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Abstract

Let B denote a set of bicolorings of [n], where each bicoloring is a mapping of the points in [n] to {−1,+1}.
For each B ∈ B, let YB = (B(1), . . . , B(n)). For each A ⊆ [n], let XA ∈ {0, 1}n denote the incidence vector
of A. A non-empty set A is said to be an ‘unbiased representative’ for a bicoloring B ∈ B if 〈XA, YB〉 = 0.
Given a set B of bicolorings, we study the minimum cardinality of a family A consisting of subsets of [n]
such that every bicoloring in B has an unbiased representative in A.
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1. Introduction

Let B denote a set of bicolorings of [n] = {1, . . . , n}, where each bicoloring B ∈ B maps each point x ∈ [n]
to either -1 or +1. Let YB denote the n-dimensional vector representing the bicoloring B, i.e. YB =
(B(1), . . . , B(n)). A non-empty set A ⊆ [n] is said to be an unbiased representative for a bicoloring B ∈ B
if 〈XA, YB〉 = 0, where XA denotes the 0-1 n-dimensional incidence vector corresponding to A. We call a
family A of subsets of [n] a system of unbiased representatives (or ‘SUR’) for B if for every bicoloring B ∈ B,
there exists at least one set A ∈ A such that 〈XA, YB〉 = 0. Note that the two monochromatic bicolorings can
never have any unbiased representatives - we call these bicolorings ‘trivial’. Let γ(B) denote the minimum
cardinality of a system of unbiased representatives for B. We define the maximum of γ(B) over all possible
families B of non-trivial bicolorings of [n] as γ(n). Note that no singleton set of [n] is a member of any
optimal system of unbiased representatives.

Unbiased representatives are useful in testing products such as drugs over a large population where the
effectiveness (or side-effect) of a new drug is studied in correlation with a large set of patient attributes
such as body weight, height, age, etc. Complementary extremes in the attributes, such as being obese or
underweight, tall or short, and young or old, are relevant in such correlation studies. Such studies require
patients with complementary ranges of values of a certain attribute to be present in equal (or roughly equal)
numbers in the representative group for that attribute – such a group may be deemed to be an unbiased
representative for the attribute. However, selecting a separate sample of individuals for each attribute
having equal representation of the complementary traits is practically impossible. So, one needs to select a
family A of samples of individuals such that for any attribute B, there exists a sample A ∈ A which has an
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equal representation of individuals from the complementary traits of B. It is in the best interest to choose a
family A of such groups of representatives of the smallest possible cardinality. It is not hard to see the direct
mapping of this problem to the problem addressed in this paper. In a generic setting, SURs are useful in
various applications where a collection of items (like individual patients) have many attributes (like weight,
height and age), where the objective is to form a small collection of subsets of items with almost equal
representation of opposite or complementary traits for each attribute.

1.1. Definitions and notations

We use ‘SUR’ to denote the phrase ‘system of unbiased representatives’. For integers n and p, let [n] denote
the set {1, . . . , n}, and [n ± p] denote the set {n − p, n − p + 1, . . . , n + p}. A bicoloring B of [n] is called
a k-bicoloring if the number of +1’s in B is exactly k. For a bicoloring B : [n] → {−1, 1}, we use B(+1)
(respectively, B(−1)) to denote the set of points receiving color +1 (respectively, -1) under B. We use
YB (XA) to denote the n-dimensional ±1 vector (respectively, 0-1 vector) representing the bicoloring B
(respectively, A ⊆ [n]), i.e. YB = (B(1), . . . , B(n)). Note that 〈YB , XA〉 = 0 for some A ∈

([n]
r

)
implies that

that r is even. Throughout the rest of the paper, we consider only the non-trivial bicolorings and assume
that every set in a SUR is of even cardinality.

Let γ(B, r) (respectively, γ(B, [r1, r2])) be the minimum cardinality of a SUR A for B, where each A ∈
A is an r-sized (respectively, at least r1-sized and at most r2-sized) subset of [n]. We define γ(n, k, r)
(γ(n, [k1, k2], [r1, r2])) as follows.

γ(n, k, r) = max
B

γ(B, r),where B consists of only k-bicolorings.

γ(n, [k1, k2], [r1, r2]) = max
B

γ(B, [r1, r2]),where B ∈ B has k1 ≤ |B(+1)| ≤ k2.

Note that γ(B, [2, n]) is the same as γ(B). Since no singleton set of [n] can be a member of any optimal system
of unbiased representative and the monochromatic bicolorings, consisting of exactly zero (or n) +1’s, are
trivial, γ(n, [1, n− 1], [2, n]) is the same as γ(n).

1.2. Relation to existing works

Given a family F of subsets of [n], finding another family F ′ with certain properties in relation with F has
been well investigated. One of the most studied problems in this direction is the computation of separating
families(see [1]). Let F consist of pairs {i, j}, i, j ∈ [n], i , j and S be another family of subsets on [n]. A
subset S separates a pair {i, j} if i ∈ S and j < S or vice versa. The family S is a separating family for F if
every pair {i, j} ∈ F is separated by some S ∈ S (see [1, 2, 3, 4, 5] for detailed results and related problems
on separating families). Separating families have many applications like ‘Wasserman-type’ blood tests of
large populations, diagnosis and chemical analysis, locating defective items, etc (see [6]). An extension
of the separating family problem is the ‘test cover’ problem: “Given a family T of subsets of [n], finding a
sub-collection S ⊆ T of minimum cardinality such that every pair of [n] is separated by some S ∈ S”. The
test cover problem is studied in the context of drug testing, biology [7, 8, 9] and pattern recognition [10].
For results and related notions, see [11, 12, 13, 14, 15]. In the above problems, any two sized set F = {i, j}
can be viewed as a partial bicoloring χ : [n]→ {−1, 0, 1} where χ(i) = −1, χ(j) = +1, and χ(p) = 0 for any
p ∈ [n] \ {i, j} and a set S covers F if and only if 〈XS , Yχ〉 ∈ {−1,+1}.

An affine hyperplane is a set of vectors H(a, b) = {x ∈ Rn : 〈a, x〉 = b}, where a ∈ Rn is a nonzero vector,
b ∈ R. Covering the {0, 1}n Hamming cube with the minimum number of affine hyperplanes has been well
studied - a point x ∈ {0, 1}n is said to be covered by a hyperplane H(a, b) if 〈a, x〉 = b (see [16, 17, 18]). It
is not hard to see that any SUR for the 2n − 2 non-trivial bicolorings is a covering for all the points of the
{−1, 1}n Hamming cube, except {(−1, . . . ,−1), (1, . . . , 1)}, by hyperplanes H(a, b) satisfying (i) a ∈ {0, 1}n
and (ii) b = 0.

The problem addressed in this paper can be viewed as an inverse of the problem of bisecting families[19].
Let A be a family of subsets of [n]. Another family B of subsets of [n] is called a bisecting family for A, if for
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each A ∈ A, there exists a B ∈ B such that |A ∩ B| ∈ {d |A|2 e, b
|A|
2 c}. In the bicoloring terminology, let XA

and YB denote the (0, 1) and (−1,+1) incidence vectors corresponding to sets A and B, respectively, where
XA(i) = 1 (YB(i) = 1) if and only if i ∈ A (respectively, i ∈ B). If B is a bisecting family for A, then for each
A ∈ A, there exists a B ∈ B such that | 〈XA, YB〉 | ≤ 1. Apart from the similarity in the formulations, there is
no apparent connection between the problems of bisecting families and SURs either in the bounds obtained
or the techniques used in obtaining the bounds.

1.3. Summary of results

The paper is divided into three logical sections. The first section (Section 2) focuses on obtaining O(log |B|)
upper bounds for SURs when (i) the collection B of bicolorings is unrestricted or has minor restrictions,
and (ii) the sets in the SURs are unrestricted or have minor restrictions. When B consists of all the 2n − 2
non-monochromatic bicolorings, it is not difficult to show that n2 ≤ γ(B, [2, n]) ≤ n−1. Using an application
of Combinatorial Nullstellensatz [20], we improve the above lower bound to n− 1.

Theorem 1 Let n be a positive integer and k ∈ [n]. Then, γ(n, [1, n− k], [2, n]) = n− 1, where 1 ≤ k ≤ dn2 e.

We relate the problem of SUR to the hitting set problem, which in turn implies relations with ‘VC-
dimension’ provided εn ≤ |B(+1)| ≤ (1 − ε)n for each B ∈ B. For such families B, this relationship assists
in establishing an O(log |B|) upper bound for cardinalities of any optimal SUR. Under a similar restriction
for each B ∈ B, if it is mandatory that each set in the SUR is of cardinality exactly r, the best upper bound
obtained is large (Ω(er log |B|)). In order to establish an ln |B| upper bound for the size of an optimal SUR
under this restriction, we relax the cardinality restriction on the sets in A and permit some tolerance in
| 〈YB , XA〉 | to obtain the following theorem.

Theorem 2 Let r′ ∈ [r±d r2e], where r ≥ 8 is an integer. Let B denote the set of all bicolorings B ∈ {−1,+1}n,
where ||B(+1)| − |B(−1)|| ≤ d, for some d ∈ N. Then, with high probability, one can construct a family A of
cardinality at most ln |B| in O(n|B| ln |B|) time consisting of r′-sized subsets such that for every B ∈ B, there
exists a set A ∈ A with | 〈YB , XA〉 | ≤ e

√
r + dr

n .

In the second part of the paper (Section 3), we study the SUR problem where each B ∈ B is restricted
to have exactly k +1’s and each set in the SUR is required to be of cardinality exactly r, for some r, k ∈ [n],
2 ≤ r ≤ 2k. We relate the SUR problem under such restrictions to ‘covering’ problems, that enables us to
use a deterministic algorithm of Lovász [21] and Stein [22] to compute such a SUR in polynomial time. In
particular, for sufficiently large values of n, and k ≤ log4(logn)1−ε for some 0 < ε < 1, we use a result of
Alon et al. [23, Corollary 1.3] to establish the following asymptotically tight bound on γ(n, k, 2k).

Theorem 3 For sufficiently large values of n,(
n
k

)(2k
k

) ≤ γ(n, k, 2k) ≤
(
n
k

)(2k
k

) (1 + o(1)),

provided k ≤ log4(logn)1−ε, for any 0 < ε < 1.

The problem of estimation of γ(n, k, r) becomes interesting when k = n
2 - the reduction to coverings

gives a lower and upper bound of max
(⌈

n
2r
⌉
, c1

√
r(n−r)
n

)
and O(n

√
r(n−r)
n ), respectively. For r = f(n),

where f(n) is an increasing function in n, this establishes only sub-linear lower bounds for γ(n, n2 , r). We
use a vector space orthogonality argument combined with a theorem of Keevash and Long [24] to obtain a
linear lower bound on γ(n, k, r) under certain restrictions on n, k and r.

Theorem 4 Let r = 2c for any odd integer c ∈ {1, . . . , n2 }. Let k be an even integer, where εn < k < (1 − ε)n
for some 0 < ε < 0.5. Then, γ(n, k, r) ≥ δn, where δ = δ(ε) is some real positive constant.
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Combined with an upper bound construction given in Lemma 22, this establishes an asymptotically tight
bound for γ(n, n2 ,

n
2 ), when n

2 ≡ 2 (mod 4).
In the third part of the paper (Section 4), we obtain the following inapproximability result for computing

optimal SURs by using a result of Dinur and Steurer [25] on the inapproximability of the hitting set problem.

Theorem 5 Let n and m be integers and let r ≤ (1 − Ω(1)) lnm
4 . Then, no deterministic polynomial time

algorithm can approximate the system of unbiased representative problem for a family of m bicolorings on [n]
to within a factor (1−Ω(1)) lnm

4r of the optimal when each set chosen in the representative family is required to
have its cardinality at most r, unless P=NP.

2. When cardinalities of sets in the ‘SUR’ are unrestricted or semi-
restricted

In this section, we proceed with the natural motivation of identifying various cases where a SUR of small size
exists for a given family of bicolorings. More specifically, given a family of bicoloring B, we show that there
exists a SUR of size O(log |B|) when (a) |B| is large (Section 2.1), (b) every bicoloring in B has sufficient
number of +1’s and -1’s, (Section 2.2), and (c) each set in the SUR is sufficiently large but we tolerate a
controlled amount of bias (Section 2.3).

2.1. Bounds on γ(n, [k, n− 1], [2, n])
Recall that γ(n) = maxB γ(B, [2, n]), where γ(B, [2, n]) is the cardinality of an optimal system of unbiased
representative for B. Observe that γ(B1) ≤ γ(B2) when B1 ⊆ B2. So, to establish bounds on γ(n), it suffices
to consider the set of all the 2n−2 non-monochromatic bicolorings as B and establish bounds on γ(B, [2, n]).
We have the following proposition.

Proposition 6 Let n be a positive integer and k ∈ [n].

(i) γ(n, [k, n− 1], [2, n]) = γ(n, [1, n− k], [2, n]).

(ii) γ(n, [1, n− k], [2, n]) = γ(n, [1, bn2 c], [2, n]), for any 1 ≤ k ≤ dn2 e.

(iii) γ(n, [1, n− k], [2, n]) ≤ n− 1, for 1 ≤ k ≤ n.

(iv) n
2 ≤ γ(n, 1, [2, n]) ≤ γ(n, [1, n− k], [2, n]), for 1 ≤ k ≤ n− 1.

PROOF. (i) For any k-bicoloring B, any unbiased representative A for B is also an unbiased representative
for the bicoloring B′, where B′(+1) = B(−1) and B′(−1) = B(+1).
(ii) The proof follows from the proof of Statement (i) in Proposition 6.
(iii) Let B denote the set of all the 2n − 2 non-monochromatic bicolorings. It is not hard to see that A =
{{1, 2}, {1, 3}, . . . , {1, n}} is an SUR of cardinality n− 1 for B.
(iv) Let B = {B||B(+1)| = 1}. So, |B| = n. For any B ∈ B, if for any A ⊆ [n], 〈YB , XA〉 = 0, then |A| = 2.
Moreover, for any A ∈

([n]
2
)
, exactly two B ∈ B has 〈YB , XA〉 = 0. So, we need at least n

2 two sized sets to
form a SUR for B. The second inequality follows from containment. 2

In the construction leading to the proof of Statement (iii) in Proposition 6, only two-sized sets are used
as unbiased representatives. We have a slightly non-trivial construction assuming n = 2p, for some integer
p, giving similar bounds in Appendix A.

To establish a tight lower bound on γ(n, [1, dn2 e], [2, n]) (γ(n, [1, n− 1], [2, n])), we make use of Combina-
torial Nullstellensatz [26] stated below to establish Lemma 8.

Theorem 7 (Combinatorial Nullstellensatz) [26] Let F be a field and f ∈ F[x1, . . . , xn] be some polynomial
of degree d. Let the coefficients of the term xt11 x

t2
2 · · ·xtnn be non-zero and t1 + . . . + tn = d. If S1, . . . , Sn are

finite sets with each |Si| ≥ ti + 1, then there exists a point X ∈ S1 × · · · × Sn such that f(X) is nonzero.
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Using Theorem 7, we prove the following simple lemma.

Lemma 8 Let F ∈ F[x1, . . . , xn] be a polynomial and S1, . . . , Sn be non-empty subsets of F, for some field F. If
F vanishes on all but one point (s1, . . . , sn) ∈ S1 × · · · × Sn ⊆ Fn, then deg(F ) ≥

∑n
i=1(|Si| − 1).

PROOF. For the sake of contradiction, assume that deg(F ) <
∑n
i=1(|Si| − 1). Consider the following poly-

nomials.

Hi(xi) =
∏

s∈Si\{si}

(xi − s).

G(x1, . . . , xn) =
n∏
i=1

Hi(xi).

Note that deg(G) is
∑n
i=1(|Si| − 1). Let F (s1, . . . , sn) = c1 and G(s1, . . . , sn) = c2. Note that c2 , 0 since

none of the Hi’s vanish at this point. Then, the polynomial c2F − c1G vanishes on all points of S1×· · ·×Sn.
However, c2F − c1G has degree

∑n
i=1(|Si| − 1): the monomial x|S1|−1

1 · · ·x|Sn|−1
n has −c1 as its coefficient.

Using Combinatorial Nullstellensatz [26], there exists at least one point in S1× · · · ×Sn where c2F − c1G is
non-zero which is a contradiction. 2

Proof of Theorem 1

Statement of Theorem 1. Let n be a positive integer and k ∈ [n]. Then, γ(n, [1, n− k], [2, n]) = n− 1, where
1 ≤ k ≤ dn2 e.

PROOF. From Statements (ii) and (iii) of Proposition 6, we know that in order to prove Theorem 1, we only
need to establish a lower bound of n− 1 for γ(n, [1, n− 1], [2, n]).

Let B denote the set of all the 2n− 2 non-monochromatic bicolorings of [n]. Let A be a SUR of minimum
cardinality for B. Let YB (XA) denote the n-dimensional ±1 vector (respectively, 0-1 vector) representing
the bicoloring B (respectively, A ⊆ [n]). Consider the polynomial P (y), where y = (y1, . . . , yn) is a vector
with each yi ∈ {−1,+1}.

P (y) =
∏
A∈A
〈XA, y〉. (1)

From the definition of A, P (YB) vanishes on all non-trivial bicolorings B of [n]. Now, consider the
following polynomial P ′(x), where x = (x1, . . . , xn) is a vector with each xi ∈ {0, 1}.

P ′(x = (x1, . . . , xn)) = P (1− 2x1, . . . , 1− 2xn)(x1 + . . .+ xn − n). (2)

P ′(x1, . . . , xn) vanishes at every point in {0, 1}n except at the point (0, . . . , 0) : P (1 − 2x1, . . . , 1 − 2xn)
vanishes at every point in {0, 1}n except the two points (0, . . . , 0) and (1, . . . , 1) and (x1+. . .+xn−n) vanishes
at (1, . . . , 1). P ′(x) has degree at most deg(P ) + 1. Using Lemma 8 with each Si = {0, 1}, 1 ≤ i ≤ n, it
follows that deg(P ) + 1 ≥ deg(P ′) ≥ n. So, |A| = deg(P ) ≥ n− 1. 2

Remark 1 Lemma 8 can also be used to obtain an alternative proof of induction base case of the Cayley-
Bacharach Theorem by Riehl and Graham [27] (see Appendix B). An alternative proof of the above lower bound
can also be obtained using the Cayley-Bacharach Theorem by Riehl and Graham [27].

Note that in Section 2.1, the underlying set B of all the non-trivial bicolorings of [n], has cardinality
|B| = 2n − 2. In this case, Theorem 1 establishes that γ(n, [1, n − 1], [2, n]) = n − 1 = Θ(log |B|). In the
following section, we match the O(log |B|) upper bound for slightly restricted sets B of bicolorings.
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2.2. Relation to hitting sets for an arbitrary collection of bicolorings

Let S denote a collection of subsets of [n]. A subset V ⊆ [n] is a hitting set for S if for every S ∈ S, V ∩ S
is non-empty. Let H(S) denote a minimum cardinality hitting set of S. The decision version of the hitting
set problem is: “Given the pair (S, [n]) and an integer k as input, decide whether there exists a hitting set of
cardinality at most k for S”. We have the following relation between SURs and hitting sets.

Lemma 9 Let B = {B0, . . . , Bm−1} ⊆ {−1,+1}n be a family of bicolorings of [n]. Construct the family
C = {C1, . . . , C2m} where C2i+1 = Bi(+1) and C2i+2 = Bi(−1), for 0 ≤ i ≤ m− 1. Let H = {h1, h2, h3, . . .}
denote a hitting set for C. Define A = {(h1, hq)|hq ∈ H, q > 1}. Then, A is a SUR for B of cardinality |H| − 1.

PROOF. For the sake of contradiction, assume that Bi ∈ B has no unbiased representative in A. Assume that
h1 ∈ Bi(+1). Since H is a hitting set for C, there exists some hq ∈ H such that hq hits C2i+2 (and, thereby
Bi(−1)). Then, the pair (h1, hq) is an unbiased representative for Bi, a contradiction to our assumption. So,
h1 < Bi(+1). But this implies that h1 ∈ Bi(−1). A similar contradiction can be obtained in this case. 2

Given a hypergraph G = (V,E), a subset A ⊆ V is said to be shattered by G if for every B ⊆ A, there
exists an e ∈ E such that e ∩ A = B. The VC-dimension of G is the size of any largest subset of V that is
shattered by G. Given that a hypergraph G has VC-dimension d, Haussler and Welzl [28] gave a method for
estimating the minimum cardinality of a hitting set τ(G). We state an improved bound due to Komlos et al.
[29].

Theorem 10 [30, Corollary 15.6] Let G = (V,E) be a hypergraph of VC-dimension d. If every hyperedge of G
has at least ε|V | elements for some ε ≤ 1

2 , then

τ(G) ≤ d

ε
(ln 1

ε
+ 2 ln ln 1

ε
+ 6).

Let B be restricted to a special family of bicolorings: the number of +1’s for each B ∈ B lies in the range
εn and (1− ε)n, i.e., εn ≤ |B(+1)| ≤ (1− ε)n, for some fixed 0 < ε < 1

2 . Construct the family C as in Lemma
9 and let d be the VC-dimension of C. Note that every C ∈ C has size at least εn, for some fixed ε < 1

2 . Using
Theorem 10, we can get an a hitting set H for C of cardinality at most d

ε (ln 1
ε + 2 ln ln 1

ε + 6). Using Lemma
9, it follows that we can construct a SUR for B of cardinality d

ε (ln 1
ε + 2 ln ln 1

ε + 6) − 1. Since any family C
of VC-dimension d has cardinality at least 2d, this establishes an O(log |C|) = O(log |B|) upper bound for the
cardinality of any optimal SUR under no restriction on set sizes. We state the result as a proposition below.

Proposition 11 Let 0 ≤ ε ≤ 1
2 be a constant. Let B be a family of bicolorings, where εn ≤ |B(+1)| ≤ (1− ε)n,

for each B ∈ B. Let C be the family constructed from B as in Lemma 9. Let d be the VC-dimension of C. Then,
γ(B) ≤ d

ε (ln 1
ε + 2 ln ln 1

ε + 6)− 1.

In both Section 2.1 and 2.2, the O(log |B|) cardinality SURs contained sets of small sizes (2-sized sets)
as well. In what follows, we study the problem of SURs made of large cardinality sets. In order to obtain a
similar O(log |B|) bound for such a SUR, we inevitably introduce some error in the representation.

2.3. Probabilistic construction of SURs consisting of large sets with limited bias

To begin with, in Proposition 12, we give a construction of SURs made of large sets of fixed size using a
straightforward application of probabilistic method.

Proposition 12 Let B denote a set of bicolorings, where the number of +1’s in each B ∈ B lies in the range
{αn, αn+ 1, . . . , (1− α)n} for some 0 < α < 1

2 . Then,

γ(B, r) ≤ er

2r(α(1− α)) r2
ln(|B|). (3)
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PROOF. Choose an r element set A = {x1, . . . , xr} from
([n]
r

)
uniformly at random. The probability that

a fixed bicoloring B ∈ B has 〈YB , XA〉 = 0 is at least
(αnr/2)((1−α)n

r/2 )
(nr)

≥
( αn
r/2 )

r
2 ( (1−α)n

r/2 )
r
2

( enr )r = ( 2
e )r(α(1 − α)) r2

(this probability is minimized when B contains exactly αn +1’s and (1 − α)n -1’s or vice versa). So, the
probability that a fixed bicoloring B ∈ B does not have 〈YB , XA〉 = 0 is at most

1−
(

2
e

)r
(α(1− α)) r2 < e−( 2

e )r(α(1−α))
r
2 .

Let A be constructed by choosing t r-element sets into A independently, where each r-element set is
chosen from

([n]
r

)
uniformly at random as described above. Using union bound, the probability that some

B ∈ B has 〈YB , XA〉 , 0 for all A ∈ A, is |B|(e−( 2
e )r(α(1−α))

r
2 )t. Enforcing the above probability to be strictly

less than 1, we get an upper bound of er

2r(α(1−α))
r
2

ln(|B|) for a minimum cardinality SUR for B. 2

Using Proposition 13, the case when k = n
2 and r = 2 yields a asymptotically tight example for this upper

bound. When α = 1
2 − ε, for some 0 ≤ ε < 1

2 , Inequality 3 becomes

|A| ≤ er

(1− 4ε2) r2
ln(|B|). (4)

Using the fact that (1 − 1
m+1 )m ≥ 1

e , the right hand term is at most er+( 4ε2
1−4ε2

) r2 ln |B|. Therefore, when
r ∈ O(1), we have an O(ln |B|) upper bound for any optimal SUR consisting of r sized sets for B. However,
if r is any increasing function in n, the upper bound given by Proposition 12 is large (even if ε = 1

n , the
expression on the RHS of 4 is Ω(er ln |B|)). In order to obtain an O(ln(|B|)) upper bound for |A| where
the sets in A are large, one may permit some bias in representation. Let B denote the set of all bicolorings
B ∈ {−1,+1}n, where |B(+1)−B(−1)| ≤ d, for some d ∈ N. Our problem is to find a small sized family A
for B such that

1. each A ∈ A is reasonably large;

2. for every B ∈ B, there exists a set A ∈ A such that | 〈YB , XA〉 | ≤ ∆, where ∆ = ∆(r, d, n) is as small
as possible.

Proof of Theorem 2

Statement of Theorem 2. Let r′ ∈ [r ± d r2e], where r ≥ 8 is an integer. Let B denote the set of all bicolorings
B ∈ {−1,+1}n, where ||B(+1)| − |B(−1)|| ≤ d, for some d ∈ N. Then, with high probability, one can
construct a family A of cardinality at most ln |B| in O(n|B| ln |B|) time consisting of r′-sized subsets such
that for every B ∈ B, there exists a set A ∈ A with | 〈YB , XA〉 | ≤ e

√
r + dr

n .

PROOF. We construct a set A ⊂ [n] of size r′ ∈ [r±d r2e] by picking each element of [n] into A independently
with probability r

n . Let XA = (a1, . . . , an) denote the corresponding random vector where each ai ∈ {0, 1}.
Note that |A| =

∑n
i=1 ai. So, using linearity of expectation, (µ =)E[|A|] =

∑n
i=1 E[ai] = r. Moreover, since

ai’s are independent, V ar[|A|] =
∑n
i=1 V ar[ai] = r(1− r

n ). So, using the following form of Chernoff’s bound
P (|X − µ| > ∆µ) < ( e∆

(1+∆)(1+∆) )µ + ( e−∆

(1−∆)(1−∆) )µ, we get,

P

(
|
n∑
i=1

ai − r| > 0.5r
)
< 0.72, for r ≥ 8. (5)

So, we can sample a family A of cardinality t (t to be chosen later) consisting of sets of size r′ ∈ [r ± r
2 ].

Let B ∈ B be a bicoloring, where |B(+1)| − |B(−1)| = d1, where −d ≤ d1 ≤ d. Let YB = (b1, . . . , bn)
denote the corresponding bit vector, where each bi ∈ {−1,+1}. Let Y = 〈YB , XA〉. Since Y =

∑n
i=1 aibi,
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Y becomes a random variable (aibi can take values from {−1, 0, 1} and are independent). So, E[Y ] =∑n
i=1 biE[ai] = d1r

n . It follows that V ar[Y ] =
∑n
i=1 b

2
iV ar[ai] = r(1 − r

n ). So, using Chebyshev’s inequality,
we get, P

(
|Y − d1r

n | ≥ e
√
r
)
≤ 1

e2 (1 − r
n ) < 1

e2 . That is, the probability that |〈YB , XA〉| > d1r
n + e

√
r is at

most 1
e2 . Let E denote the bad event that some B ∈ B has | 〈YB , XA〉 | > dr

n + e
√
r for all A ∈ A. Using

union bound, P (E) ≤ |B|( 1
e2 )t. Setting this ‘failure’ probability |B|( 1

e2 )t to at most 1
2 , we get, t ≥ ln |B|.

Independently choose 100t subsets of [n] (call this collection D), where each D ∈ D is constructed by
picking an element of [n] independently with probability r

n . Let C ⊆ D be the sub-collection of r′-sized
subsets in D, where r′ ∈ [r ± r

2 ]. Note that for a fixed A ∈ D with XA = (a1, . . . , an), the probability that
A < C is same as P (|

∑n
i=1 ai − r| > 0.5r), which by Equation 5 is at most 0.72 for r ≥ 8. So, E[|C|] ≥ 28t.

Since V ar[|C|] ≤ 25t, using Chebyshev’s inequality, with high probability, |C| ≥ 10t. Partition C into t-sized
sets. From the discussions in the previous paragraph, it follows that with high probability, one of the parts
will form our desired family A that is a SUR (with restricted error) for B.

It takesO(n ln |B|) time to sampleD, filter out C and partitioning C into t-sized sets. It takesO(n|B| ln |B|)
time to check whether a particular ln |B| sized collection forms a SUR for B. 2

Comparison between Theorem 2 and Proposition 12: Expressing d in Theorem 2 in terms of α in Proposi-
tion 12, (1 − 2α)n = d. So, ε = 1

2 − α = d
2n . Substituting this value of ε in Inequality 4, we get a SUR of

cardinality Ω(er ln |B|) with no error for B.

3. When cardinalities of sets in the ‘SUR’ and +1’s in the bicolorings
are restricted: Estimating γ(n, k, r)

In this section, we study the SUR problem where each B ∈ B is restricted to have exactly k +1’s and
each set in the SUR is required to be of cardinality exactly r, for some r, k ∈ [n], 2 ≤ r ≤ 2k. For any
k-bicoloring B of [n], and any A ⊆ [n], if A is an unbiased representative for B, then 2 ≤ |A| ≤ 2k. Recall
that γ(n, k, r) = γ(B, r), where (i) B is the collection of the

([n]
k

)
distinct k-bicolorings, (ii) γ(B, r) is the

cardinality of an optimal SUR A for B, and, (iii) each A ∈ A has cardinality exactly r. We have the following
propositions.

Proposition 13 max(dn−kr e, d
k
r e) ≤ γ(n, k, r).

PROOF. Consider the case when k ≤ bn2 c. Given a SUR A of cardinality bn−kr c consisting of r-sized subsets,
there exists a k-sized subset (say, S) of [n] that is completely disjoint from the union of these r-sized subsets.
The bicoloring with the points in S colored +1 and the points in [n]\S colored -1 does not have any unbiased
representative in A. 2

Proposition 14 2
r(r−1)γ(n, k − 1, r − 2) ≤ γ(n, k, r) ≤ (n− r + 1)γ(n, k − 1, r − 2), for r ≥ 4.

PROOF. Let Bi denote the set of all the bicolorings consisting of exactly i +1’s, for i ∈ {k, k − 1}. Let
Ar−2 denote a family of (r − 2)-sized subsets that is an optimal unbiased representative family for Bk−1.
For any A ∈ Ar−2, let Ā = [n] \ A = {x1, . . . , xn−r+2}. For each A ∈ Ar−2, we construct (n − r + 1)
r-sized subsets as follows: A1 = A ∪ {x1, x2}, A2 = A ∪ {x1, x3}, · · · , An−r+1 = A ∪ {x1, xn−r+2}. Let
Ar = ∪A∈Ar−2{A1, · · · , An−r+1}. To see that Ar is a system of unbiased representative for Bk, consider any
B ∈ Bk and a bicoloring B′ ∈ Bk−1 such that B′(+1) ⊂ Bk(+1). Let A′ ∈ Ar−2 has 〈YB′ , XA′〉 = 0. From
the construction, it follows that there is at least one A ∈ {A′1, · · · , A′n−r+1} such that 〈YB , XA〉 = 0.

For the lower bound, consider a SUR A for Bk of size γ(n, k, r). For each A ∈ A, let FA denote the family
of
(
r
r−2
)

distinct (r − 2)-sized subsets of A. Then, A′ = ∪A∈AFA is an unbiased representative family for
Bk−1 where each set in the family is of size exactly (r − 2). 2
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A single r-sized set can be an unbiased representative for at most
(
r
r
2

)(
n−r
k− r2

)
distinct bicolorings consisting

of k +1’s. Using this fact, we have the following lower bound.

γ(n, k, r) ≥
(
n
k

)(
r
r
2

)(
n−r
k− r2

) . (6)

To establish an upper bound, we reduce this problem to a covering problem and then make use of a
result by Lovász and Stein [21, 22].

Definition 15 Given a family F of subsets of some finite set X, the cover number Cov(F) of F is the minimum
number of members of F whose union includes all the points in X.

Theorem 16 (Lovász-Stein Theorem)[21, 22, 31] If each member of F covers at most a elements and each
element in X is covered by at least v members of F , then

Cov(F) ≤ |F|
v

(1 + ln a).

In the proof of the above Lovász-Stein Theorem, one considers a |X| × |F| matrix M = (ai,j), where ai,j is
1 if and only if ith element in X belongs to jth set in F . Then, one chooses a subset of columns C of size at
most |F|v (1+ln a) starting with an empty set C and adding to it a column containing most number of 1’s and
then deleting all rows containing an 1 in that column. This process is repeated until all rows are exhausted.
Using the Lovász-Stein result, we have the following theorem.

Theorem 17 Let n be an integer, r, k ∈ [n], 2 ≤ r ≤ 2k and r is even. Then,(
n
k

)(
r
r
2

)(
n−r
k− r2

) ≤ γ(n, k, r) ≤
(
n
k

)(
r
r
2

)(
n−r
k− r2

) (1 + 0.7r + ln
((

n− r
k − r

2

)))
.

PROOF. Consider the following construction of a uniform family of subsets based on the
(
n
[k]
)

distinct k-
bicolorings and

(
n
r

)
distinct r-sized subsets of [n].

Construction 1 Corresponding to each distinct k-bicoloring B in
([n]
k

)
, we add a point vB to X. Corresponding

to each distinct r-sized subset A in
([n]
r

)
, we add a set eA to F , where eA is the collections of all vB ’s such that

〈XA, YB〉 = 0. So, eA ‘covers’ vB if and only if vB ∈ eA.

So, |X| =
(
n
k

)
, |F| =

(
n
r

)
. Clearly, a =

(
r
r
2

)(
n−r
k− r2

)
, v =

(
k
r
2

)(
n−k
r
2

)
. It follows from the construction that

γ(n, k, r) = Cov(F). So, from Theorem 16, we have

γ(n, k, r) ≤
(
n
r

)(
k
r
2

)(
n−k
r
2

) (1 + ln
((

r
r
2

)(
n− r
k − r

2

)))
. (7)

Double counting (B,A) pairs, where B is a k-bicoloring and A is a r-sized subset that covers B, we get

(
n

k

)(
k
r
2

)(
n− k
r
2

)
=
(
n

r

)(
r
r
2

)(
n− r
k − r

2

)
. (8)

Note that this equation can also be obtained as a result of direct simplification of both LHS and RHS.
Combining Inequalities 7 and 8, and from Inequality 6, Theorem 17 follows. 2
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Since Lovász-Stein method is deterministic and constructive, the above reduction gives a deterministic
polynomial time algorithm for obtaining a SUR. Moreover, from Theorem 17, it follows that γ(n, k, r) is
O(k lnn) approximable (k + 0.2r + (k − r

2 ) ln( n−rk− r2
) using the approximation

(
n
k

)
≤ ( enk )k) and when k = r

2 ,

the approximation factor becomes O(r) (1 + 0.7r). However, if k ≤ log4(logn)1−ε and r = 2k, for some
0 < ε < 1, then this upper bound can be improved further.

3.1. Tight upper bounds under more restrictions

From Construction 1, it is clear that the approximation factor for γ(n, k, r) in Theorem 17 comes as a conse-
quence of the approximation factor for the cover number given by Lovász-Stein Theorem. So, tighter bounds
for the cover number should translate into tighter bounds for γ(n, k, r). Let v(B,D) denote the number of
r-sized sets that are unbiased representatives for both B and D, for any pair (B,D) of k-bicolorings, where
B , D. Let vpair = max

B,D∈([n]
k ),

B,D

v(B,D). The Rödl nibble method [32, 33] establishes asymptotically tight

bounds for the cover number provided the uniformity a of the family F in Construction 1 is fixed, v → ∞,
and vpair ∈ o(v). The following theorem by Alon et al. [23, Corollary 1.3] relaxed the condition for a.

Theorem 18 [23] Let H be a a-uniform v-regular hypergraph with maximum codegree vpair. If

a ∈ o
(

log
(

v

vpair log(vpair + 1)

))
,

then there exists a cover of size n
a (1 + o(1)).

From Construction 1, we know that a =
(
r
r
2

)(
n−r
k− r2

)
, v =

(
k
r
2

)(
n−k
r
2

)
. In the estimation of γ(n, k, r), if k ≤

log4(logn)1−ε and r = 2k, for any 0 < ε < 1, using Construction 1, it follows that a < 2r = 22k ≤ (logn)1−ε.

We need to show that (logn)1−ε ∈ o
(

log
(

v
vpair log(vpair+1)

))
in order to use Theorem 18 and prove Theorem

3.

Lemma 19 (logn)1−ε ∈ o
(

log
(

v
vpair log(vpair+1)

))
, when r = 2k and k ≤ log4(logn)1−ε, for any 0 < ε < 1.

PROOF. In order to prove the lemma, it is important to note that v(B,D) depends intrinsically on the
cardinality of B(+1) ∩ D(+1). Let S be some r-sized subset of [n]. Let iB = S ∩ (B(+1) \ D(+1)), iD =
S ∩ (D(+1) \ B(+1)), jBD = S ∩ (B(+1) ∩D(+1)) and jBD = S ∩ ([n] \ (B(+1) ∪D(+1)) (see Figure 1).
So, S = iB ∪ iD ∪ jBD ∪ jBD. If S is an unbiased representative for B, then |iB |+ |jBD| = |iD|+ |jBD| =

r
2 .

If S is an unbiased representative of D, then |iD|+ |jBD| = |iB |+ |jBD| =
r
2 . Therefore, if S is an unbiased

representative of both B and D, then (i) |iB | = |iD| (= i, say), (ii) |jBD| = |jBD| (= j, say), and (iii)
2i+ 2j = r = 2k. Let x = |B(+1) ∩D(+1)|. Since |B(+1)| = |D(+1)| = k, applying Condition (iii), we get
x = j and k − x = i. In other words, if S is an unbiased representative of cardinality r = 2k for both the

k-bicolorings B and D, B(+1) ∪D(+1) ⊆ S. Consequently, v(B,D) =
(
x
x

)(
n−2k+x

x

) ((
k−x
k−x
))2

=
(
n−2k+x

x

)
.

The general formula for v(B,D) is given by v(B,D) =
∑
i,j:j≤x,
i≤k−x,
i+j= r

2

(
x
j

)(
n−2k+x

j

) ((
k−x
i

))2
.

So, when x = k − 1, v(B,D) =
(
n−k−1
k−1

)
; when x = k − 2, v(B,D) =

(
n−k−2
k−2

)
, etc. Therefore, v(B,D)

v(B′,D′) =
Ω(nk ) if |B(+1)∩D(+1)| = k−1 and |B′(+1)∩D′(+1)| ≤ k−2. So, vpair = v(B,D), when |B(+1)∩D(+1)| =
k − 1 provided r = 2k. Thus, vpair =

(
n−k−1
r
2−1

)
, when r = 2k. Computing vpair

v ,

vpair
v

=

(
n−k−1
r
2−1

)(
k
r
2

)(
n−k
r
2

) = r

2(n− k) . (9)
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B(+1)
D(+1)

B(+1) ∩D(+1)

iB iD

jBD

jBD

S = iB ∪ iD ∪ jBD ∪ jBD

Figure 1: S is some r-sized subset of [n]. Let iB = S ∩ (B(+1) \D(+1)), iD = S ∩ (D(+1) \B(+1)), jBD = S ∩ (B(+1) ∩D(+1))
and j

BD
= S ∩ ([n] \ (B(+1) ∪D(+1)). So, S = iB ∪ iD ∪ jBD ∪ j

BD
. If S is an unbiased representative for B, then |iB | + |jBD| =

|iD| + |j
BD

|. If S is an unbiased representative of D, then |iD| + |jBD| = |iB | + |j
BD

|. So, if S is an unbiased representative of both
B and D, then |iB | = |iD| and |jBD| = |j

BD
|.

log
(

v
vpair log(vpair+1)

)
= log

(
2(n−k)

r log((n−k−1
r
2−1 )+1)

)
≥ 1

2 logn. So, (logn)1−ε ∈ o
(

log
(

v
vpair log(vpair+1)

))
, when

n→∞. 2

Proof of Theorem 3

Statement of Theorem 3. For sufficiently large values of n, (nk)
(2k
k ) ≤ γ(n, k, 2k) ≤ (nk)

(2k
k ) (1 + o(1)), provided

k ≤ log4(logn)1−ε, for any 0 < ε < 1.

PROOF. From Lemma 19, and using Theorem 18 to obtain coverings, the proof follows. 2

3.2. γ(n, k, r), when k = n/2
Let B denote the set of all

(
n
n
2

)
distinct n2 -bicolorings. It is not hard to see that A = {{1, 2}, {1, 3}, . . . , {1, n2 +

1}} is a SUR of cardinality n
2 for B. Together with Proposition 13, this establishes n

4 ≤ γ(n, n2 , 2) ≤ n
2 . It is

easy to see that γ(n, n2 , n) = 1. For arbitrary values of r, from Theorem 17 and Proposition 13, we have,

max
(⌈ n

2r

⌉
, c1

√
r(n− r)

n

)
≤ γ(n, n2 , r) ≤ c2n

√
r(n− r)

n
, where c1 and c2 are constants. (10)

When r = n
2 , this establishes a lower bound and upper bound of Ω(

√
n) and O(n

√
n), respectively. In

general, when r = f(n) is an increasing function in n, this establishes sub-linear lower bounds for γ(n, n2 , r).
We use an extension of a theorem of Frankl and Rödl [34] given by Keevash and Long [24] to obtain a

linear lower bound on γ(n, k, r) under certain restrictions on k and r. Let D ⊆ [q]n be a q-ary code. For any
x, y ∈ D, the Hamming distance between x and y is the number of indices where x(i) , y(i), for 1 ≤ i ≤ n.
The code D is called d-avoiding if the Hamming distance between no pair of code-words in D is d. The
following upper bound for d-avoiding codes is given in [24].

Theorem 20 [24] Let D ⊆ [q]n and let ε satisfy 0 < ε < 1
2 . Suppose that εn < d < (1 − ε)n and d is even if

q = 2. If D is d-avoiding, then |D| ≤ q(1−δ)n, for some positive constant δ = δ(ε).

We have the following lower bound for γ(n, k, r), when r = 2c for any odd integer c ∈ {1, . . . , n2 } and
εn < k < (1− ε)n, for some 0 < ε < 0.5.
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Proof of Theorem 4

Statement of Theorem 4. Let r = 2c for any odd integer c ∈ {1, . . . , n2 }. Let k be an even integer, where
εn < k < (1− ε)n for some 0 < ε < 0.5. Then, γ(n, k, r) ≥ δn, where δ = δ(ε) is some real positive constant.

PROOF. Let B = {B1, . . . , B(nk)} denote the set of all the bicolorings of [n] consisting of exactly k +1’s. We

construct a family C = {C1, . . . , C(nk)}, where Ci = Bi(+1). Let A be a SUR for B, where each A ∈ A has

cardinality exactly 2c for some odd number c ∈ [n]. Note that 〈YBi , XA〉 = 0 implies that 〈XCi , XA〉 = c,
where XCi denotes the 0-1 incidence vector corresponding to the set Ci. Let V ⊂ {0, 1}n denote the vector
space spanned by the vectors XA’s, A ∈ A, over F2. Let V ⊥ ⊂ {0, 1}n denote the subspace orthogonal to
V . Since A is a SUR for B, it follows that for every Ci, there exists a set A ∈ A such that 〈XCi , XA〉 = 1(
mod 2) (since c is odd). Therefore, XCi < V

⊥, for all XCi ∈ C =
([n]
k

)
. In other words, V ⊥ does not contain

any vector consisting of exactly k ones. Moreover, observe that for any x, y ∈ V ⊥, the number of ones in
x+y is same as the Hamming distance between x and y. Thus, V ⊥ is k-avoiding. Since εn < k < (1−ε)n and
k is even, from Theorem 20, it follows that there exists a positive constant δ = δ(ε) such that |V ⊥| ≤ 2n(1−δ).
So, dimension of V ⊥ is at most n(1− δ). Therefore, it follows that dimension of V is at least δn. 2

Corollary 21 γ(n, n2 , r) ≥ δn provided n
2 is even and r

2 is odd, for some 0 < δ < 1.

Let n
2 be even and r

2 be odd. From Inequality 10, we have γ(n, n2 , r) ∈ O(n
√
r). When r is a constant,

using Corollary 21, this upper bound is asymptotically tight. However, for larger values of r, there can be
a large gap (up to O(

√
n) when r ∈ Ω(n)) between the upper and the lower bound. In what follows, we

address the problem for a special case when r = n
2 and establish a better upper bound of n2 on γ(n, n2 ,

n
2 ).

Lemma 22 γ(n, n2 ,
n
2 ) ≤ n

2 , where n
2 is any even integer.

PROOF. Let B denote the set of all the bicolorings with equal number of +1’s and -1’s. LetA1 = {1, 2, . . . , n2 },
A2 = {2, 3, . . . , n2 + 1}, . . . , An

2
= {n2 ,

n
2 + 1, . . . , n− 1}. Let ci(B) = 〈YB , XAi〉. For any B ∈ B, it is not hard

to see that each ci(B) is even and |ci(B)− ci+1(B)| ∈ {0, 2}. Since the bicolorings consist of equal number
of +1’s and -1’s, cn

2
(B) ≤ −c1(B) + 2 if c1(B) ≥ 0, and cn

2
(B) ≥ −c1(B) − 2 if c1(B) < 0. In particular,

we have c1(B)cn
2

(B) ≤ 0. Since |ci(B)− ci+1(B)| ∈ {0, 2}, this implies the existence of an index i such that
ci(B) = 〈YB , XAi〉 = 0. This concludes the proof that γ(n, n2 ,

n
2 ) ≤ n

2 . 2

From Corollary 21 and Lemma 22, we have the following theorem.

Theorem 23 γ(n, n2 ,
n
2 ) ≤ n

2 . Moreover, γ(n, n2 ,
n
2 ) ≥ δn if n/2 is even and n/4 is odd, for some 0 < δ < 1.

4. Inapproximability of the SUR problem

Dinur and Steurer [25] established the following theorem on the inapproximability of the set cover problem.

Theorem 24 [25] For every α > 0, it is impossible to approximate set cover to within (1 − α) lnn, where n is

the size of the instance. The reduction runs in time O(2n
1
α ).

Given a hypergraph G with n vertices and m hyperedges, using the duality of set cover and hitting set
problems, Theorem 24 implies that for every α > 0, it is impossible to approximate hitting sets to within
(1− α) lnm of the optimal solution.

Using Theorem 24, we establish a hardness result of the hitting set problem for a special family of subsets.

Definition 25 A family F of subsets of [n] is complement closed on [n] if for all F ∈ F , [n] \ F ∈ F .

Proposition 26 Let n and m be integers. No deterministic polynomial time algorithm can approximate the
hitting set problem for a complement closed family consisting of m distinct subsets of [n] to within a factor of
(1− Ω(1)) lnm

4 of the optimal, unless P=NP.
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PROOF. For the sake of contradiction, assume that there exists an algorithm ALG that approximates the
hitting set for complement closed families on [n] to within a factor of (1 − Ω(1)) lnm

4 of the optimal. We
obtain a contradiction to this assumption by the following reduction from the general hitting set problem.

Given a pair (S ′, [n]) as input to the general hitting set problem, we extend the universe to [n + 1] by
adding the element n + 1. We construct S as follows: S = S ′ ∪ {[n + 1] \ S|S ∈ S ′}. Observe that S is a
complement closed family and |S| ≤ 2|S ′| = 2m. Let OPT (S) (OPT (S ′)) denote an optimal solution to the
hitting set problem on S (respectively, S ′). Let ALG(S) denote a hitting set output by ALG on S as input.

Observe that

|OPT (S ′)| ≤ |OPT (S)| ≤ |OPT (S ′)|+ 1 ≤ 2|OPT (S ′)|. (11)

From our assumption, we know that |OPT (S)| ≤ |ALG(S)| ≤ (1−Ω(1)) ln(2m)
4 |OPT (S)| < (1−Ω(1)) lnm

2 |OPT (S)|.
Note thatALG(S) is a valid hitting set for S ′. So, |OPT (S ′)| ≤ |OPT (S)| ≤ |ALG(S)| ≤ (1−Ω(1)) lnm

2 |OPT (S)| <
(1−Ω(1)) lnm

2 · 2|OPT (S ′)| = (1−Ω(1)) lnm|OPT (S ′)|. Therefore, ALG is a (1−Ω(1)) lnm factor approxi-
mation algorithm for the general hitting set problem. By duality of set cover and hitting sets, this establishes
a (1− Ω(1)) lnn factor approximation algorithm for the set cover problem. However, from Theorem 24, we
know it is impossible unless P=NP. 2

We use Proposition 26 to establish the following hardness result for the system of unbiased representative
problem.

Proof of Theorem 5

Statement of Theorem 5. Let n and m be integers and let r ≤ (1 − Ω(1)) lnm
4 . Then, no deterministic

polynomial time algorithm can approximate the system of unbiased representative problem for a family of m
bicolorings on [n] to within a factor (1−Ω(1)) lnm

4r of the optimal when each set chosen in the representative
family is required to have its cardinality at most r, unless P=NP.

PROOF. We prove Theorem 5 by a reduction from an instance of the hitting set problem on complement
closed familes. Let S be a complement closed family on [n]. From S, we construct a family B of bicolorings
on [n] in the following way: B = {B|B(+1) = S,B(−1) = [n] \ S, S ∈ S}. We chose S to be complement
closed so that from the construction of B and using Lemma 9, we have |OPTSUR(B)| ≤ |OPTHIT(S)| − 1.
For the sake of contradiction, assume that there exists an algorithm ALG that approximates the system of
unbiased representative problem for any family of bicolorings on [n] to within a factor f of the optimal,
where 1 ≤ f ≤ (1 − Ω(1)) lnm

4r and each set in the SUR is required to have its cardinality at most r. Let
OPTHIT(S) (OPTSUR(B)) denote an optimal solution to the hitting set problem (respectively, the system of
unbiased representative problem) on S (respectively, B). Let ALG(B) denote a SUR outputted by ALG with
B as its input. Then, executing ALG on B as input, we obtain a SUR A for B such that (i) 2 ≤ |A| ≤ r for
each A ∈ A, (ii) |ALG(B)| = |A| ≤ f · |OPTSUR(B)|, for some 1 ≤ f ≤ (1 − Ω(1)) lnm

4r . Let V = ∪A∈AA. It
follows that |V | ≤ r|A| and V is a hitting set for S.

Since |OPTSUR(B)| ≤ |OPTHIT(S)| − 1,

|OPTHIT(S)| ≤ |V | ≤ r · |ALG(B)| ≤ r · f · |OPTSUR(B)| < r · f · |OPTHIT(S)|.

So, ALG is a (r · f)-factor approximation algorithm for computing hitting set of S. Since 1 ≤ f ≤ (1 −
Ω(1)) lnm

4r , this is a contradiction to Proposition 26. 2

Remark 2 Consider the case when the family B is restricted to a special family of bicolorings, where the number
of +1’s (or -1’s) for each B ∈ B is exactly one, i.e. |B(+1)| = 1 (or |B(−1)| = 1). Then, the problem of system
of unbiased representatives reduces to an edge cover problem [35, 36] on a complete graph G, where for each
B ∈ B, a vertex vB(+1) (respectively, vB(−1)) is added to V (G). So, this reduction makes the SUR problem
polynomial time solvable for such families of bicolorings.
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Appendix A. An alternative construction of an SUR

Assume that n = 2p, for some integer p. Let A2 = {{1, 2}, {3, 4}, . . . , {n − 1, n}} : a partition of [n]
into two-sized sets. Let A4 = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {n − 3, n − 2, n − 1, n}} : a partition of [n] into
four-sized sets taken in that order. Similarly, repeating the construction for p − 2 more steps, we obtain
a sequence of partitions of [n], A2,A4, . . . ,An, where Ai is a partition of [n] into i-sized n

i parts, i.e.,
Ai = {{1, . . . , i}, {i + 1, . . . , 2i}, . . . , {n − i + 1, . . . , n}}. Let A = A2 ∪ A4 ∪ · · · ∪ An. It follows that
|A| = 2p−1 + 2p−2 + . . . + 1 = 2p − 1 = n − 1. To see that this is indeed a SUR for the set of all the 2n − 2
non-monochromatic bicolorings, let B ∈ {−1, 1}n denote any non-trivial bicoloring of [n]. Without loss of
generality, assume that |B(+1)| ≤ |B(−1)|. Let i (2 ≤ i ≤ n) be the minimum index such that there exists an
A ∈ Ai with A \ B(+1) , ∅ and A ∩ B(+1) , ∅. Observe that such an index exists since |B(+1)| ≤ |B(−1)|
and B is non-monochromatic. From construction of Ai and assumption on i, it follows that there exists
consecutive parts A1, A2 ∈ A i

2
with A1 ⊆ B(+1), A2 ∩ B(+1) = ∅, and A = A1 ∪ A2. So, it follows that A

is an unbiased representative for B.

Appendix B. Proof of induction base case of Theorem 27

Theorem 27 [27] Given the n quadratics in n variables x1(x1− 1), . . . , xn(xn− 1) with 2n common zeros, the
maximum number of those common zeros a polynomial P of degree k can go through without going through
them all is 2n − 2n−k.

PROOF. The proof is by induction on n. When k = 0, we have nothing to prove. So, we consider all the
degree k polynomials P on k+ 1 variables as the base case. For the sake of contradiction, assume that P is a
polynomial of degree k on k+1 variable and it misses only one common zero of x1(1−x1), . . . , xk+1(1−xk+1).
Then, using Lemma 8, it follows that degree of P must be k + 1, which is a contradiction. This completes
the proof of the induction base case. The rest of the proof is exactly the same as given in [27]. 2
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