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Abstract

A graph G is said to be k-distinguishable if every vertex of the graph can be colored from a
set of k colors such that no non-trivial automorphism fixes every color class. The distinguishing
number D(G) is the least integer k for which G is k-distinguishable. If for each v ∈ V (G) we
have a list L(v) of colors, and we stipulate that the color assigned to vertex v comes from its list
L(v) then G is said to be L-distinguishable where L = {L(v)}v∈V (G). The list distinguishing
number of a graph, denoted Dl(G), is the minimum integer k such that every collection of lists L
with |L(v)| = k admits an L-distinguishing coloring. In this paper, we prove that Dl(G) = D(G)
when G is a Kneser graph.
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1 Introduction

Let G be a graph and let Aut(G) denote the full automorphism group of G. By an r-vertex coloring
of G, we shall mean a map f : V (G)→ {1, 2, . . . , r}, and the sets f−1(i) for i ∈ {1, 2 . . . , r} shall be
referred to as the color classes of f . An automorphism σ ∈ Aut(G) is said to fix a color class C of
f if σ(C) = C, where σ(C) = {σ(v) : v ∈ C}. A vertex coloring of the graph G with the property
that no non-trivial automorphism of G fixes all the color classes is called a distinguishing coloring
of the graph G.
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Albertson and Collins [1] defined the distinguishing number of graph G, denoted D(G), as the
minimum r such that G admits a distinguishing r-vertex coloring.

An interesting variant of the distinguishing number of a graph, due to Ferrara, Flesch, and
Gethner [7] goes as follows. Given an assignment L = {L(v)}v∈V (G) of lists of available colors to
vertices of G, we say that G is L-distinguishable if there is a distinguishing coloring f of G such
that f(v) ∈ L(v) for all v. The list distinguishing number of G, denoted Dl(G), is the minimum
integer k such that G is L-distinguishable for any list assignment L with |L(v)| = k for all v. The
list distinguishing number has generated a bit of interest recently (see [7, 8, 9] for some relevant
results) primarily due to the following question that appears in [7]:

Is Dl(G) = D(G) for all graphs G?

As they state themselves, one of the authors of [7] believes this to be the case, while another author
was more circumspect about the same. The authors of [7], prove the same for cycles of size at least
6, cartesian products of cycles, and for graphs whose automorphism group is a dihedral group D2n.
The paper [8] settles this question in the affirmative for trees, and [9] establishes it for interval
graphs.

Let r ≥ 2, and n ≥ 2r + 1. The Kneser graph K(n, r) is defined as follows: The vertex set of
K(n, r) consists of all r-element subsets of [n]; vertices u, v in K(n, r) are adjacent if and only if
u∩ v = ∅. The distinguishing number of the Kneser graphs is well known (see [2]): D(K(n, r)) = 2
when n 6= 2r + 1 and r ≥ 3; for r = 2, D(K(5, 2)) = 3, and D(K(n, 2)) = 2 for all n ≥ 6 (see [1]).

Our main result in this paper settles the aforementioned question in the affirmative for the
family of Kneser graphs.

Theorem 1. Dl(K(n, r)) = D(K(n, r)) for all r ≥ 2, n ≥ 2r + 1.

Before we proceed to the proof of the theorem, we describe the main idea of the proof. We
choose randomly (uniformly) and independently for each vertex v, a color from its list L(v), and
we calculate/bound the expected number of non-trivial automorphisms that fix every color class for
this random set of choices. This line of argument features in some other related contexts, for e.g.,
[3, 4, 6, 11] most notably under the umbrella of what is called the ‘Motion Lemma’, and some of its
variants. For r = 2, the cases 8 ≤ n ≤ 22 include some explicit computation using a SAGE code.
These methods however do not work in the case r = 2 and n = 6 or n = 7, so we need different
arguments to settle this case. As it turns out, the case with r ≥ 3 is simpler than the case r = 2.

The rest of the paper is organized as follows. In the next couple of sections, we detail the
proof for r = 2. The case r ≥ 3 is considered in Section 4. We conclude with a few remarks and a
conjecture in the final section. We also include an Appendix that provides the details of the SAGE
code and related calculations that settle the proof for r = 2, 8 ≤ n ≤ 22.
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2 List Distinguishing Number of K(n, 2) when n ≥ 8.

As mentioned in the Introduction, the distinguishing number of Kneser graphs is known ([2]):

Theorem 2. D(K(n, 2)) = 2 for n ≥ 6, and D(K(5, 2)) = 3.

Let Sn denote the symmetric group on n symbols. Observe that every permutation σ ∈ Sn in-
duces an automorphism ofK(n, r) as follows: If v = {i1, i2, . . . , ir}, then σ(v) := {σ(i1), σ(i2), . . . , σ(ir)}.
Hence Sn is contained in the full automorphism group of K(n, r). If n ≥ 2r + 1, it is a well known
consequence (see [5], Lemma 7.8.2, pg. 147 for instance) of the Erdős-Ko-Rado theorem that Sn is
in fact the full automorphism group of K(n, r).

Note that the Kneser graph K(n, 2) is the complement of the line graph of Kn, so a list
distinguishing coloring of the vertices of K(n, 2) is easier to understand as a coloring of the edges of
Kn. It is also quite straightforward to see that D(K(n, 2)) = 2 for n ≥ 6. Indeed, for each n ≥ 6,
there exists a graph on n vertices with a trivial automorphism group. Fix such a graph G, color the
edges of G red (say), and color the remaining edges of Kn blue (say). If σ ∈ Sn is an automorphism
of K(n, 2) that fixes both these color classes, then in particular, σ also acts as an automorphism of
G as well as its complement G. But this implies that σ is the identity map. The same argument
also extends to the Kneser graph K(n, 3) for r ≥ 3. However, this argument fails when the color of
each vertex of K(n, r) has to be an element of the list of colors assigned to v.

Suppose n ≥ 6 and suppose {L(e)}e∈E(Kn) is a collection of lists of colors of size 2 for the
edges of Kn. For each edge of Kn we choose a color uniformly and independently at random from
its given list of colors. We shall refer to this as the random coloring of K(n, r) in the rest of the
paper. As mentioned in the introduction, we seek to compute the expected number of non-trivial
automorphisms that fix all the colors class of this random coloring.

First, we set up some notations.

a. If the disjoint cycle decomposition of a permutation σ ∈ Sn consists of li cycles of length λi, for
i = 1, 2, . . . , t with λ1 < λ2 < · · · < λt, then we say σ is of type Λ where Λ := (λl11 , λ

l2
2 , . . . , λ

lt
t ).

Note that
∑

i liλi = n.

b. CT (n) shall denote the set of all permutation types in Sn, i.e.,

CT (n) := {(λl11 , λ
l2
2 , . . . , λ

lt
t ) with

∑
i

liλi = n and λ1 < λ2 < · · · < λt}.

c. CT (n)
≥r , CT

(n)
r shall denote the sets of all permutation types with minimum cycle length at

least r, and with minimum cycle length exactly r, respectively.

d. For positive integers a, b, we shall denote by (a, b), the g.c.d. of a and b.

e. g(x) :=
⌊

(x−1)2

2

⌋
and g(x, y) := xy − (x, y). Here, the functions g(x) and g(x, y) are defined

for non-negative integers x, y.
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First, observe that if a non-trivial automorphism σ fixes each of the color classes (as sets) in the
random coloring of E(Kn), then every edge in the orbit of an edge e ∈ E(Kn) under the action of σ
must be assigned the same color. In particular, one can compute an upper bound for the probability
that σ preserves every color class as a function of the permutation type of σ.

Our current goal is the following: For a non-trivial σ ∈ Sn, we seek an upper bound P (σ)
on the probability that σ fixes all the color classes (as sets) in the random coloring. We then set
P (Λ) :=

∑
σ of type Λ

P (σ).

Lemma 3. Let σ ∈ Sn be a non-trivial permutation of type Λ = (λl11 , λ
l2
2 , . . . , λ

lt
t ). Furthermore,

for i ≤ j let l∗j (i) := li(li − 1)/2 when i = j and l∗j (i) = lilj for all j > i. Then the probability that
σ fixes every color class in a random coloring of K(n, 2) is at most

P (σ) :=
1

2µ
,

where

µ =
t∑
i=1

g(λi)li +
t∑
j≥i

g(λi, λj)l
∗
j (i)

 ,

where the functions g(·) and g(·, ·) are as defined in our notations. Consequently, for Λ ∈ CT (n),

P (Λ) = n!2−µ
t∏
i=1

λ−lii

(li)!
.

Proof. Let σ ∈ Sn. First, we consider the case where σ = (12 · · · r). As was observed earlier, if σ
fixes every color class, then for each edge e, every edge in the set {e, σ(e), σ2(e), . . . , σk(e)} has the
same color. Here, the integer k ≥ 1 is the smallest integer satisfying σk+1(e) = e. In particular, for
each 1 ≤ i ≤ br/2c, the set of edges Ei := {(1, i+1), (2, i+2), . . . , (r, i+r)} is monochromatic, where
the addition is performed modulo r. Note that the sets Ei are pairwise disjoint, and furthermore, if
r is odd then |Ei| = r for each i, whereas for r even, |Ei| = r for 1 ≤ i < r

2 − 1, while |Er/2| = r/2.
Hence the probability that each of the Ei is monochromatic under the random coloring is at most
2−g(r) where g(r) =

⌊
(r−1)2

2

⌋
.

Now, suppose σ = (12 · · · r)(r + 1 r + 2 · · · r + s) = C1C2, say. Then besides the sets
Ei ⊂ {1, 2 . . . , r} and Fj ⊂ {r + 1, . . . , r + s} as described above, the set of edges between C1 and
C2 is partitioned into monochromatic sets each of size, the least common multiple (lcm) of r, s.

Hence, the probability that σ preserves all the color classes under the random coloring is at
most 2−µ where

µ = b(r − 1)2

2
c+ b(s− 1)2

2
c+

rs

lcm(r, s)
(lcm(r, s)− 1) = g(r) + g(s) + g(r, s)

as in the statement of the lemma.

Now, finally, if σ = C1C2 · · ·Cu for disjoint cycles Ci, and if σ preserves all the color classes of
the random coloring, then the sets of edges between each Ci and Cj are partitioned into sets of size
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lcm(|Ci|, |Cj |), each of which must be monochromatic by the same argument as above. It is then
easy to see that the probability that σ preserves all the color classes under the random coloring is at
most 2−µ where µ is as in the statement of the lemma. This establishes the first part of the lemma.

For the second part, observe that if Λ = (λl1 , λl2 , . . . , λltt ) is a permutation type, then there are

exactly n!
∏t
i=i

λ
−li
i

(li)!
permutations of type Λ. This is easily illustrated by the following example. If

n = 8,Λ = (1, 2, 2, 3), then for any permutation σ = (σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8), we associate a
permutation π(σ) := (σ1)(σ2 σ3)(σ4 σ5)(σ6 σ7 σ8). But then any other permutation σ′ obtained by
permuting the sets of elements corresponding to cycles of the same type, or by a cyclic permutation
within the elements of a cycle in the association above, yield the same π. For instance, for the
permutations σ′ = (σ1, σ4, σ5, σ2, σ3, σ6, σ7, σ8) (with the 2-cycles (σ2 σ3) and (σ4 σ5) swapped) or
σ′′ = (σ1, σ4, σ5, σ2, σ3, σ7, σ8, σ6) (including a cyclic permutation of (σ6, σ7, σ8)) we have π(σ) =
π(σ′) = π(σ′′). Hence the number of permutations of permutation type Λ is precisely 8!

(1·2·2·3)·2! .
The general argument is similar, so we skip the details.

For each Λ ∈ CT (n) we associate a permutation type ΓΛ ∈ CT
(n−λ1)
≥λ1 as follows: Suppose

Λ = (λl11 , λ
l2
2 , . . . , λ

lt
t ) we define

ΓΛ := (λl1−1
1 , λl22 , . . . , λ

lt
t ), if l1 > 1

:= (λl22 , . . . , λ
lt
t ), if l1 = 1.

In this case we say that Λ extends Γ. When the context is clear, we shall write Γ to mean ΓΛ.

Suppose Λ extends Γ. Following Lemma 3, let us write

P (Λ) = Rλ1(Λ)P (Γ)

where

Rλ1(Λ) :=
n(n− 1)(n− 2) . . . (n− λ1 + 1)

λ1l1
2
−g(λ1)−g(λ1,λ1)(l1−1)−

t∑
j=2

g(λ1,λj)lj
.

Lemma 4. Suppose Λ = (λl11 , λ
l2
2 , . . . , λ

lt
t ), Λ 6= (1n) is a permutation type in CT (n). Then

Rλ1(Λ) < 2−nλ1/19 if λ1 ≥ 2 and n ≥ 23.

R1(Λ) ≤ n

2(n− 2)
and equality is achieved precisely if Λ = (1n−2, 2),

R1(Λ) ≤ n

4(n− 4)
if Λ 6= (1n−2, 2) (1)

Proof. Let 2 ≤ λ1 ≤ bn2 c, and set s = λ1n
19 ; observe that

log n <
15n

76
≤ n

2
− s

λ1
− λ1

2
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holds for n ≥ 23. Here by log we shall mean the logarithm to the base 2. As λ1 ≥ 2 and n =
t∑
i=1

λili,

we have
t∑

j=1
lj ≤ n/2, so

n

2
− s

λ1
− λ1

2
< n−

t∑
j=1

lj −
s

λ1
− λ1

2
+

1

λ1
(log(l1) + log(λ1)) .

Since n =
t∑

j=1
λjlj we have (by rearranging the terms)

n−
t∑

j=1

lj −
s

λ1
− λ1

2
+

1

λ1
(log(l1) + log(λ1)) (2)

=

t∑
j=1

λjlj −

l1 +
1

λ1

t∑
j=2

λ1lj

− s

λ1
− λ1

2
+

1

λ1
(log(l1) + log(λ1)) (3)

=
−s
λ1

+
λ1

2
+ l1λ1 − λ1 − l1 +

t∑
j=2

λjlj +
1

λ1

log(l1) + log(λ1)−
t∑

j=2

λ1lj

 (4)

=
−s
λ1

+
λ1

2
+ l1λ1 − λ1 − l1 +

1

λ1

 t∑
j=2

(λ1λj − λ1)lj + log(l1) + log(λ1)

 . (5)

To elaborate, we rewrite n =
∑

j λjlj in (2) and write
∑

j lj as l1 + 1
λ1

∑
j=2

λ1lj to get (3); (4) results

from (3) by writing −λ1
2 as λ1

2 − λ1, isolating the term λ1l1 from
∑

j λjlj , and rearranging terms,
and finally (5) is another suitable rearrangement of (4).

Since λ1 ≥ (λ1, λj), we have for n ≥ 23,

log n <
−s
λ1

+
λ1 − 2

2
+ (λ1 − 1)(l1 − 1) +

1

λ1

 t∑
j=2

g(λ1, λj)lj + log(l1) + log(λ1)


Since the function g(x) = b(x− 1)2/2c satisfies g(x) ≥ (x2 − 2x)/2, we have

λ1 log n < −s+ g(λ1) + g(λ1, λ1)(l1 − 1) +

t∑
j=2

g(λ1, λj)lj + log(l1) + log(λ1)

and thus,

nλ1 < 2−sl1λ12
g(λ1)+g(λ1,λ1)(l1−1)+

t∑
j=2

g(λ1,λj)lj

and the first part of the lemma follows immediately.

When λ1 = 1, then note that

R1(Λ) =
n

l1
2

(
t∑

j=2
(1−λj)lj)

=
n

l1
2L−n,
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where L =
t∑

j=1
lj . Since λ2 ≥ 2, it follows that n− L ≥ (n− l1)/2, so we have

R1(Λ) ≤ n

l12(n−l1)/2
.

It follows by elementary calculus (for instance) that the function h(x) = x2(n−x)/2 defined on
[1, n− 2] achieves its minimum value of 2(n− 2) at x = n− 2, so in particular,

R1(Λ) ≤ n

2(n− 2)

as required.
If Λ corresponds to a permutation type of a non-trivial permutation and Λ 6= (1n−2, 2) then arguing
as before, the function h(x) defined on [1, n−4] achieves its minimum value of 4(n−4) at x = n−4
and R1(1n−3, 3) = n

4(n−3) < n
4(n−4) . Therefore we have R1(Λ) ≤ n

4(n−4) . This completes the
proof.

Let S∗n := Sn \ {I}, where I denotes the identity map, and set

f(n) :=
∑
σ∈S∗n

P (σ) =
∑

Λ∈CT (n)\{(1n)}

P (Λ).

Let f≥i(n) denote the corresponding sum over all those permutation types Λ ∈ CT (n)
≥i with every

cycle of size at least i (and not including Λ = (1n)). Also let P (n) := P (Λ) for the permutation type
Λ = (n). Observe that f(n) gives an upper bound for the probability that there exists a non-trivial
permutation in Sn, which preserves all the color classes in the random coloring.

Lemma 5. For any n ≥ 23,

f(n) <
n

2(n− 2)
f(n− 1) +

bn/2c∑
i=2

2−ni/19f≥i(n− i) + P (n).

Proof. Observe that any permutation type in CT (n)
i is an extension of a unique permutation type

in CT (n−i)
≥i , and conversely, every permutation type in CT (n−i)

≥i gives rise to a unique permutation

type in CT (n)
i . Therefore,

f(n) =
∑

Λ∈CT (n)\{(1n)}

P (Λ) =

bn/2c∑
i=1

∑
Λ∈CT (n)

i \{(1n)}

P (Λ) + P (n)

=
∑

Λ∈CT (n)
1 \{(1n)}

R1(Λ)P (ΓΛ) +

bn/2c∑
i=2

∑
Λ∈CT (n)

i

Ri(Λ)P (ΓΛ) + P (n)
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By the bounds for Rλ1(Λ) from Lemma 4, and observing that
∑

Λ∈CT (n)
i

P (ΓΛ) ≤
∑

Γ∈CT (n−i)
≥i

P (Γ) we

have

f(n) <
∑

Γ∈CT (n−1)\{(1n−1)}

n

2(n− 2)
P (Γ) +

bn/2c∑
i=2

∑
Γ∈CT (n−i)

≥i

2−ni/19P (Γ) + P (n)

<
n

2(n− 2)
f(n− 1) +

bn/2c∑
i=2

2−ni/19f≥i(n− i) + P (n).

Theorem 6. f(n) < 1 for all n ≥ 8. In fact, for all n ≥ 8,

f(n) ≤ Cn2

2n

for some absolute constant C. Consequently, Dl(K(n, 2)) = 2 for n ≥ 8.

Proof. We induct on n. We first verify the theorem for all 8 ≤ n ≤ 22 by an explicit computation
using a SAGE code. For further details, see the Appendix.

Assume f(k) < 1 for 22 ≤ k ≤ n− 1. By Lemma 5 we have

f(n) ≤ n

2(n− 2)
f(n− 1) +

bn/2c∑
r=2

2
−nr
19 f≥r(n− r) + P (n)

so

f(n) ≤ n

2(n− 2)
+

bn/2c∑
r=2

2
−nr
19 + 0.0000093.

Since
bn/2c∑
r=2

2
−nr
19 < (2n/19(2n/19 − 1))−1 < 0.33 for n ≥ 23, we have f(n) < 1 when n ≥ 23.

For the exponential-decay upper bound, we again proceed inductively. The only difference is
that this time, we are slightly more careful with our bounds, though we do not attempt to optimize
for the constant C. We shall show that f(n) ≤ 107n2/2n for all n ≥ 9.

It is easy to see that this statement holds for n ≤ 33, since 107n2/2n is greater than 1 for all these
values of n. We proceed as in the proof of Lemma 5 but isolate the terms arising from permutations
of type (1n−2, 2) and note that their contribution to the sum f(n) is precisely n(n − 1)/2n−1; for
the other Λ with λ1 = 1, by inequality 1 in Lemma 4, we have R1(Λ) ≤ n

4(n−4) . Combining these
observations, and by induction as well as the trivial inequalities f≥r(n− r) ≤ f(n− r), we have

f(n) < 2
n2

2n
+

n

2(n− 4)
· 107n2

2n
+

107n2

2n

(
2−n/19(2n/19 − 2)−1

)
< 107n

2

2n

for n ≥ 34, and the induction is complete.
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Remark: As observed in the proof, f(n) ≥
(
n
2

)
2n−2

, so we actually have f(n) = Θ(n2/2n).

3 List Distinguishing Number of K(n, 2) for n = 6, 7.

Consider a graph G with a collection of color lists L = {L(e)|e ∈ E(G)} for its edges. By the color
palette of a vertex v of G, we mean the multi-set of colors assigned to the edges incident at the
vertex v in a list coloring of the edges of G. A maximum potentially monochromatic path (MPM
path) P shall refer to a maximum sized path in G such that ∩

e∈E(P )
L(e) 6= ∅. We use l(P ) to denote

the length of P and |P | to denote the number of vertices in P .

Lemma 7. Let n ≥ 6, suppose we have a collection of lists L = {L(e)|e ∈ E(Kn)} of size 2. If
there is no potentially monochromatic path in Kn of length two then there is a distinguishing list
coloring of the edges of Kn from the lists in L.

Proof. As before, consider a random coloring of the edge set. We claim that the probability that
there exist distinct vertices u, v with the same color palette is at most

(
n
2

)
/2n−2. Indeed, if we fix a

pair of distinct vertices u, v, then for any color incident at vertex u, and not on the edge uv, there
is at most one edge incident with v that can have that color in its list, by the hypothesis. Hence
the probability that the palette of v is the same as the palette of u is at most 1/2n−2. The claim
now follows by the union bound. Since

(
n
2

)
/2n−2 < 1 for n ≥ 6, we are through.

In what follows, we restrict our attention to K(6, 2) and K(7, 2). As part of the setup, we shall
assume that we have a collection of lists of colors of size 2 for the edges of K7 and K8.

We also introduce some further terminology. Let P be an MPM path in Kn. By G′, we shall
denote the complete subgraph on [n] \ V (P ). The edges between G′ and P will be referred to
as crossing edges, eij shall denote the edge between vertex i and j, and cij shall denote the color
assigned to the edge eij . The available common color on the edges of P is denoted c1. Without loss
of generality we assume V (P ) = {1, 2, . . . , |P |}.

Theorem 8. Dl(K(6, 2)) = 2.

Proof. Let P be an MPM path. By virtue of Lemma 7, we may assume that |P | ≥ 3. Our coloring
scheme is as follows. We color each edge of P using the color c1. To describe the coloring on the
other edges, we consider the following cases:

1. |P | = 6: For e 6∈ E(P ), e 6= e24, e35, color e using a color from L(e) \ {c1}. Now color e24

and e35 using different colors, i.e., ensure that c24 6= c35. This coloring is distinguishing since
the color class c1 is fixed (as a set) only by two maps - the identity and the permutation
σ = (16)(25)(34). But since σ(e24) = e35, and they are colored differently, σ does not fix
every color class.
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2. |P | = 5: For each of the other edges, color the edge by a color different from c1 from its list.
Again, ensure that c16 6= c56; G′ consists of the lone vertex 6 and |P | = 5, so c1 does not
appear on the lists of both e16 and e56, so this arrangement is possible. By our choices, no
crossing edge is colored c1, so the monochromatic set of edges colored c1 is again precisely P .
This coloring is distinguishing for very similar reasons as above.

3. |P | = 4: For each e 6∈ E(P ) pick a color c(e) ∈ L(e)\{c1} and ensure that c45 /∈ {c15, c16, c46};
again, these arrangements are possible by the maximality of P as none of the crossing edges
from the end vertices of P contain c1 in the given lists. It is now easy to check that this
coloring is distinguishing.

4. |P | = 3: Color the edges e16 and e46 arbitrarily from their lists, and for the remaining edges,
impose a restriction on the color that has to be assigned to it as in Table 1 below. Again,
note that the maximality of P ensures that all these restrictions can be respected.

Edges Restriction on the color choice
e12, e23 Assign c1

e24, e25, e26, e13, e45 Avoid c1

e34, e35, e36, e14, e15 Avoid c16

e56 Avoid c46

Table 1: Coloring Scheme when n = 6

To see why this is distinguishing, suppose σ is an automorphism that fixes each of these color
classes. By the restrictions of our choices, the only path of length 2 comprising of edges all of which
are colored c1, is the path P . Our choices also ensure that the palettes of vertices 1 and 3 are
different, so it follows that σ fixes 1, 2, 3. Since c46 6= c56, we must have σ 6= (45), (456), (465) and
since c14, c15 6= c16, we must have σ 6= (46), (56); this implies that σ is the identity map on [6].

Theorem 9. Dl(K(7, 2)) = 2.

Proof. We proceed as in Theorem 8. Let P be an MPM path. In all the cases, our coloring scheme
assigns the color c1 for each e ∈ E(P ). We shall impose certain restrictions on how the colors are
assigned for e 6∈ E(P ) as well as certain other ‘special’ edges. We have the following cases.

1. |P | ≥ 5: For each e 6∈ (E(P ) ∪ {e24, e35, e46, e56}), assign c(e) ∈ L(e) \ {c1}. For the edges
e24, e35, e46, e56 the restriction(s) imposed are as follows:

(a) if |P | = 7: Ensure that c24 6= c46.

(b) if |P | = 6: Ensure that c24 6= c35.

(c) if |P | = 5: Ensure that c56 /∈ {c16, c17, c57}.

It is straightforward to check that the restrictions imposed are all feasible by the hypothesis.
The proof that these colorings are all distinguishing is similar to the argument in Theorem 8,
so we omit the details.

10



2. |P | = 4 : Ensure that c56 6∈ {c1, c67, c57}, c17 6= c47 and c16 6= c15. Finally, for any crossing
edge e, choose c(e) ∈ L(e) \ {c1}.
Our choice of coloring guarantees that any automorphism σ that fixes every color class neces-
sarily maps the sets {1, 2, 3, 4} and {5, 6, 7} into themselves respectively. Since c57, c67 6= c56,
σ(7) = 7 and since c17 6= c47 it follows that σ fixes each of 1, 2, 3, 4. Finally, since c16 6= c15,
σ fixes 5, 6 as well, so σ is the identity.

3. |P | = 3: If the given color lists of edges incident on the vertex 2 have the common color c1

then assign c1 to all the edges incident on vertex 2. Note that since |P | = 3, no list on an edge
not containing 2 can contain the color c1. Color the remaining edges according to Theorem
8. If there is some edge (say e27) which does not contain the color c1 in its list, then assign
the color c1 on the edges of the MPM path P and color the edges e16 and e46 arbitrarily from
their lists. For the remaining edges not in E(P ) we color the edge using any color from its
list other than the one forbidden for it as listed in Table 2.

Note that since P is by assumption an MPM path, all these restrictions mentioned in Table
2 are feasible.

Sub case. c1 /∈ L(e27).

Edges Restriction on the color choice
e12, e23 Assign c1

e24, e25, e26, e13, e45, e47, e57, e67 Avoid c1

e34, e35, e36, e14, e15, e37 Avoid c16

e56 Avoid c46

e17 Avoid c15

e27 Avoid c24

e37 Avoid c36

Table 2: Coloring scheme when n = 7 and c1 /∈ L(e27)

We show this is a distinguishing coloring. Suppose σ ∈ S7 fixes every color class for this coloring.
If all the edges incident on the vertex 2 have the color c1, then as note above, no other edge of K7

can have c1 in the given list of colors by the assumption on the length of MPM path. Therefore
σ(2) = 2. By Theorem 8, it follows that σ is the identity map.
Suppose c1 /∈ e27. A consequence of the restrictions we have imposed (as in Table 2) implies that P
is the unique path of length 2 which consists of edges colored c1. Since the palettes of 1 and 3 are
different, we must have σ(i) = i for i = 1, 2, 3. We claim that σ(7) = 7. Indeed, the color restriction
imposed here ensures that neither σ(4) = 7 nor σ(7) = 4 is possible since c24 6= c27. Furthermore,
if σ(6) = 7, then σ(e36) = e37 but by our color assignments, these edges are colored differently.
Similarly, σ(5) 6= 7 since c15 6= c17. This establishes the claim. Finally, by similar arguments as in
Theorem 8, it follows that σ fixes 4, 5, 6 as well, so σ is the identity map.

The last result in this section deals withK(5, 2). This case is slightly different sinceD(K(5, 2)) =
3, but the argument we shall use is identical to the one for K(n, 2) for n ≥ 8.

Theorem 10. Dl(K(5, 2)) = 3.
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Proof. Again, we assign a color uniformly at random and independently across the edges of K5 from
their respective lists. There are precisely 6 different permutation types in S5 (see Table 4). This
time, the expected number of non-trivial permutations that fix every color class is given by

10

33
+

15

34
+

20

36
+

20

37
+

30

37
+

24

38
< 1,

so there exists a color assignment for the edges from their respective lists which is distinguishing.

4 List Distinguishing Number of K(n, r) when r ≥ 3

In this section we show that Dl(K(n, r)) = 2 for r ≥ 3, n ≥ 2r+ 1 holds. Recall that the vertices of
K(n, r) correspond to r-subsets of [n] := {1, 2 . . . , n} and vertices u, v ∈ V (K(n, r)) are adjacent if
and only if u ∩ v = ∅.

Again, given a collection of lists {L(v)} of size 2 for each vertex v of K(n, r), consider a random
coloring of the vertices of K(n, r). As in the case of K(n, 2) we show that with positive probability,
the random coloring is distinguishing. Recall again every automorphism of K(n, r) is induced by a
permutation in Sn, where the action of the permutation on the vertices of Kn induced the action
on the vertices of K(n, r).

Lemma 11. Let σ ∈ Sn be a non-trivial permutation. Then the probability that the automorphism
of K(n, r) induced by σ fixes every color class in a random coloring is at most 1

2m where m =
(
n−2
r−1

)
.

Proof. Without loss of generality suppose σ has the cycle (1, 2, . . . , t) for some 2 ≤ t ≤ n. Let v be
a vertex corresponding to a set containing the element 1, but not the element 2 in [n]. Then since
2 ∈ σ(v) it follows that v 6= σ(v). Therefore, if σ fixes every color class, then the sets (v, σ(v))
form a monochromatic pair of vertices on K(n, r). The probability that for every such v, the pair
(v, σ(v)) is a monochromatic pair is at most 2−m as stated in the lemma.

Theorem 12. If r ≥ 3 and n ≥ 2r + 1, then Dl(K(n, r)) = 2.

Proof. Set m =
(
n−2
r−1

)
. Consider the random coloring of K(n, r) as described earlier. By Lemma

11, the probability that there exists a non-trivial automorphism that fixes every color class under
this random coloring is at most

|Aut(K(n, r))|
2m

=
n!

2(n−2
r−1)

≤ n!

2(n−2
2 )

since r ≥ 3 and n ≥ 2r. It is straightforward to check that the last expression is less than 1 for
n ≥ 9.

This leaves us with the lone remaining case(s): r = 3, n = 7, 8. In these cases we look at the
corresponding expressions a little closer. We bifurcate the set of non-trivial automorphisms into two
categories: We say a permutation σ ∈ Sn is of Category I if all the cycles in the cycle decomposition
of σ have size at most 2, otherwise we say σ is a Category II permutation.
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For n = 7 there are 7!
2.5! + 7!

22.2!.3!
+ 7!

23.3!
= 231 non-trivial permutations of Category I and 4808

permutations of Category II, while for n = 8 there are 973 non-trivial permutations of Category
I and 39346 permutations of Category II. Let EI and EII denote the events that there exists a
non-trivial automorphism of Category I, Category II respectively, that fixes every color class. We
shall now describe a set I := Iσ ⊂ V (K(n, 3)) (n = 7, 8) depending only on σ that satisfies the
following:

• Every v ∈ Iσ satisfies σ(v) 6= v.

• For n = 7, |Iσ| = 10 if σ is a Category I permutation, and |Iσ| = 16 if σ is a Category II
permutation. For n = 8, |Iσ| = 15 if σ is a Category I permutation, and |Iσ| = 25 if σ is a
Category II permutation.

• If Ev denotes the event that v, σ(v) have the same color in a random coloring then the events
{Ev|v ∈ I} are independent.

Suppose σ is of Category I, and let σ contain the 2-cycle (12); then define Iσ := {v ⊂ [n] | 1 ∈
v, 2 /∈ v}. Suppose σ is a Category II permutation and contains the cycle (123 · · · ) (it might well
be just a 3-cycle); then set Iσ := I1

σ ∪I2
σ := {v ⊂ [n] | 1 ∈ v, 2 /∈ v}∪ {v ⊂ [n] | 1, 2 /∈ v, 3 ∈ v}. We

shall henceforth omit the subscript σ for convenience.

The first and second conditions listed above are straightforward to verify in all cases. To see
the third, note that if σ is a Category I permutation, then I ∩ σ(I) = ∅, so the events Ev are all
independent. If σ is of Category II, then note that in addition to the above observation, we also
have σ(I1) ∩ I2 = ∅, so again the events {Ev|v ∈ I} are independent. Hence it follows that

P (E) = P (EI) + P (EII) <
231

210
+

4808

216
< 1.

Similarly when n = 8 we have

P (E) = P (EI) + P (EII) <
973

215
+

39346

225
< 1

and this completes the proof.

Remark: The above proof in particular gives an alternate proof of the fact thatD(K(n, r)) = 2
which is shorter than the one that appears in [2].

5 Concluding Remarks

• While we have only stressed on the fact that with positive probability, a random list-coloring
of the vertices of K(n, r) (for r ≥ 2) is distinguishing, the proofs in fact demonstrate that
these are asymptotically almost sure events. In particular, these give very efficient randomized
algorithms to obtain distinguishing list colorings for the Kneser graphs.
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• Our ideas and techniques allow us to give simple(r) proofs of (some of) the results of [7]. For
instance, one can prove that Dl(Cn) = D(Cn) for all cycles Cn in a more-or-less straight-
forward manner by these methods. We believe that these methods may possibly also extend
to yield similar results for several other families of graphs. An instructive instance would
be to consider an r-fold cartesian product of complete graphs; the distinguishing number of
cartesian products of complete graphs was shown to be 2 in [10] though it is not yet known
if the list distinguishing number also equals 2, and we believe that the same ideas may turn
out to be useful there (though the computations get more complicated).

• Observe that for a non-trivial σ ∈ Sn, P (σ) is a strict upper bound for the probability that σ
fixes all the color classes, unless the color lists of all the vertices (of K(n, r)) in every orbit of
σ are identical. Thus, our expression for the expected number of non-trivial automorphisms
that fix every color class is a strict upper bound unless all the lists are identical. This leads
us to propose the following conjecture:

Conjecture 13. For a connected vertex-transitive graph G, with a collection of equal sized
(size k, say) lists L = {Lv|v ∈ V }, if p(L) denotes the probability that a random coloring
(obtained by choosing for each vertex, a color from its list uniformly and independently) admits
a non-trivial automorphism which preserves all the color classes, then p(L) is maximized when
the lists are identical.

Our results, while not quite proving this stronger statement exactly (since computing these
probabilities exactly would be cumbersome) in fact prove that the expected number of non-
trivial automorphisms that fix all the color classes is actually maximized when the lists are
identical, for the Kneser graphs.

Vertex-transitivity and connectivity may be necessary conditions as can be seen from the
following simple example. Let r < s < n/2. Take vertex disjoint copies of K(n, r) and
K(n, s) and let G be the graph obtained from adding a vertex ω adjacent to all the vertices of
K(n, r) and K(n, s). First, note that the full automorphism group of G is Sn where the action
of Sn keeps each connected component mapped into itself, and maps ω to itself. One can also
check that the expected number of automorphisms that fix each color class in a random 2-list
coloring of G is the product of expectations of the corresponding expressions arising from the
random 2-list colorings of K(n, r) and K(n, s) respectively. However, the 2-lists for K(n, r)
and the 2-lists for K(n, s) need not be the same.

It would be interesting to check if this strengthened conjecture also holds for the other classes
of graphs [7, 8, 9] for which the list distinguishing conjecture has been proven.
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Appendix: Proving f(n) < 1 for 8 ≤ n ≤ 22

It is straightforward, though a little tedious, to check that f(8) ≈ 0.874 < 1 by calculating∑
Λ∈CT8

P (Λ) directly (see Table 4 for a listing of all permutation types of n ≤ 8); we also check

that f≥4(5), f≥3(6) and f≥2(7) are strictly less than one:

f≥4(5) =
5!

5
2−8 ≈ 0.0937.

f≥3(6) =
6!

322!
2−2−2−6 +

6!

6
2−12 ≈ 0.0683.

f≥2(7) =
7!

222!3
2−12 +

7!

12
2−2−4−11 +

7!

10
2−8−9 +

7!

7
2−18 ≈ 0.061.

Also, P (n) = n!
n 2−b

(n−1)2

2
c. Since P (n) is monotonically strictly decreasing for n ≥ 3, we may bound

P (n) < P (9) = 8!2−32 ≈ 0.0000093. For n ≤ 22, we compute bounds for f(n) using a computer
SAGE code; the details of the code and the SAGE programming syntax appear below. In all these
cases, we have f(n) < 1 for n ≤ 22 (See Table 3).

n Upper bound of f(n)

9 0.566

10 0.422

11 0.268

12 0.171

13 0.103

14 0.061

15 0.036

16 0.021

17 0.012

18 0.007

19 0.004

20 0.003

21 0.002

22 0.001

Table 3: f(n), n < 23

SAGE Code to Calculate f(n), 9 ≤ n ≤ 22.

A SAGE programming code is given below, which calculate an upper bound of f(n) defined in
Theorem 6. The idea is to use the recurrence relation

f(n) ≤ n

2(n− 2)
f(n− 1) +

bn/2c∑
i=2

∑
Λ∈CT (n−i)

≥i

Ri(Λ)P (ΓΛ) + P (n)
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with P (n) ≤ 0.0000093 and

bn/2c∑
i=2

∑
Λ∈CT (n−i)

≥i

Ri(Λ)P (ΓΛ) ≤
bn/2c∑
i=2

f(n− i)
∑

Λ∈CT (n−i)
≥i

Ri(Λ).

We use the bounds of f≥4(5), f≥3(6), f≥2(7) and f(8) given in Theorem 6 as initial values in the
calculation. The SAGE code syntax and output of the program in SageMath Version 7.3 is given
below.

Syntax

import sys
from sage.all import *
def w(a,b):

s=a*b-gcd(a,b)
return s

def f(a):
s=(a-1)**2/2.0
s=s.floor()
return s

def R(g,n,p):
M=set(g)
N=list(M)
lam=p
l1=list(g).count(p)
k= len(N)
L=[]
sum=0
for j in range (k):

d=N[j]
l = list(g).count(d)
t=w(lam,d)*l
sum=sum+t
L.append(l)

mu=f(lam) + sum
E = 1/float(2mu)
pro=1
for r in range(lam):

pro=(n-r)*pro
F=pro/float((l1+1)*lam)
Rlam=F*E
return Rlam

def SR(n,p):
Z=0
for g in Partitions(n-p, min_part=p):
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Z=R(g,n,p)+Z
return Z

A=[0,0,0,0,0,0.0937,0.0683,0.061,0.874]
for n in range(9,23):

t=floor(n/2)
X=0
for p in range (2, t+1):

X=A[n-p]*SR(n,p)+ X
FX= (n*A[n-1])/float(2*(n-2)) + 0.0000093+ X
print "f(",n,")is",FX
A.append(FX)

Output

f( 9 )is 0.565502029643413
f( 10 )is 0.421002282515914
f( 11 )is 0.267868741717338
f( 12 )is 0.170601031045550
f( 13 )is 0.102346113079601
f( 14 )is 0.0609053489833814
f( 15 )is 0.0353110371363751
f( 16 )is 0.0203048671548423
f( 17 )is 0.0115310549618470
f( 18 )is 0.00650639470158091
f( 19 )is 0.00364658006324804
f( 20 )is 0.00203611883735761
f( 21 )is 0.00113463671742483
f( 22 )is 0.000633429447998104

Partition Table of 5 ≤ n ≤ 8.

The following is a table containing all possible disjoint cycle decompositions of elements of Sn when
5 ≤ n ≤ 8. We denote number of integer partition of n by I(n).
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n I(n) Partitions
8 22 11111111, 1111112, 111122, 11222, 2222,

111113, 11123, 1223, 1133, 233,
11114, 1124, 224, 134, 44,

1115, 125, 35, 116, 26, 17, 8

7 15 1111111, 111112, 11122, 1222, 11113, 1123, 223, 133,
1114, 124, 34, 115, 25, 16, 7

6 11 111111, 11112, 1122, 222, 1113, 123, 33,
114, 24, 15, 6

5 7 11111, 1112, 122, 113, 23, 14, 5

Table 4: Partition table
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