dynamics is used for these simula-

tions.

ẋi = ui (67)

where xi ∈ R denotes the position coordinates of the ith agent. The underlying

graph G (with arbitrary orientation) is shown in Fig. 6 with g2
i (t) representing

the weights corresponding to edge ei. The underlying graph is complete as290

indicated in Section 3.3. The spanning trees appearing in the union graph are

Figure 6: Interaction topology (with arbitrary orientation) between the four agents

depicted in Fig. 7. Fig. 8 shows the simulation results when the same spanning

Figure 7: Evaluation of different spanning tree

tree G2 repeats in each consecutive time interval. The initial conditions are

chosen as, xτ(0) = [0.1,0.2,0.3]T . The plots indicate convergence to consensus
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as expected and an exponential rate envelope estimated using properties of G2295

in (34).

In the second scenario, the case of spanning trees G1 and G2 appearing ran-

domly in contiguous intervals is considered. Fig. 9 depicts the results for the

Figure 8: Resultant agent trajectories with same spanning tree repeated over contiguous

intervals

general switching graph case with initial conditions on edge states, xe(0) =
[0,0.1,0.77,0.8]T corresponding to edges {2,1},{3,2},{4,3},{3,1} respectively.300

The control law defined in (10) with control gain, k = 1, directs the four agents

to move from their initial locations to the consensus value as evident from the

plot. The plot also shows the calculated convergence rate envelope using the

‘slowest’ spanning tree and a Van Der Waerden number, W (2,3) = 9 utilized to

calculate Tper as illustrated in proof of Corollary 2.

Figure 9: Resultant agent trajectories with different spanning trees in contiguous intervals

305
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6. Concluding Remarks

Consensus algorithms for two separate classes of multi-agent systems com-

municating through diverse inter-agent communication topologies are studied

in this work. Time-varying weights are assigned to each edge that potentially

pass through singular phases representing communication dropouts. However,310

these time-varying weights are assumed to satisfy a persistence of excitation

condition. The consensus control laws are analyzed by transforming the node

agreement problem to an edge agreement one by a suitable coordinate transfor-

mation. This allows treatment of a stabilization problem, which is conducive

to utilization of classical results of adaptive and nonlinear control to prove con-315

sensus. The time-dependent control schemes have been shown to exponentially

stabilize the edge set vector for the multi-agent system with dynamic com-

munication topology. Results from Ramsey theory were used to further prove

exponential convergence to consensus under a switching communication graph

topology. The novel analysis technique for consensus algorithms in undirected320

graphs has great utility since it helps compute an explicit bound on the rate of

convergence for agents communicating via time varying networks. It has also

been deduced that arbitrary increasing scalar gains in the consensus control law

may not lead to faster convergence. Therefore, future research will target appli-

cation of the novel analysis technique to different coordinated control problems325

and improving rate of convergence to consensus.
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