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Abstract. Qualitative behaviour of switched systems has attracted consider-

able research attention in the recent past. In this article we study ‘how likely’
is it for a family of systems to admit stabilizing switching signals. A weighted

digraph is associated to a switched system in a natural fashion, and the switch-

ing signal is expressed as an infinite walk on this digraph. We provide a linear
time probabilistic algorithm to find cycles on this digraph that have a desir-

able property (we call it “contractivity”), and under mild statistical hypotheses

on the connectivity and weights of the digraph, demonstrate that there exist
uncountably many stabilizing switching signals derived from such cycles. Our

algorithm does not require the vertex and edge weights to be stored in memory

prior to its application, has a learning/exploratory character, and naturally fits
very large scale systems.

1. Introduction. Switched systems are typically employed to model dynamical
systems that are prone to known or unknown abrupt parameter variations [4, p.3].
These systems naturally arise in a multitude of contexts such as networked sys-
tems, quantization, variable structure systems, etc.; see e.g., [15, 13, 14] and the
references therein for extensive lists of application areas. It is well-known that the
qualitative behaviour of a switched system depends not only on those of the in-
dividual subsystems, but also crucially on the properties of the switching signal.
For instance, divergent trajectories may be generated by switching appropriately
among stable subsystems, while a suitably constrained switching signal may ensure
stability of the switched system even if all the subsystems are unstable (see, e.g.,
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[13, p.19] for examples with two subsystems). This interesting feature motivates the
identification of classes of switching signals that ensure stability of given switched
systems.

Recently in [9, 10] the authors proposed a class of time-dependent [13] switch-
ing signals for global asymptotic stability of discrete-time switched linear systems.
This class of switching signals is characterized solely in terms of certain asymptotic
properties of the switching signals, that neither involve nor imply point-wise bounds
on the number of switches — unlike in the case of the classical average dwell time
switching [5, 21]. The aim of the present article is to study the existence of the
above class of stabilizing switching signals. To address this question, we take re-
course to probability theory: in broad strokes, considering the ensemble of switched
systems as the sample space, we ask how likely a switched system sampled from this
ensemble is to admit a stabilizing switching signal. Of course, while the existence
of stabilizing switching signals is an important issue in its own right, algorithmic
synthesis of such switching signals is important for obvious reasons. Studies ad-
dressing the latter aspects have appeared before in the switched systems literature:
see, e.g., [6], [17]. In this article we address both the issues at once.

Our approach begins with associating a weighted digraph to a family of sys-
tems and the admissible transitions among them in a natural way, and express by
switching signal as an infinite walk on the above digraph.1 In particular, here we
are interested in the class of infinite walks corresponding to the class of stabilizing
switching signals proposed in [9, Theorem 1]. (We shall henceforth freely switch
between system-theoretic and the corresponding graph-theoretic terminology in the
above sense.) Towards answering the question of existence of an infinite walk that
corresponds to a stabilizing switching signal, we turn to probability theory and pro-
vide probabilistic guarantees for this existence problem. Under mild conditions, we
provide a randomized algorithmic mechanism to identify a class of switched sys-
tems that satisfy the conditions proposed in [9, Theorem 1], thereby addressing the
matter of synthesis of stabilizing switching signals.

Our solution comprises of the following stages: Firstly, we propose a probabilistic
algorithm to synthesize cycles on “typical” digraphs. Secondly, conditions on the
connectivity and weights of the underlying digraph of a switched system are identi-
fied that ensure that the cycles synthesized as above satisfy a certain good property
with high probability. We call this property “contractivity”. We demonstrate that
switching signals corresponding to infinite walks constructed out of contractive cy-
cles are stabilizing. Finally, under mild hypotheses, we demonstrate that there
exist uncountably many stabilizing infinite walks — these correspond to stabilizing
switching signals for the switched system, see Remark 5 for a detailed discussion.

More specifically, our contributions in this article may be viewed from the fol-
lowing perspectives:

◦ Standard deterministic algorithms that are employed to synthesize cycles on a
weighted digraph [2, p. 646], [19], [12, 20] may not be applicable to switched
systems whose underlying digraphs are large (e.g., in variable structure systems
with a large number of substructures), especially if their sizes are so large that not
all the weights can be kept in memory at once. For such large digraphs our algo-
rithm provides probabilistic guarantees in the spirit of randomized algorithms for

1Digraphs have appeared before in switched systems literature, see e.g., [16], [7].
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synthesis and design of contractive cycles. In today’s era of large-scale networked
systems, this is an extremely important and positive feature of our results.

◦ Our algorithm exhibits an “online learning” character in the following sense:
starting with a rough probabilistic description of the underlying weighted digraph,
(i.e., without knowledge of the precise values of the weights,) we explore the
digraph and synthesize a cycle during this exploration that is contractive with
high probability. On the other hand, the traditional algorithms for synthesizing
cycles require complete knowledge of the digraph and the vertex and edge weights
a priori.

◦ If the constituent subsystems of a switched system are prone to evolve/drift over
time in a manner that is not precisely known but certain statistical estimates of
the nature of evolution are available, our algorithm can be applied, and it will
construct a contractive cycle with uniform probabilistic guarantees over all such
evolutions.

The remainder of this article exposes as follows: In §2 we briefly recall the
class of stabilizing switching signals proposed in [9] and formulate the problem
under consideration. The association of a weighted digraph with a switching system
is described in §3. Our main results appear in §4, and numerical experiments
illustrating our results are provided in §5.

Some notations used in this article: N = {1, 2, · · · } is the set of natural numbers,
N0 = {0} ∪N, and R is the set of real numbers. For a finite set M , |M | denotes its
cardinality and M tN denotes the disjoint union of M with another finite set N .
For a digraph G(V,E), d+(v) denotes the outdegree of a vertex v ∈ V . For V ′ ⊂ V
we let N+

V ′(v) := {u ∈ V ′ | (v, u) ∈ E} denote the set of outneighbours of a vertex

v in V ′, and let d+V ′(v) :=
∣∣N+

V ′(v)
∣∣ denote the outdegree of v in V ′. For a walk W

on G(V,E), |W | denotes its length.

2. Problem statement. We consider a family of discrete-time linear systems
(written as initial-value recursions)

x(t+ 1) = Aix(t), x(0) given, i ∈ P, t ∈ N0, (1)

where x(t) ∈ Rd is the vector of states at time t, P = {1, 2, · · · , N}, and Ai ∈ Rd×d,
i ∈ P, are fixed full-rank matrices. Let σ : N0 → P be a switching signal that
specifies at every time t, the index of the active system from family (1). The
discrete-time switched linear system generated by the family of systems (1) and the
switching signal σ is given by

x(t+ 1) = Aσ(t)x(t), x(0) given, t ∈ N0. (2)

We are interested in switching signals that lead to the property of global asymptotic
stability of (2). In this connection, recall:

Definition 2.1. The switched system (2) is globally asymptotically stable (GAS)
for a given switching signal σ if (2) is

◦ Lyapunov stable, and
◦ globally asymptotically convergent: for all x(0), lim

t→+∞
x(t) = 0.

Let PS be the set of indices of the asymptotically stable systems in the family
(1), and let PU := P \ PS denote the rest of the systems in (1).2 Let E(P) denote

2The set PU includes (by definition) all the unstable systems and the marginally stable ones.
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the set of ordered pairs (i, j) such that switches from system i to system j are
admissible, i, j ∈ P. We recall two facts off the shelf:

Fact 1 ([9, Fact 1]). For each i ∈ P there exists a pair (Pi, λi), where Pi ∈ Rd×d is
a symmetric and positive definite matrix, and

◦ if i ∈ PS , then 0 < λi < 1;
◦ if i ∈ PU , then λi > 1;

such that, with Rd 3 ξ 7−→ Vi(ξ) := ξ>Piξ > 0, we have

Vi(γi(t+ 1)) 6 λiVi(γi(t)), t ∈ N0, (3)

where γi(·) solves the i−th recursion in (1), i ∈ P. The members of the family
{Vi}i∈P are called Lyapunov-like functions.

Fact 2 ([9, Fact 2, Proposition 1]). There exist numbers µij > 0 such that

Vj(ξ) 6 µijVi(ξ) for all ξ ∈ Rd, (i, j) ∈ E(P). (4)

In particular, the smallest such constants µij are given by µij = λmax(PjP
−1
i ), i, j ∈

P, where for a matrix M ∈ Rn×n having real spectrum, λmax(M) denotes its
maximal eigenvalue.

In [9, Theorem 1] we identified a large class of switching signals σ under which
the resulting switched system (2) is GAS; we recall the key result here:

Theorem 2.2 ([9, Theorem 1]). Consider the switched system (2). For t ∈ N let
Nσ
t be the number of switches before (and including) t. Then the switched system

(2) is GAS under all switching signals σ that satisfy

lim
t→+∞

Nσ
t

t
> 0, (5)

and

lim
t→+∞

∑
(k,`)∈E(P)

(lnµk`)]{k → `}t +
∑
j∈PU

|lnλj | ]{j}t∑
j∈PS

|lnλj | ]{j}t
< 1, (6)

where {λj |j ∈ P} and {µij |(i, j) ∈ P} are extracted from the family (1) using Fact
1 and Fact 2, respectively, ]{k → `}t denotes the number of times a switch from
system k to system ` is made by σ till time t, and ]{j}t denotes the number of times
that the system j is activated by σ till time t.

The condition (5) is sufficient to ensure that the switched system (2) does not
eventually adhere to an unstable system in (1); it may be dropped from the theorem
if PU = ∅. The condition (6) says that the limit superior of the ratio∑

(k,`)∈E(P)
(lnµk`)]{k → `}t +

∑
j∈PU

|lnλj | ]{j}t∑
j∈PS

|lnλj | ]{j}t
,

which is a function of time t, is strictly less than 1 as t → +∞. The term∑
(k,`)∈E(P)(lnµk`) · ]{k → `}t in the numerator of the above ratio captures the

number of times each admissible transition (k, `) ∈ E(P) occurs in σ till time t,
weighted by lnµk`’s, where µk` is as in Fact 2. The terms

∑
j∈PS

|lnλj | ]{j}t and
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j∈PU

|lnλj | ]{j}t capture the number of times a system j ∈ PS (resp. PU ) is
activated till time t by σ, weighted by the numbers λj ’s obeying Fact 1.

It should be noted that sufficient conditions in Theorem 2.2 rely on the Lyapunov-
like functions {Vi}i∈P via Fact 1 and Fact 2. Since there may be many viable choices
of {Vi}i∈P , it is not immediately clear that there exists a switching signal σ for which
(6) can be verified for a particular choice of the family {Vi}i∈P . Indeed, as demon-
strated in [9, Example 2], given a family of systems (1) and the set of admissible
transitions among the systems in the family, there may not exist a switching signal
σ that satisfies condition (6). This motivates the question:

Problem 1. What class of switched systems admits the class of switching signals
that satisfies the conditions in Theorem 2.2?

In this article we provide a description of a class of switched systems that admit
switching signals satisfying (6).

3. Preliminaries.

Associating a weighted digraph with (2). We associate a weighted digraph
G(P, E(P)) with the switched system (2) in the following natural fashion:

◦ the set of vertices of G is the index set P;
◦ the set of edges E(P) consists of:
� a directed edge from vertex i to vertex j whenever it is admissible to switch

from system i to system j, and
� a self-loop at vertex j, j ∈ P, whenever it is admissible to dwell on system j

for at least two consecutive time steps;
◦ edge and vertex weights w(i, j) := lnµij , (i, j) ∈ E(P) (Fact 2) and w(j) :=
|lnλj |, j ∈ P (Fact 1) denote the edge weights and vertex weights of G(P, E(P)),
respectively. Clearly, w(i, j) = 0 for a self-loop.

Various definitions. We abbreviate G(P, E(P)) by G whenever there is no risk
of confusion. Recall that the size of G is the number of its edges, and its order is
the number of its vertices. A walk W on a digraph G(V,E) [1, p. 4] is an alternat-
ing sequence of vertices and (directed) edges W = v0, e1, v1, e2, v2, · · · , v`−1, e`, v`,
where vi ∈ V , ei = (vi−1, vi) ∈ E, 0 < i 6 `. The initial vertex of W is v0 and the
final vertex of W is v`. If v0 = v`, we say that the walk is closed. We follow the
convention: A closed walk [1, p. 4] W on a directed graph G(V,E) is a circuit if

all its edges are distinct; W is a cycle if the vertices {vi}`−1i=1 are distinct from each
other and v0. By the term infinite walk we mean a walk of infinite length [1, p. 5],
i.e., it has infinitely many edges. An initial subwalk W ′ of a walk W is an initial
segment of W , which we write as W ′ 6W .

Fact 3 ([9, Fact 3]). The set of switching signals σ : N0 → P and the set of infinite
walks on G(P, E(P)) (defined as above) are in bijective correspondence.

For a walk W on G, we let NW denote the number of edges excluding self-loops
that appear in W , and let

ν(W ) :=
NW
|W | , |W | > 0, (7)

be the transition frequency of W . On the family of all finite walks W on G we
define the function
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Ξ(W ) :=

∑
(k,`)∈E(P)
w(k, `)]{k → `}W +

∑
j∈PU

w(j)]{j}W∑
j∈PS

w(j)]{j}W
, (8)

where ]{k → `}W and ]{j}W denote the number of times the edge (k, `) and
the vertex j appear in W , respectively, PS and PU denote the sets of indices of
asymptotically stable and unstable vertices (systems in family (1)), respectively.

In the light of Fact 3 and the definition above, we can rephrase Theorem 2.2 in
a purely graph theoretic language as:

Theorem 3.1. Consider the underlying weighted digraph G(P, E(P)) of the switched
system (2). The switched system (2) is globally asymptotically stable (GAS) under
all switching signals σ, whose corresponding infinite walks (à la Fact 3) W satisfy

lim
|W ′|→+∞
W ′6W

ν(W ′) > 0, (9)

and

lim
|W ′|→+∞
W ′6W

Ξ(W ′) < 1, (10)

where ν(W ′) and Ξ(W ′) are as defined in (7) and (8), respectively.

Since we are in the discrete-time setting, the association (à la Fact 3) of the
length of a walk with time is natural. It is clear that both the set of admissible
transitions (related to “directional” connectivity of G) between subsystems, and the
properties of the subsystems (captured by the vertex and edge weights of G) play
distinct roles in determining whether there exists an infinite walk W that satisfies
(10). In this terminology Problem 1 is described as:

Problem 2. What class of weighted digraphs admits infinite walks satisfying (10)?

Such infinite walks are called stabilizing in the sequel. We shall discuss algorith-
mic solutions to Problem 2 shortly.

Our algorithmic synthesis mechanism of stabilizing infinite walks will involve
concatenations of finite walks satisfying the following property:

Definition 3.2. A walk W on the weighted digraph G(P, E(P)) is contractive if

Ξ(W ) < 1. (11)

We provide a sufficient condition for the existence of an infinite walk satisfying
(10) in terms of a closed contractive walk (necessarily of finite length) on G.

Lemma 3.3 ([9, Theorem 2(a)]). Consider the underlying weighted digraph G(P,
E(P)) of the switched system (2). If there exists a closed contractive walk W on
G(P, E(P)), then the infinite walk obtained by repeating the closed walk W satisfies
(10).

In Lemma 3.3, “repetition” is an iterative process consisting of a mechanism
requiring a bounded quantum of memory, to generate finite walks Wk of length
nk > 0, k ∈ N, satisfying the condition that the final vertex of Wk−1 is identical
to the initial vertex of Wk for each k. We build the infinite walk W as the limit of
W1W2 · · ·Wk−1Wk, k ∈ N. The task of algorithmic synthesis of a closed contractive
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walk on G is computationally simpler under Lemma 3.3 since the length of the walk
is finite. We adopt the following convention: The total number of times a closed walk
W visits a vertex j ∈ P is the same as the total number of timesW visits its outgoing

edges. As a result, ]{j}W can be replaced by
∑

(j,`)∈E(P)
]{j → `}W . Since we are

concerned with an infinite walk constructed by repeating the closed contractive walk
W indefinitely many times, assuming the above is no loss of generality. Accordingly,
condition (11) becomes

Ξ′(W ) :=
∑

(k,`)∈E(P)

(
w(k, `) + w(k)1PU

(k)− w(k)1PS
(k)
)
]{k → `}W < 0. (12)

Remark 1. The mechanism explained above shows that for a walk W generated by
concatenating the walks W1 and W2 each satisfying the usual contractivity condition
(11), we have Ξ′(W ) = Ξ′(W1) + Ξ′(W2) < 0. However, algorithmic synthesis of a
closed contractive walk on G is also difficult due to the absence of a bound on the
length of the closed walk W . Consequently, the length at which the algorithm that
attempts to synthesize a closed contractive walk should terminate must be specified
and its a priori selection becomes a heuristic.

A natural alternative to searching for contractive walks over all closed walks (of
arbitrary length) is to restrict the walks to those with bounded length, for example,
circuits or cycles. We have:

Theorem 3.4 ([8, Theorem 6.13]). Consider the underlying weighted digraph G(P,
E(P)) of the switched system (2). The following are equivalent:

◦ G(P, E(P)) admits a closed contractive walk.
◦ G(P, E(P)) admits a contractive circuit.
◦ G(P, E(P)) admits a contractive cycle.

As a consequence, an infinite walk obtained by repeating one of the above satisfies
(10).

Given a weighted digraph G, Theorem 3.4 gives a set of necessary and sufficient
conditions for the existence of a closed contractive walk in terms of a contractive
circuit and a contractive cycle.

Armed with Theorem 3.4, in this article to Problem 2 we provide:

Solution 1. We propose a linear time (in the order of the graph) algorithm that
constructs a cycle of a certain fixed maximal length on G. Under mild assumptions
on the connectivity and the weights associated to the vertices and edges of G,
we provide strong probabilistic guarantees of the cycle obtained as above being
contractive in Theorem 4.2, construct stabilizing infinite walks out of such cycles,
and deduce strong assertions about the set of stabilizing infinite walks in Theorem
4.3.

4. Main results.

4.1. Nicely connected and weighted digraphs. We begin with the central def-
inition of this work, followed by an elaboration of its connections with system-
theoretic ideas. Recall, in this context, that N+

PS
(v) := {u ∈ PS | (v, u) ∈ E}

denotes the set of outneighbours of a vertex v in PS , and d+PS
(v) :=

∣∣N+
PS

(v)
∣∣ gives

the outdegree of v in PS .



8 NIRANJAN BALACHANDRAN, ATREYEE KUNDU AND DEBASISH CHATTERJEE

Definition 4.1. Let Φ : N → R be a monotone increasing function. A weighted
digraph G(P, E(P)) is said to be

◦ nicely connected if d+PS
(j) > bΦ(|PS |)c for all j ∈ P, and

◦ nicely weighted if the vertex and edge weights on G satisfy the following condi-
tions:
� there exist β,B > 0 satisfying 0 < β < B such that the vertex weights w(j)

satisfy 0 < w(j) 6 B and E
[
w(j)

∣∣{wi}i 6=j , {w(k, `)}(k,`)∈E(P)
]

= β for all
j ∈ P, and

� there exist constants A > 0 and α < β such that for every (i, j) ∈ E(P), the
edge weight w(i, j) ∈ [−A,A] and E

[
w(i, j)

∣∣{wi}i∈P , {w(k, `)}(k,`)6=(i,j)

]
6 α.

Remarks 1. Let us provide some insights into Definition 4.1:

◦ The function Φ in Definition 4.1 serves the purpose of quantifying the ‘density’ of
edges in the digraph G in terms of its order. Intuitively it makes sense that the
stronger the connectivity of the vertices of G(P, E(P)) with the set PS ⊂ P, the
more likely is it to find contractive cycles on G(P, E(P)); a quantitative bound on
the error probability of how likely it is to find contractive cycles on such graphs
is provided by Theorem 4.2. The higher the growth rate of Φ, the stronger is the
probabilistic estimate in Theorem 4.2 below.
◦ By Definition 4.1, every vertex in a nicely connected digraph has at least bΦ(|PS |)c

asymptotically stable outneighbours. The condition that the vertex and edge
weights w(j) and w(i, j) are uniformly bounded if G(P, E(P)) is nicely weighted
is no loss of generality on account of the graph G(P, E(P)) being finite. However,
it is also possible to consider the case in which the bounds on the weights depend
on the size of the graph G(P, E(P)), as explained in Remark 4 below. We stick
to the simpler case in order not to blur the message of our result.

◦ From a switched systems standpoint, the nicely connected property ofG(P, E(P))
describes the richness of admissible switches among the subsystems. The nicely
weighted property, in this context, provides quantitative information about the
(in)stability of the subsystems at an abstract level in terms of vertex and edge
weights. These weights (scalars) are, of course, obtained from Lyapunov-like func-
tions corresponding to the individual subsystems, the choice of which is certainly
not unique.

◦ Note that the size of the graph G(P, E(P)) is not related to the dimension of the
system (2); it reflects the internal structure of (2): if there are a large number
of substructures in a system with variable structure, that property is captured
by a large order of G(P, E(P)), and the possible transitions between the various
structures are captured by the set of directed edges between the subsystems.

◦ Definition 4.1 does not require independence of the vertex and edge weights.
In view of the association of these weights with properties of (2) as elaborated
at the beginning of §3, we see that there is no assumption of λk’s and lnµij ’s
being independent. This aspect is especially important because, for instance,
given w(i, j) (i.e., lnµij), the weight w(j, i) (i.e., lnµji) cannot be independent of
w(i, j). In particular, we do not assume any particular probabilistic model (that
may be tuned to specific applications,) for the weights; this ensures maximum
generality of our results.

4.2. A cycle-detection algorithm. We provide the following probabilistic algo-
rithm for detection of cycles in PS ; it will be utilized in Theorem 4.2 below for nicely
connected and weighted digraphs to furnish certain genericity assertions.
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Algorithm 1.

Step 1: Set k = 0.
Pick jk ∈ PS uniformly at random.

Step 2: If N+
PS

(jk)\{j0, · · · , jk} 6= ∅,
Pick jk+1 ∈ N+

PS
(jk)\{j0, · · · , jk} uniformly at random.

Set k = k + 1.
Go to Step 2.

Else
Pick jk+1 = ji such that ji ∈ N+

PS
(jk) and (k − i) is maximum.

Go to Step 3.
Step 3: End.

On the digraph G(P, E(P)) Algorithm 1 generates a walk in the following fash-
ion: At the first step a vertex corresponding to an asymptotically stable system is
picked uniformly at random. At every (k+ 1)-th step we identify the subset of out-
neighbours of the vertex picked at the k-th step such that the vertices correspond
to asymptotically stable systems, and they have not been picked till (and includ-
ing) step k; then a vertex from the above subset is picked uniformly at random. If
there is no such outneighbour corresponding to the asymptotically stable vertices
that were not picked earlier, the algorithm selects an outneighbour that is at the
maximum ‘distance’ from the current vertex in the already generated sequence, and
the algorithm is stopped.

Since we deal with finite digraphs, it is evident that every walk generated by our
algorithm is closed. In addition, the mechanism of repeating vertices (as described
above) makes this closed walk a cycle. Obviously, the length of the cycles is bounded
above by the order of the graph.

Example 1. Consider a nicely connected digraph with the set of vertices

P = {1, 2, 3, 4, 5},
where

PS = {1, 2, 3} and PU = {4, 5},
and let the set of directed edges be

E(P) =
{

(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3),

(2, 4), (2, 5), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 1)
}
.

Let j0 = 1 ∈ PS . Then j1 ∈ {2, 3}\{1}. Let j1 = 2. Then j2 ∈ {1, 3}\{1, 2}.
Consequently, j2 = 3. Now, {2}\{1, 2, 3} = ∅. As a result, j3 = 2. So we have
obtained the walk

1, (1, 2), 2, (2, 3), 3, (3, 2), 2,

which contains the cycle 2, (2, 3), 3, (3, 2), 2.

In the remainder of this section we show that for digraphs satisfying the prop-
erties of nice connectivity and weights in Definition 4.1, a cycle obtained from
Algorithm 1 satisfies (12) with high probability.

Remark 2. Deterministic algorithms for detecting cycles on weighted digraphs
may not be applicable to switched systems whose underlying digraphs are large,
especially if their sizes are so large that not all the weights can be kept in memory
at once. Such large-scale switched systems are increasingly becoming common in the
networked systems, see [11] and the references therein. For such large digraphs our
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algorithm provides probabilistic guarantees in the spirit of randomized algorithms
for detection and synthesis of contractive cycles. In addition, our algorithm has an
“online learning” property in the following sense: starting with a rough probabilistic
description of the underlying weighted digraph, (i.e., without knowledge of the
precise values of the weights,) we explore the digraph and synthesize a cycle during
this exploration that is contractive with high probability.

4.3. Contractive cycles and density of stabilizing infinite walks. Our first
main result is the following proposition that shows that on a nicely connected di-
graph, a cycle obtained from Algorithm 1 is of length at least bΦ(|PS |)c.
Proposition 1. If the weighted digraph G(P, E(P)) is nicely connected, then Al-
gorithm 1 synthesizes a cycle W on G(P, E(P)) such that all the vertices in W are
from PS and the length of W is at least bΦ(|PS |)c.
Proof. Let

W ′ = j0, (j0, j1), j1, · · · , jk−1, (jk−1, jk), jk, (jk, ji), ji

be a walk obtained from Algorithm 1. Consider the sub-walk

W = ji, (ji, ji+1), ji+1, · · · , jk−1, (jk−1, jk), jk, (jk, ji), ji,

which is a cycle by construction. By Algorithm 1, all the vertices of W are in PS .
We claim that |W | > bΦ(|PS |)c. Assume, if possible, that |W | < bΦ(|PS |)c. But

|W | = |ji, (ji, ji+1), ji+1, · · · , jk−1, (jk−1, jk), jk|
+ |jk, (jk, ji), ji|

= |ji, (ji, ji+1), ji+1, · · · , jk−1, (jk−1, jk), jk|+ 1.

By hypothesis, d+PS
> bΦ(|PS |)c, which implies that∣∣N+

PS

∣∣ > bΦ(|PS |)c. (13)

By the choice of ji in Algorithm 1,

{j0, j1, · · · , ji−1} /∈ N+
PS

(jk). (14)

From (13) and (14), it follows that

|{ji, ji+1, · · · , jk}| >
∣∣N+
PS

(jk)
∣∣ .

But ∣∣N+
PS

∣∣ > bΦ(|PS |)c,
which implies that

|{ji, ji+1, · · · , jk}| > bΦ(|PS |)c,
and therefore we reach a contradiction. Consequently, |W | > bΦ(|PS |)c+ 1.

The nicely connected property of a digraph, and consequently the lower bound on
the length of a cycle obtained from our Algorithm as ascertained by Proposition 1,
will be useful in providing a probabilistic estimate of how likely it is that the above
cycle is contractive. Of course this likelihood depends on the set of vertex and edge
weights associated to the digraph. This matter is addressed in the remainder of this
section.

Our second main result is the following theorem:
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Theorem 4.2. Consider the switched system (2) and the underlying weighted di-
graph G(P, E(P)) as described in §3. Suppose that G(P, E(P)) is nicely connected
and nicely weighted. Then a cycle of length at least bΦ(|PS |)c on G(P, E(P)) ob-

tained from Algorithm 1 is contractive with probability at least 1−exp

(
− 1

2

(
α−β
A+B

)2
bΦ(|PS |)c).
Proof. Since the given weighted digraph G(P, E(P)) is nicely connected, by Lemma
1 there exists a cycle on G(P, E(P)) with all vertices of the cycle being in PS and
the length of the cycle is at least bΦ(|PS |)c. Such a cycle can be constructed by
Algorithm 1.

Consider a cycle W = j0, (j0, j1), j1, · · · , jn−1, (jn−1, j0), j0 of length exactly
bΦ(|PS |)c = n (say). Since {j0, j1, · · · , jn−1} ∈ PS , (12) can be written as

n∑
k=1

w(jk−1, jk)−
n∑
k=0

w(jk) < 0.

Let

Xn :=

n∑
k=1

w(jk−1, jk)−
n∑
k=0

w(jk). (15)

Define the filtration (Fm)nm=0 by

Fm = σ
{
w(jk−1, jk), w(j`)

∣∣ k = 1, · · · ,m, ` = 0, · · · ,m
}
.

Since G is nicely weighted,

EFk−1 [Xk] = Xk−1 + EFk−1 [w(jk−1, jk)− w(jk)]

6 Xk−1 + α− β
< Xk−1 since α < β by Definition 4.1. (16)

Let (Xm)nm=0 := (ξ0 + Mm + Am)nm=0 denote the a.s. unique Doob decomposition
[3, Theorem 5.2.10] of the process (Xm)nm=0 with (Mm)nm=0 as the martingale and
(Am)nm=0 as the compensator. In other words, with M0 := 0 and A0 := 0, we have
ξ0 := X0, and for m = 1, . . . , n,

Mm :=

m∑
k=1

(
Xk − EFk−1 [Xk]

)
, Am :=

m∑
k=1

(
EFk−1 [Xk]−Xk−1

)
.

The inequality (16) shows that (Xk)nk=0 is an (Fk)nk=0 strict supermartingale; the
compensator process (Ak)nk=0 is, therefore, strictly decreasing.

The definition of ξ0 shows that ξ0 6 0, and from (16) we get An 6 (α − β)n.
Since

P(Xn > 0) = P(ξ0 +Mn +An > 0)

6 P(Mn +An > 0)

6 P(Mn > −n(α− β))

= P

(
Mn

A+B
>
−n(α− β)

A+B

)
,

we apply Azuma’s inequality [18, p. 92] to the zero-mean martingale process
(Mm)nm=0 to get

P(Xn > 0) 6 P

(
Mn

A+B
>
(−(α− β)

√
n

A+B

)√
n

)
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6 exp

(
−1

2

(
(α− β)

√
n

A+B

)2)
,

which gives the estimate in the theorem.

Remark 3. Theorem 4.2 asserts that a cycle obtained via Algorithm 1 is contractive
with high probability provided |PS | is large. Consequently, repeating such a cycle
derived from Algorithm 1 generates an infinite walk W that, in view of Lemma 3.3,
satisfies (10). This in turn identifies a class of switched systems (whose underlying
weighted digraph G is nicely connected and nicely weighted) that admits switching
signals satisfying the conditions proposed in [9, Theorem 1] with overwhelming
probability.

Remark 4. The primary engine leading to the estimate in Theorem 4.2 is Azuma’s
inequality. Our assumption of a uniform bound for the weights due to G being nicely
weighted led to a uniform bound on the martingale increments (Mm −Mm−1)nm=1

in the proof of Theorem 4.2, and our estimate followed at once from Azuma’s
inequality. A more general version of Azuma’s inequality may be employed in
an identical fashion to cater to vertex- and edge-dependent weights, leading to
a possibly sharper bound. The numerical value of the confidence with which a
contractive cycle may be found, however, depends on the size of PS and the ability
of the function Φ in Definition 4.1 to dominate the accumulation of the weights
along the martingale increments.

Theorem 4.2 gives a recipe — via Algorithm 1 — for constructing a contractive
cycle with high probability. Armed with this recipe, infinite stabilizing walks, i.e.,
stabilizing switching signals for (2), can be easily constructed. One such simple
construction consists of concatenating a contractive cycle indefinitely many times.
However, stabilizing infinite walks consisting of repetitions of contractive cycles are
not the only infinite walks on G(P, E(P)); indeed, under mild conditions, there
exist uncountably many stabilizing infinite walks on the digraph. Our final result
establishes these facts:

Theorem 4.3. Consider the switched system (2) and the underlying weighted di-
graph G(P, E(P)) as described in §3. Suppose that G(P, E(P)) is nicely connected
and nicely weighted.

◦ With probability at least 1− exp
(
− 1

2

(
α−β
A+B

)2
bΦ(|PS |)c

)
there exists a stabilizing

infinite walk on G(P, E(P)).
◦ If, in addition, G(P, E(P)) has a strongly connected subgraph that contains PS

as a strict subset, then there exists an uncountable family of infinite stabilizing

walks on G(P, E(P)) with probability at least 1− exp
(
− 1

2

(
α−β
A+B

)2
bΦ(|PS |)c

)
.

Proof. Concerning the first assertion, observe that cycles constructed via Algorithm

1 are contractive with probability at least 1 − exp

(
− 1

2

(
α−β
A+B

)2
bΦ(|PS |)c

)
, and

repeating such a cycle W generates an infinite stabilizing walk in view of Lemma
3.3.

To see the second assertion, we first generate a cycle W ⊂ PS via Algorithm

1; W is contractive with probability at least 1− exp

(
− 1

2

(
α−β
A+B

)2
bΦ(|PS |)c

)
. We

then follow the steps below (see Figure 1):
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◦ We partition the graph G = G(P, E(P)) into its strongly connected components
{C′i}`i=1, where ` is a positive integer equal to the number of strongly connected
components of G. This decomposition can be achieved in linear (in the size and
order of G) time using standard algorithms [2, §22.5] derived from depth-first
search.

◦ We construct a digraph G′ = G′(V ′, E′) as follows: the set V ′ consists of the
family {C′i}`i=1, and the set of directed edges E′ contains every pair (C′i, C′j) such
that there exists a directed edge from any vertex of C′i into C′j in E(P). The graph
G′ is acyclic by construction.

◦ We perform a topological sort [2, pp. 613-614] on the acyclic digraph G′, leading
to an ordered family (C1, . . . , C`) of the vertices of G′ (here the sets {Ci}`i=1

and {C′j}`j=1 are identical, of course). By construction, each Ci is a strongly
connected subgraph of G, and there is no directed edge from Ci+1 into Ci for any
i = 1, . . . , `− 1 in E(P).

◦ Since G is nicely connected and there can exist no directed edge from Ci+1 into
Ci for each i = 1, . . . , `− 1, it follows that PS ⊂ C`. Moreover, since PS ( C` by
hypothesis, there exists w ∈ C` \ PS .

Pick two vertices v, v′ ∈W . By strong connectivity of C`, there exists a directed path
from v to w and another directed path from w to v′; we denote the concatenation of
these two paths, in that order, by W ′. Let the shortest (as measured with respect
to the undirected graph obtained from G by eliminating the directions from the
edges) directed segment of W from v′ to v be denoted by W ′′. The concatenation
of the directed paths W ′ and W ′′, in that order, is a (finite) closed walk starting

from v ∈ W ; we denote this closed walk by W̃ . By definition of C` it follows

that W̃ ⊂ C`, but W̃ is not necessarily contractive. However, since Ξ′(W ) < 0,

it follows that there exists m ∈ N such that mΞ′(W ) + Ξ′(W̃ ) < 0, where Ξ′ is
the function defined in (12). Let the closed walk generated by traversing m times

the walk W starting at v, followed by a single traversal of W̃ and terminating at v
be denoted by W . Consider the set S of infinite walks on G, starting from v and
obtained by concatenating W and W in arbitrary orders. Elementary calculations
show that (9) and (10) hold for each such infinite walk, showing in turn that the
corresponding switching signals are stabilizing. It remains to show that the set S
is also uncountable, for which it suffices to recall that the set of words of infinite
length constructed out of two distinct letters is uncountable.

Remark 5. Moving away from the graph-theoretic terminology, we note that in
the context of (2):

◦ The first part of Theorem 4.3 asserts that with high probability there exists a
stabilizing periodic switching signal during which only subsystems from PS are
activated.

◦ The second part of Theorem 4.3 asserts that with high probability uncountably
many stabilizing switching signals exist.

◦ The proof of the second part will demonstrate two features:
� that these stabilizing switching signals may be aperiodic, i.e., Theorem 4.3

does not restrict attention to just periodic switching signals with the stabilizing
property; and

� that the stabilizing switching signals in Theorem 4.3 may venture out of PS
into PU .
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W

C`
v

v′

PS

W ′

W ′′

w

Figure 1. An illustration of the steps in the Proof of Theorem 4.3.

Theorem 4.2 and Theorem 4.3 provide the details of Solution 1.
To summarize, in this article we tackled the question of how likely is it for

a “generic” switched system to admit a switching signal that satisfies the condi-
tions proposed in [9, Theorem 1]. We associated a weighted digraph to a switched
systems. A switched system admitting the stabilizing switching signals under con-
sideration was identified in terms of connectivity and vertex and edge weights of
this underlying weighted digraph. The connectivity associates to the admissible
switches, and the weights associates (at a level of abstraction in terms of Lyapunov
functions) to the (in)stability of the individual subsystems and the gain/loss caused
by switching.

5. Numerical example. In this section we provide a numerical example to demon-
strate our Theorem 4.2. Consider a nicely connected and nicely weighted digraph
G with

◦ |PS | = 1000, Φ(r) = 1
10

√
r, d+(j) = bΦ(|PS |)c for all j ∈ P, and

◦ A = 2.5, B = 5, α = 0 and β = 2.5.

We extract and fix a cycle W obtained from Algorithm 1 on PS ⊂ P. The vertex and
edge weights on W are sampled uniformly at random 1000 times from the intervals
as stipulated in Definition 4.1. We calculate Xn defined in (15) empirically for n
being the length of the cycle W .

The above experiment is repeated for cycles of different length n obtained from
Algorithm 1 with uniformly randomly selected initial vertex. We plot the empirical
probability of {Xn < 0} vs length n of the cycle in Figure 2.

Observe that the synthesis of a contractive cycle from Algorithm 1 does not
require a priori knowledge of the vertex and edge weights of G. It is evident from
this example as we first fix a cycle W and then select weights from a specified
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Figure 2. Plot for the empirical probability of a cycle being con-

tractive against its length n with Φ(r) =
1
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√
r.

interval. This is not the case with deterministic negative cycle synthesis algorithms,
which require complete knowledge of the vertex and edge weights of G prior to their
application. In addition, the weights are sampled uniformly at random 1000 times
and we find high empirical probability for {Xn < 0}. This highlights the feature
that even if the systems in the given family are prone to evolve over time, our
algorithm provides uniform probabilistic guarantees.
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