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Abstract

This article studies two problems related to observability and efficient constrained sensor placement in linear time-invariant discrete-time
systems with partial state observations: (i) We impose the condition that both the set of outputs and the state that each output can measure
are pre-specified. We establish that for any fixed k > 2, the problem of placing the minimum number of sensors/outputs required to ensure
that the structural observability index is at most k, is NP-complete. Conversely, we identify a subclass of systems whose structures are
directed trees with self-loops at every state vertex, for which the problem can be solved in linear time. (ii) Assuming that the set of states
that each given output can measure is given, we prove that the problem of selecting a pre-assigned number of outputs in order to maximize
the number of states of the system that are structurally observable (i.e., to maximize the size of the observable subgraph) is also NP-hard.
As an application, we identify suitable conditions on the system structure under which there exists an efficient greedy strategy, which we
provide, to obtain a (1 − 1

e )-approximate solution. An illustration of the techniques developed for this problem is given on the benchmark
IEEE 118-bus power network containing roughly 400 states in its linearized model.
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1 Introduction

The ever-increasing demand for low-cost control and quick
reconstruction of past states from the observations for large-
scale systems has brought to the foreground the problem of
identifying a subset of the states with fewest elements that
are required to “efficiently” control or observe these sys-
tems assuming exact knowledge of the system parameters.
This problem may look deceptively simple, but it is a com-
putationally difficult one. Indeed, [23] proves that finding
the smallest number of actuators (resp. sensors) to make a
linear system controllable (resp. observable) is NP-hard.

Due to the sheer size and the ubiquitous modeling uncer-
tainties of these systems, it is difficult to accurately survey
the system parameters that govern their dynamics. More-
over, the parameters are prone to drift over time due to age-
ing, structural alterations, etc. Therefore, it is important to
control large-scale systems with the knowledge of only the
interconnections among the various states of the dynamical
system. This is still possible by using tools from structural
systems theory that relies on the zero-nonzero pattern of the
system matrices of a linear system, providing a fundamen-
tal bedrock on which conventional control theory may be
enabled. A survey on various optimization problems stud-
ied via structural system theory can be found in [17]. In
view of structural observabilty, a collection of interesting
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problems have been recently addressed in [5], [8], [9] and
the references therein. These works mainly focus on opti-
mal placement of sensors to ensure structural observability
via efficient polynomial time algorithms and classification
of sensors according to the influence of their failure on ob-
servability.

Since a significant fraction of real world systems admit only
partial state observations, one of the central problems in sys-
tems theory is the efficient recovery of the actual system
states from the observations. Moreover, for many networks
it is of practical importance to recover the states quickly and
efficiently within a small time window. Thus, it is crucial to
understand how quickly the states can be recovered from the
observations of a discrete-time linear system. The observ-
ability index characterises this speed of recovery by deter-
mining the minimum number of iterations required to fully
reconstruct the states of a discrete-time linear system. Due
to inevitable system uncertainties, we focus on the structural
counterpart of the observability index, namely, the structural
observability index. We address the following problem:

Minimal Sensor Placement Problem: Determining the
minimal number and placement of sensors/outputs re-
quired to guarantee a desired bound on the structural
observability index when the given output matrix has a
rectangular diagonal structure, i.e., the state to which
each output is directly connected is pre-specified. 1

Let d be the number of states in the linear system. Corre-

1 Note that the given output matrix can also be a diagonal struc-
tured matrix.
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sponding to this problem, we have the following results:
◦ We provide an algorithm with run time complexity

O(d3 log d) to determine a solution of the minimal sen-
sor placement problem when the desired bound on the
structural observability index is equal to 2.

◦ We prove that, in the general set up, the minimal sen-
sor placement problem is NP-hard whenever the desired
bound on the structural observability index is at least 3,
thereby illustrating a sharp transition in the hardness of
the problem as the bound changes from 2 to 3.

Since the general problem turn out to be difficult, we iden-
tify conditions under which the minimal sensor placement
problem is polynomially solvable. We consider a practically
relevant special class of systems whose structure is a di-
rected tree with a self-loop at every state. 2 We establish the
following result for this subclass:
◦ The minimal sensor placement problem is solvable in

polynomial time when the underlying graph structure of
the system is a directed tree with a self-loop at every state
and we give an O(d) algorithm to solve it.

We move to the second problem addressed in this article:
Cardinality Constrained Sensor Placement Problem:
Identifying a pre-assigned number of outputs from the
given set of outputs so that maximum number of states are
structurally observable by them 3 in the system when the
set of states that each output can measure is pre-specified.

It becomes extremely relevant when the permissible number
of sensors/outputs may not be adequate to observe the entire
system/network. Therefore, a design strategy to select the
outputs in such a way that as much of the network as possible
is observable is needed. Corresponding to this problem, we
have the following result:
◦ We establish that the cardinality constrained sensor place-

ment problem is NP-hard. We observe that the problem
remains NP-hard even if we impose a mild condition on
the system where the digraph associated with the state
matrix A is such that each state vertex has a self-loop. 4

We confine ourselves to this special class where each state
vertex has a self-loop since a wide class of systems exhibits
this self-damped dynamics [2], for example, epidemic spread
in networks [22], ecosystems [18], power grids [12], and
even social networks [24]. For this class of systems, we give
the following result:
◦ We provide a greedy algorithm to obtain an (1 − 1/e)-

approximate solution for the cardinality constrained sen-
sor placement problem. This is the best possible result

2 See §3 for a formal definition of the directed tree. This particular
structure plays an important role for a large class of systems
including leader-follower networks [26], [14], biological networks
[1], transportation systems [36], [35], etc. Furthermore, in the
multi-agent community, several well-known strong results [29],
[30] rely on the existence of spanning trees in the network, thereby
conforming to this category of structural hypotheses.
3 See §5 for a formal definition.
4 The systems satisfying this mild condition that every state vertex
has a self-loop are often referred as self-damped systems in the
literature.

that can be obtained via greedy algorithms and at the level
of generality considered here.

The rest of this article unfolds as follows. §2 discusses a
few existing results and related work in this area. §3 re-
views certain useful concepts and results. The precise prob-
lem statements of the minimal sensor placement problem
and the cardinality constrained sensor placement problem,
and our corresponding main results are given in §4 and §5
respectively. We conclude a summary of our results along
with possible future directions in §6.

2 Related work
The definition of structural observability index was intro-
duced in [19], and a few methods required for its computa-
tion were proposed in [31]. By employing graph-theoretic
techniques bounds on the (controllability and) observability
index for structured linear systems were provided in [33].
[27] considered the problem of identifying the minimum
number of states to be connected to distinct inputs (resp.
outputs) to ensure a given bound on the structural control-
lability (resp. observability) index, and established that the
problem is NP-hard. In addition, the trade-off between the
structural controllability index and the minimum number of
states that need to be actuated was explored on a variety
of artificial and synthetic networks by using a heuristic al-
gorithm and it was observed that the number of actuated
states obtained is close to optimal. The problem we address
is a generalization of the problem considered in [27]: the
selection of states to be measured by distinct outputs is con-
strained to a specific preassigned family of states. This re-
striction makes the problem more realistic and increases the
level of its difficulty; see Remark 2 for further technical de-
tails. In addition, we identify a practically relevant subclass
of systems for which the minimal sensor placement prob-
lem is optimally solvable, viz., systems whose structures are
directed trees with a self-loop at each vertex.

In control theory, several problems involving selection of a
pre-specified/minimum number of states (or inputs/outputs)
to optimize a certain objective function have been studied
via submodularity tools and can be found in [3]. In partic-
ular, the problem of identifying a pre-assigned number of
states to be actuated in order to optimize some of the energy
metrics was investigated in [32] via the notion of submod-
ularity. The problem of selecting the minimum number of
sensors to optimize the Kalman filter with respect to the es-
timation error was studied employing submodularity in [34].
In the context of our problem, a relaxed version of the car-
dinality constrained placement problem (in the controllabil-
ity framework) where each input (resp. output) is directly
connected to only one state was treated in [4] via submod-
ularity when the digraph associated with the state matrix A
is strongly connected. 5 However, they do not comment on
the complexity of this problem. In contrast to [4], we ad-
dress this problem in a different subclass where it is difficult

5 A digraph G = (V, E) is strongly connected if for each ordered
pair of vertices (xi, x j), G has a directed path from xi to x j.
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to solve and there is no restriction on the given outputs to
measure only one state.

3 Preliminaries
The set of real numbers, non-negative integers, and positive
integers are denoted here by R, N, and N? respectively. Let
[r] B {1, 2, . . . , r} for each r ∈ N?. The cardinality of set X
is denoted by |X|. For a matrix A of appropriate dimension,
Ai j or [A]i j represents the (i, j)-entry of this matrix.

Consider a linear time-invariant system
x(t + 1) = Āx(t), y(t) = C̄x(t), t ∈ N, (1)

where x(t) ∈ Rd and y(t) ∈ Rp are the state and output vec-
tors at time t. The state and output matrices are given by
Ā ∈ Rd×d and C̄ ∈ Rp×d respectively. In this article, the sys-
tem (1) is sometimes described by the pair (Ā, C̄). In our
analysis only the information about the locations of the fixed
zeros in Ā and C̄ is crucial and the precise numerical val-
ues of the non-entries of Ā and C̄ are not relevant. For any
matrix H, its sparsity matrix is defined as a matrix of the
same dimension as H with either a zero or an independent
free parameter (denoted by ∗) at each entry depending on
whether the corresponding entry in H is zero or not. A nu-
merical realisation of a sparsity matrix is obtained by giving
numerical values to its ∗ entries. Let the sparsity matrices
of the state and the output matrices in (1) are represented
by A ∈ {0, ∗}d×d and C ∈ {0, ∗}p×d , and let [A] and [C] be
the collection of all numerical matrices of the same dimen-
sion and structure/sparsity as A ∈ {0, ∗}d×d and C ∈ {0, ∗}p×d

respectively. We say that a pair (A,C) is structurally observ-
able if there exists at least one observable numerical real-
ization of (A,C). 6

A linear time-invariant system (1) is associated with a di-
graph G(A,C) by using the following natural way: Let A =
{x1, x2, . . . , xd} and C = {1, 2, . . . , p} be the state vertices
and the output vertices corresponding to the states x(t) ∈ Rd

and the outputs y(t) ∈ Rp of the system (1). Let EA =
{(x j, xi) | Ai j , 0} and EC = {(x j, i) |Ci j , 0}. The digraph
G(A,C) = (AtC, EAtEC), andt denotes the disjoint union.
The sets EA and EC denote the edges between the state ver-
tices, and the edges from the state vertices to the output ver-
tices in the digraph G(A,C) respectively. Similarly, we can
define digraph G(A) = (A, EA) with vertex set A and edge
set EA. Given G(A,C), the induced subgraph by U ⊂ AtC
is a digraph consisting of vertex set U and all those edges of
the digraph G(A,C) with both end points in U. In particular,
G(A) is the induced subgraph of G(A,C) by A.

A sequence of edges {(x1, x2), (x2, x3), . . . , (xk−1, xk)}, where
each xi ∈ A is distinct and (xi, xi+1) ∈ EA for i = 1, 2, . . . , k−
1, is called a directed path from x1 to xk in G(A). A cycle is
a directed path where the initial vertex x1 coincides with the
end vertex xk. A digraph is acyclic if it contains no cycles. A
digraph is a directed tree towards x if it is an acyclic graph
where every vertex has a directed path towards x and every
vertex except x has out-degree exactly equal to 1. Sometimes

6 It is known that if one realization of (A,C) is observable, then
almost all numerical realizations of (A,C) are observable; see [16].

we refer to this digraph as just directed tree. The vertices
with no incoming edges are termed as the leaves of the tree.
The digraph G(A,C) is said to have a spanning forest topped
at output vertices C if it has a disjoint union of set of directed
trees, where each tree is directed towards a vertex in C and
this union contains all the state vertices.
Definition 1 For the digraph G(A,C) = (A t C, EA t EC)
associated with system (1) and a subset S ⊂ A, the out-
neighbourhood of S is the set N+(S ) =

{
v
∣∣∣ (xi, v) ∈ EA t

EC , xi ∈ S , v ∈ A t C
}
. The digraph G(A,C) is said to have

a contraction if there exists a set S ⊂ A with |N+(S )| < |S |.
The following subgraphs associated with digraph G(A) and
G(A,C) are defined in [25].
◦ State stem is a directed path, consists of only state vertices.

An isolated state vertex is also considered as state stem. 7

◦ Output Stem is a directed path obtained by connecting a
directed edge from the tip of a state stem to an output
vertex.

◦ An Output Cactus, defined recursively as follows: An out-
put stem with at least one state vertex is an output cactus.
An output cactus connected by a directed edge from a
state vertex of a disjoint cycle (comprising of only state
vertices) to either any state vertex or the output vertex of
the cactus is also an output cactus.

The relation between certain properties of G(A,C) and the
structural observability of the pair (A,C) is given by:

Theorem 1 [16][8] The following are equivalent:
(a) The pair (A,C) is structurally observable.
(b) In the digraph G(A,C) derived from (1), every state

vertex xi has a directed path from it to at least one of
the output vertices, and G(A,C) is free of contractions.

(c) The digraph G(A,C) is spanned by a disjoint union of
output cacti.

3.1 Structural observability index
The observability index µ(Ā, C̄) of (1) is 8

µ(Ā, C̄) B inf
{
k ∈ [d]

∣∣∣∣ rank
(
C̄> (C̄Ā)> · · · (C̄Āk−1)>

)>
= d

}
.

In other words, µ(Ā, C̄) is the minimum number of iterations
required to recover/determine uniquely the initial state x0
from y0, y1, . . .. In other words, x0 may be obtained by left-
inversion in the linear equation

C̄
C̄Ā
...

C̄Āµ(Ā,C̄)−1

 x0 =


y0
y1

...
yµ(Ā,C̄)−1

 .
The k-step observability matrix associated with the pair
(Ā, C̄) is given by Ok(Ā, C̄) B

(
C̄> (C̄Ā)> · · · (C̄Āk−1)>

)>
The structural counterpart of the observability index, namely,
structural observability index, is defined as

µ(A,C) B inf
{

k ∈ [d]

∣∣∣∣∣∣ sup
A1∈[A]
C1∈[C]

rank
(
Ok(A1,C1)

)
= d

}
. (2)

7 The tip of a state stem is a state vertex that does not have any
outgoing edges from it to any other state vertex in that stem.
8 The convention that inf ∅ = +∞ is assumed to be in place.
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The value of the infimum is +∞ when none of the pairs in
([A], [C]) is observable, i.e., the pair (A,C) is structurally
unobservable. If the pair (A,C) has structural observability
index µ(A,C) = `, where ` ≤ d is some positive integer,
then almost all numerical realisations of pair (A,C) have
observability index ` off a manifold with zero Lebesgue
measure [28, p. 44]. The following result provides a graph
theoretic interpretation of the structural observability index
of a pair (A,C).

Theorem 2 [27, Theorem 2] A pair (A,C) is structurally
observable with index ` if and only if the digraph G(A,C)
is spanned by a disjoint union of output cacti, where every
output cactus contains at most ` state vertices.
The graph-theoretic notion of structural observability index
is demonstrated via a digraph G(A,C) shown in Fig. 1. Given
A ∈ {0, ∗}d×d and C ∈ {0, ∗}p×d, there exists several possible
disjoint unions of output cacti spanning the digraph G(A,C).

(a) (b)

(c)

Fig. 1. Illustration of a digraph G(A,C) in (a) and two possible
output cacti in (b) and (c). There are four state vertices (b) in one
output cactus and six in the other, whereas (c) contains one output
cactus with five state vertices and the other with five. Moreover,
these two are the only spanning cacti of G(A,C), so the structural
observability index is five.
Lemma 1 [27, Corollary 1] Let A ∈ {0, ∗}d×d and C ∈

{0, ∗}p×d, with Aii = ∗ for all i = 1, 2, . . . , d. Let {Hi}i∈K
be the collection of all spanning forests of G(A,C) contain-
ing only directed trees towards the output vertices, where K
contains the indices of such spanning forests. Let zi ∈ N

? be
the number of directed trees in Hi, i.e., Hi = {T i

j}
zi
j=1. Then,

the structural observability index of the pair (A,C) is
µ(A,C) B min

i∈K
max
T∈Hi

|T |s ,

where |T |s is the number of state vertices in a tree T towards
an output vertex.

3.2 Submodular functions
Let V be a non-empty finite set, and let 2V denote the col-
lection of all subsets of V .
Definition 2 A function f : 2V → R is submodular if for
all S ⊂ T ⊂ V and v ∈ V \ T we have f (S ∪ {v}) − f (S ) ≥
f (T ∪ {v}) − f (T ).
Definition 3 A function f : 2V → R is monotone non-
decreasing if for every S ⊂ T ⊂ V we have f (S ) ≤ f (T ).
When a function f is submodular, one can use greedy al-

gorithms that yield, in reasonable time [21], approximate
solutions that are often very close to an optimal solution.

4 Minimal sensor placement problem
Before stating the precise problem statement, we define the
identity structured output matrix C = Id ∈ {0, ∗}d×d as fol-
lows: [Id]i j = ∗ if i= j and 0 otherwise, where i, j ∈ [d].
Recall that A = {x1, x2, . . . , xd}. An output matrix C = IF ∈

{0, ∗}|F|×d is obtained from Id, as defined above, by retaining
the rows corresponding to the state vertices in F ⊂ A.

Given A ∈ {0, ∗}d×d, C = IF ∈ {0, ∗}|F|×d, and ` ∈ [d] such
that µ(A, IF) ≤ `, find J∗ that solves minimize

J⊂F
|J|

subject to µ(A, IJ) ≤ `,
(P1)

where F ⊂ A, IJ is the submatrix of the output matrix
IF obtained by retaining the rows corresponding to state
vertices in J. (P1) determines the minimal subset of states
required to admit outputs from the set of available states F
to ensure a desired bound on structural observability index.

A special instance of (P1) corresponds to the case where the
given output matrix C = Id ∈ {0, ∗}d×d, i.e., F = A and we
refer to this problem as (P′1) in this sequel.

Next we show that (P1) (and hence (P′1)) can be solved
optimally when the bound ` ∈ {1, 2}. Clearly, solving (P1)
for ` = 1 is trivial since it requires each state vertex to be
directly connected to a distinct output, i.e., the solution is the
output matrix C of identity structure Id (as defined above).

The concept of a matching is needed to solve (P1) for ` = 2.
Recall that for an undirected graph G = (V, E), a matching is
a set of edges with no shared endpoints. The vertices incident
to the edges of a matching M are said to be saturated by M;
the other are unsaturated. A maximum matching is one that
has the largest cardinality among all possible matchings in a
graph. We define a weight function w : E → R that assigns
weights to the edges of the graph G. Subsequently, we in-
troduce the maximum weight matching problem, concerned
with finding a matching of G that has the maximum weight-
sum of its edges; in other words, determining a matching
M∗ such that

∑
e∈M∗ w(e) ≥

∑
e∈M̄ w(e) for any matching M̄

in G. We solve (P1) for ` = 2 by employing Algorithm 1.
In Step 1, we construct an undirected graph Gu from G(A)
with vertex set A and edge set Eu = EF t EA\F . An edge
exists between a pair of vertices xi, x j in Gu if any one of
the conditions is satisfied: (i) both the vertices lie in F and
either (xi, x j) ∈ EA or (x j, xi) ∈ EA; (ii) one vertex say xi
lies in A \ F and the other one x j is in F and a directed
edge exists from xi to x j in G(A). We assign weights to
the edges of Eu and compute a maximum weight matching
M in Gu in Steps 2 and 3 respectively. In Step 5, we form
a set J∗ by collecting the vertices unsaturated by M and
by selecting one vertex from each undirected edge in M in
the following way: for e=(xi, x j) ∈ M, if (xi, x j) ∈ EA then
x j ∈ J∗; if (x j, xi) ∈ EA then xi ∈ J∗; if both (xi, x j) and
(x j, xi) are in EA then any one among xi or x j is collected in
J∗. The construction of the undirected graph Gu from G(A)
requires O(d2) computations. A maximum weight matching
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Algorithm 1: Algorithm to solve (P1) for ` = 2.
Input: G(A) = (A, EA), F ⊂ A such that µ(A, IF) ≤ 2.
Output: A solution of (P1), J∗ ⊂ F.

1 Construct an undirected graph Gu = (V, Eu) from G(A)
with V = A and Eu = EF t EA\F . (xi, x j) ∈ EF , if
xi, x j ∈ F and either (xi, x j) ∈ EA or (x j, xi) ∈ EA.
(xk, xm) ∈ EA\F , if xk ∈ A \ F, xm ∈ F and
(xk, xm) ∈ EA. Neglect self-loops, if present.

2 Define the weight w for the edges of Gu:

w(e)←
{

1 for e ∈ EF ,

|Eu| + 1 for e ∈ EA\F .
(3)

3 Determine a maximum weight matching M in Gu
under weight w.

4 For each edge e = (xi, x j) ∈ M, the direction of the edge
e is chosen in accordance to the direction of e in G(A).

5 If e = (xi, x j) ∈ M with (xi, x j) ∈ EA then x j ∈ J∗ and if
xk is unsaturated by M then xk ∈ J∗.

is computed in O(d3 log d) computations [13, Chapter 11]
and the rest of the steps have linear complexity. Therefore,
the overall complexity of Algorithm 1 is O(d3 log d).
Lemma 2 Let A ∈ {0, ∗}d×d, C=IF ∈ {0, ∗}|F|×d, and G(A) =
(A, EA) be the state matrix, the output matrix, and the di-
graph associated with A and d ≥ 2. Suppose A\ F , ∅ and
Gu be the undirected graph associated with G(A) obtained
via Algorithm 1. Then J∗ obtained from Algorithm 1 solves
(P1) with ` = 2.
PROOF. Assume, as hypothesized that µ(A, IF) ≤ 2. By
Theorem 2, the digraph G(A, IF) is spanned by a disjoint
union of output cacti such that each cactus has at most 2
state vertices. In fact, each cactus is an output stem with at
most 2 state vertices. Thus, the condition µ(A, IF) ≤ 2 and
the construction of Gu in Algorithm 1 confirms that each
xi ∈ A\F can be associated with a distinct x j ∈ F such that
(xi, x j) ∈ EA\F . Let M be a maximum weight matching in
Gu under the weight function w defined in (3). The weight
structure (Step 2) of Algorithm 1 guarantees that every vertex
xi ∈ A \ F is saturated by an edge e = (xi, x j) ∈ M for
some x j ∈ J∗. The set of vertices unsaturated by M lies in
F and belongs to J∗ (Step 5). The output J∗ of Algorithm
1 ensures that we obtain a disjoint union of output stems
covering all state vertices and each stem has at most 2 state
vertices. Thus, µ(A, IJ∗ ) ≤ 2.

Let |A \ F| = r. Suppose that there exists J′ ⊂ F such that
|J′| < |J∗| and µ(A, IJ′ ) ≤ 2. Since each output is directly
connected to a distinct state in J′ in G(A, IJ′ ), we can obtain
a disjoint union of cacti or output stems P spanning G(A, IJ′ )
such that each output cactus has at most 2 state vertices with
each output being directly connected to the tip of a state
stem in P. Note that each output cactus in P can be one of
the following three types: 1) An output stem Pi consisting of
two state vertices connected by an directed edge of the form
(xa, xb), where xa ∈ A \ F and xb ∈ J′; 2) An output stem
Pk comprising of two state vertices connected by a directed
edge of the form (xc, xd), where xc ∈ F and xd ∈ J′; 3) An
output stem P j consisting of only one state vertex xe ∈ J′.

Accordingly, P is the union of {Pi}
r
i=1 ∪{Pk}

n
k=r+1 ∪{P j}

|J′ |
j=n+1

and n ≤ |J′|. Here each Pi is associated with an edge ei ∈

EA\F of Gu, where 1 ≤ i ≤ r. Similarly, Pk is associated with
an edge ek ∈ EF of Gu. Observe that the collection of edges
{ei}

r
i=1 ∪ {ek}

n
k=r+1 refers to a matching M′ in the undirected

graph Gu. Clearly, both M and M′ saturates all the vertices
in A \ F. The condition |J′| < |J∗| implies that the edges
ek of the form (xc, xd), where xc, xd ∈ F, must be greater in
number in M′ than in M. Since the edges in {ek}

n
k=r+1 have

unit weights each w(M′) > w(M). This gives a contradiction
and completes the proof. �
Remark 1 Since (P′1) is a special case of (P1), a solution of
(P′1) can be obtained by using Algorithm 1 by setting F = A.
Indeed, it follows that the edge set Eu = EF since EA\F is
empty, and since unit weight is assigned to each edge in EF ,
determining a maximum weight matching in Step 3 reduces
to finding a maximum matching M in Gu. Therefore, the set
of state vertices J∗ (obtained in Step 5 of Algorithm 1) such
that µ(A, IJ∗ ) ≤ 2, satisfies |J∗| = |M|+ (d − 2 |M|) = d − |M|,
where M is a maximum matching in Gu and (d−2 |M|) is the
number of state vertices unsaturated by M in Gu. The proof
of optimality of the obtained solution J∗ is omitted due to
similarity with the proof of Lemma 2.

We shall now discuss the complexity of (P′1) and show that
it is hard whenever the bound on the structural observability
index ` ≥ 3. The decision version of (P′1) is given by:

Instance: A ∈ {0, ∗}d×d,C = Id ∈ {0, ∗}d×d, and two positive
integers ` ∈ [d] and K ≤ d.
Question: Does there exists a set J ⊂ A with |J| ≤ K such
that µ(A, IJ) ≤ `.

We use the following NP-complete problem to show the
hardness of (P′1) whose decision version is given by:

Instance: An undirected graph G = (V, E), weight w(v) ∈ N
for each v ∈ V, positive integers ` and K ≤ |V |.
Question: Can the vertices in V be partitioned into k ≤ K
disjoint sets V1,V2, . . . ,Vk such that, for 1 ≤ i ≤ k, the
induced subgraph of G by Vi is connected and the sum of
the weights of the vertices in Vi does not exceed `?

The preceding problem is the Bounded Component Spanning
Forest (BCSF) problem, and it remains NP-complete even
if the weights of all the vertices in G is equal to 1 and ` is
any fixed integer larger than 2 [10].

Theorem 3 (P′1) is NP-complete if the desired bound on
the structural observability index is any fixed integer greater
than or equal to 3.
PROOF. Given A and a positive number K, for any J ⊂
A, it can be verified whether |J| ≤ K and µ(A, IJ) ≤ `
in polynomial time [31]. Therefore, the decision version of
(P′1) is in NP.

Let G = (V, E) be an undirected graph with |V | = r. We
define a weight function w : V → N such that w(v) = 1 for
all v ∈ V . For each connected component induced by Vi in G,∑

v j∈Vi
w(v j) = |Vi| for 1 ≤ i ≤ k, i.e., the sum of the weights

of the vertices in Vi is equal to the number of vertices in
the component induced by Vi. We construct a state matrix
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A ∈ {0, ∗}r×r as follows: for every vertex vi ∈ V , we associate
a state xi and with each undirected edge ei j = (v j, vi) we
associate two non-zero entries Ai j = ∗ and A ji = ∗. We
assume that Aii = ∗ for all i ∈ [r]. Therefore, G(A) has only
bidirectional edges, and a self-loop at every vertex. Let C
be a matrix with a diagonal structure and dimension r, i.e.,
C = Ir ∈ {0, ∗}r×r. Let ` be a fixed integer larger than 2.

We will prove the following statement: G has a partition
of at most K connected components such that the sum of
the weights of the vertices in each component is at most `
if and only if there exists a J ⊂ A such that |J| ≤ K and
µ(A, IJ) ≤ `. Let us suppose that G has a partition of at most
K connected components. Let V1,V2, . . . ,Vk be the vertex
sets of the components of that partition, where k ≤ K. Since
w(v) = 1 for all v ∈ V , |Vi| ≤ ` for all i ∈ [k]. Since each
component is connected, each has an undirected spanning
tree. Select one vertex say vi from each component Vi of G.
Let J =

⋃k
i=1{xi}, where xi is the state vertex associated with

vi selected from the component induced by Vi. Observe that
|J| = k ≤ K. These vertices in J are directly connected to
distinct output vertices. Thus, G(A, IJ) has a spanning forest
topped at output vertices such that each directed tree has
at most ` state vertices. Hence, µ(A, IJ) ≤ `. Conversely,
suppose that there exists a J ⊂ A such that |J| ≤ K and
µ(A, IJ) ≤ `. Then by Lemma 1, G(A, IJ) has a spanning
forest topped at output vertices such that the number of state
vertices in each directed tree being at most ` and each state
vertex in J is directly connected to a distinct output. Since
edges between distinct vertices in G(A) are bidirectional,
each directed tree without the output vertex corresponds to
a connected component of G with at most ` state vertices.
Therefore, we obtain a partition, of cardinality at most K
and weight of each component at most `, of the graph G.

The bounded component spanning forest problem remains
NP-complete when the weights w(v) = 1 for all v ∈ V and
the bound ` is fixed in {3, 4, . . .}. Under these conditions on
the weights and the bound, in the above analysis, we pro-
vided a polynomial time reduction showing that the bounded
component spanning forest problem has a solution of size at
most K with the sum of the weights of the vertices in each
component at most ` if and only if (P′1) has a solution for
the constructed instance of cardinality at most K with the
bound on the structural observability index being `. Thus, it
follows from the above two points that (P′1) is NP-complete
whenever the bound ` on the structural observability index
is fixed to a value ≥ 3, thereby completing the proof. �

Specifically, for parameters A and C = Id, a solution to
(P1) provides, in particular, a solution to (P′1). Therefore,
(P1) is at least as difficult as (P′1). Consequently, (P1) is
NP-complete even if the desired bound on the structural
observability index is any fixed integer larger than two.
Remark 2 As discussed in §2, NP-hardness of (P′1) is
proved in [27] by reducing from the Graph-Partitioning
problem [10]. The proof given in [27] demonstrates that an
optimal solution of (P′1) leads to a feasible solution to the
Graph-Partitioning problem, but optimality of the obtained
solution was not addressed there. In contrast, we use the

decision versions of (P′1) and the BCSF problem to demon-
strate the equivalence between the solution of the given in-
stance of the BCSF problem and the solution of (P′1) for the
constructed instance.

While subclasses for which one can obtain an optimal solu-
tion of (P′1) are not considered in [27], it follows from our
proof of Theorem 3 that (P′1) is NP-hard even when ` > 3,
the digraph G(A) has only bidirectional edges, and every
state vertex has a self-loop. This is because the constructed
instance of (P′1) lies in this subclass. In fact, we can address
this subclass via the BCSF problem because an instance of
(P′1) under this assumption can be reduced to an instance
of the BCSF problem in polynomial time. By neglecting the
self-loops, we view the digraph G(A) as a weighted undi-
rected graph Gu by setting w(xi) = 1 for all i ∈ [d]. Given
an integer `, the output of the BCSF problem on the instance
(Gu, `) finds a decomposition of Gu with the minimum num-
ber of connected partitions such that each partition has at
most ` vertices. Then it is easy to see from our proof of The-
orem 3 that:

(i) a minimal partition given by the BCSF problem provides
an optimal solution of (P′1), and

(ii) for any α ≥ 1, an α-optimal solution of the BCSF prob-
lem on the instance (Gu, `) gives an α-optimal solution
of (P′1) for the given instance. 9

Thus, under the above assumption on the digraph G(A), any
approximation for the BCSF problem gives an approxima-
tion for (P′1) with the same approximation ratio. The proof
technique employed here, therefore, sheds more light into
the problem than the one in [27].
Next we impose the following assumption on the digraph
G(A) associated with the state matrix A.
Assumption 1 We stipulate that the digraph G(A) =
(A, EA) is a directed tree towards a state vertex x ∈ A with
a self-loop at every state vertex.
We have the following Lemma that plays an important role
to solve (P1) when Assumption 1 holds.
Lemma 3 Let A ∈ {0, ∗}d×d and C = IF ∈ {0, ∗}|F|×d. Sup-
pose Assumption 1 holds. Let ` ∈ [d] be the desired bound
on the structural observability index with µ(A, IF) ≤ `. Let
P = {T1,T2, . . . ,T|J∗ |} be a partition of G(A) = (A, EA) into
the minimum number of subtrees, where each Ti represents
a subtree such that its tip is a vertex present in F ⊂ A and
the number of state vertices in no subtree exceeds `. The
collection J∗ ⊂ F of tips of each subtree solves (P1). 10

PROOF. Since µ(A, IF) ≤ `, by Lemma 1, there exists a
partition or a spanning forest topped at output vertices for
G(A, IF) such that each directed tree is towards an output
vertex and has at most ` state vertices. Consider the partition
P of G(A) such that each subtree Ti = (Xi, EXi ) has at most

9 Recall that an α-optimal solution is a feasible solution whose
value is at most α times the optimal value.
10 A tip of a tree T is the vertex that does not have any outgoing
edges to any other vertex in T and has a directed path from every
vertex to it in T . A subtree is a subgraph of the directed tree
which satisfies all the properties of tree.
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` state vertices, where Xi ⊂ A, EXi is the edges in the
subtree induced by Xi for 1 ≤ i ≤ |J∗| (excluding self-
loops). Let xi ∈ F be the tip of the subtree Ti. It follows that
Gi = (Xi t {i}, EXi t (xi, i)), where xi ∈ J∗ and i ∈ C (output
set), is a directed tree towards i ∈ C. J∗ contains the tip of
each subtree. Therefore, the digraph G(A, IJ∗ ) has a spanning
forest with a collection of directed trees {Gi}

|J∗ |
i=1 with at most

` state vertices in each Gi. Since every state vertex has a self-
loop, by Lemma 1 µ(A, IJ∗ ) ≤ `. The minimality assertion
follows by the fact that if J′ ⊂ F has size less than J∗,
then there exists another partition of the tree into subtrees of
smaller cardinality than P where the tip of each subtree is a
vertex lying in F. This leads to a contradiction and confirms
that J∗ solves (P1). �
In the further analysis to solve (P1), when Assumption 1
holds, we neglect the self-loops present at every state vertex
of G(A). We provide the merging procedure that will be used
later in Algorithm 3. Given F ⊂ A, we use this procedure in
Algorithm 2 to transform the given directed tree G(A) into
another directed tree G′(A) whose vertex set is F. Given the
directed tree G(A) = (A, EA) and F ⊂ A, define a variable
h associated with every xi ∈ A \ F such that h(xi) = x j if
(xi, x j) ∈ EA and xi , x j (i.e., excluding self-loops).

Algorithm 2: Merging procedure
Input: directed tree G(A) = (A, EA), F ⊂ A, variable

h, and weight w(xi) = 1 for all xi ∈ A

Output: directed tree G′(A) obtained from G(A) with
vertex set as F and weight w : F → N?

1 If F = A
return G(A) and w(xi) = 1 for all xi ∈ F

2 else
3 for k = maximum level in G(A) down to 1 do
4 begin process kth level
5 while there exists xi ∈ A \ F in level k do
6 if x j = h(xi) then

set w(x j) = w(x j) + w(xi) and merge xi to x j
7 end
8 end while
9 end process level

10 end for
11 end

In Algorithm 2, we begin with the maximum level (i.e., from
the leaves) and go down to the tip of the tree (level 1). Note
that when a state vertex xi ∈ A \ F is merged with x j such
that h(xi) = x j in Step 6, then the edges of the given tree
incident to xi are now incident to x j, and the digraph gets
modified. Since the maximum number of levels is bounded
above by d and the procedure comprises of only ‘for’ and
‘while’ loops, the overall complexity of Algorithm 2 is O(d).

By Lemma 3 it is clear that to solve (P1) we need to find
a minimal partition of G(A) into subtrees such that the tip
of each subtree lies in F and the number of state vertices
in each subtree does not exceed the bound ` imposed on
the structural observability index. For this purpose, we use
the problem of finding a minimal partition P of a tree with
positive weight assigned to every vertex in the directed tree

such that the sum of the weights of the vertices of no subtree
exceed a prespecified value `; This problem is solved in [15].
The key idea of the algorithm in [15] is discussed briefly
next. Let T be the given tree and Tm be a subtree with tip at
xm, S (m) be the set of children of xm, i.e., having a directed
edge to xm, w(m) be the weight of the vertex xm, and W(m)
be the sum of the weights of the vertices in the subtree
Tm. Each vertex has weight at most ` ∈ N?. Given the pre-
specified bound `, if xm is a vertex such that W(m) > `
and W(k) ≤ ` for all xk ∈ S (m), then the edge (xk0 , xm)
is removed where W(k0) = maxxk∈S (m) W(k). This results in
the removal of the subtree whose tip is xk0 , Tk0 , from the
tree T and Tk0 becomes a component of the partition P. By
proceeding along the tree level by level, starting from the
leaves and ending at the tip, we locate the vertex xm in this
procedure. The resultant tree, obtained after deletion of the
subtree whose tip is xk0 , is analysed further by employing
the same procedure as given above. At any stage of the
algorithm, a single tree is modified by the deletion of a
subtree. We employ this linear time algorithm provided in
[15] to find a solution of (P1) via Algorithm 3.

Algorithm 3: Solve Problem (P1) under Assumption 1

Input: A ∈ {0, ∗}d×d and F ⊂ A such that µ(A, IF) ≤ `
Output: A solution of (P1), J∗ ⊂ F.

1 Assign weight w(xi) = 1 for all xi ∈ A

2 Use merging procedure given in Algorithm 2 to obtain
G′(A) and weight function w : F → N?.

3 Use Algorithm of [15] on G′(A) with weight function
w and bound ` to find an optimal partition P

4 J∗ is the collection of tip of each subtree of P

Since each step in Algorithm 3 has linear complexity, we
obtain a solution to (P1) in linear time. It is easy to see that
we can obtain a minimal partition of G(A) which satisfies
the condition that each subtree has at most ` number of state
vertices (with its tip lying in F) from the minimal partition
of G′(A) obtained by using [15] in Step 3 of Algorithm 3.
The demonstration of the steps of Algorithm 3 to identify a
solution of (P1) via an example is given in [7] and is omitted
here due to space constraints.
5 Cardinality constrained sensor placement problem
Suppose A ∈ {0, ∗}d×d and C ∈ {0, ∗}p×d are given. Recall
that A = {x1, x2, . . . , xd} and C = {1, 2, . . . , p} are the sets
of state and output vertices of the digraph G(A,C) respec-
tively. Without loss of generality, we assume that each out-
put measures at least one state. For S ⊂ C, C(S ) is a sub-
matrix obtained by retaining the rows corresponding to the
output vertices in S . A set of state vertices A′ ⊂ A in G(A)
is said to be structurally observable by S if the induced
subgraph G(A′,C′(S )) = (A′ t S , EA′ t E′S ) of G(A,C) by
A′ t S satisfies both the conditions given in Theorem 1(b),
where EA′ contains the edges between the state vertices in
A′ and E′S ⊂ EC contains only the edges between A′ and S
and A′ ∈ {0, ∗}|A

′ |×|A′ |, C′(S ) ∈ {0, ∗}|S |×|A
′ |. In other words,

(A′,C′(S )) is structurally observable.

For S ⊂ C, we define Ξ : 2C → R by
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Ξ(S ) B max
{ ∣∣∣A′∣∣∣ ∣∣∣∣ A′ ⊂ A

and (A′,C′(S )) is structurally observable
}
. (4)

In simple words, Ξ(S ) is the size of the largest subgraph of
G(A) that is structurally observable by S . The value of Ξ(S )

d ,
clearly, lies in the interval [0, 1]; the fraction Ξ(S )

d takes the
value 1 if the set of all state variables of G(A) is structurally
observable by S , and 0 if no state variable is observable by
S . Based on (4), given A ∈ {0, ∗}d×d and C ∈ {0, ∗}p×d, we
have the problem of selecting up to r (1 ≤ r ≤ p) output
vertices so as maximize the following function:

maximize
S⊂C

Ξ(S )
d

subject to |S | ≤ r.
(P2)

Next, we prove that (P2) is NP-hard by reducing to (P2)
from the maximum cover problem, the latter being a well-
known NP-hard problem [11].

Theorem 4 (P2) is NP-hard.
PROOF. Consider the maximum cover problem: Given
a positive integer r and a collection of sets in K =
{Z1,Z2, . . . ,Zp} such that each Zi contains some elements,
find a subset K̂ ⊂ K of sets such that

∣∣∣K̂∣∣∣ ≤ r and the
number of covered elements

∣∣∣⋃Zi∈K̂ Zi

∣∣∣ is maximized. Let⋃
Zi∈K Zi = {s j}

d
j=1. To prove the NP-hardness, we build

an instance of (P2) starting from an instance of the max-
imum cover problem in polynomial time. Each element
s j is associated with a state vertex x j and each set Zi
is associated to an output vertex i giving the output set
C = {1, 2, . . . , p}. The corresponding state and output ma-
trices are: A = Id ∈ {0, ∗}d×d as defined earlier in §4 and
C ∈ {0, ∗}p×d with Ci j = ∗ if s j ∈ Zi, and 0 otherwise, for
i ∈ [p], j ∈ [d]. Each state vertex has a self-loop in G(A,C).

For a given integer m ≤ d, we prove that there is a set
Ŝ ⊂ C of size at most r such that Ξ(Ŝ ) ≥ m if and only
if there exists a K̂ ⊂ K of cardinality at most r such that∣∣∣⋃Zi∈K̂ Zi

∣∣∣ ≥ m. Let Ŝ ⊂ C with
∣∣∣Ŝ ∣∣∣ ≤ r and Ξ(Ŝ ) ≥ m. We

will show that K̂ =
{
Zi

∣∣∣ i ∈ Ŝ
}

is a feasible solution of
the maximum cover problem with

∣∣∣⋃Zi∈K̂ Zi

∣∣∣ ≥ m. Clearly,∣∣∣K̂∣∣∣ ≤ r as
∣∣∣Ŝ ∣∣∣ ≤ r. Since every state vertex has a self-loop in

G(A), Ξ(Ŝ ) is equal to the number of state vertices having
a directed path (which in this case is an edge) to at least
one of the output vertices in Ŝ . Hence, by construction, it is
easy to see that Ξ(Ŝ ) =

∣∣∣⋃Zi∈K̂ Zi

∣∣∣. Thus, Ξ(Ŝ ) ≥ m implies
that

∣∣∣⋃Zi∈K̂ Zi

∣∣∣ ≥ m. Conversely, if K̂ is such that
∣∣∣K̂∣∣∣ ≤ r and∣∣∣⋃Zi∈K̂ Zi

∣∣∣ ≥ m then Ŝ =
{
i
∣∣∣ Zi ∈ K̂

}
satisfies

∣∣∣Ŝ ∣∣∣ ≤ r and
Ξ(Ŝ ) =

∣∣∣⋃Zi∈K̂ Zi

∣∣∣ ≥ m, and thereby completes the proof. �
In fact, Theorem 4 implies that (P2) is NP-hard even when
every state vertex has a self-loop in G(A) since the con-
structed instance in the proof of Theorem 4 belongs to this
subclass. This motivates us to impose the following condi-
tion on the digraph G(A).
Assumption 2 It is assumed that each state vertex has a
self-loop in the graph G(A). Consequently, the resultant
G(A,C) has no contraction.

Given S ⊂ C, we say that a state vertex xi ∈ A is accessible
by S if there exists a directed path from it to at least one of
the output vertices in S . Under Assumption 2, Ξ(S ) is equal
to the number of state vertices accessible by S and leads to
the following lemma that proves the submodularity of Ξ(·).
Lemma 4 Consider the system (1) and the associated sets
A and C as defined in §3. Suppose Assumption 2 holds. Then
Ξ : 2C → R defined in (4) is a monotone non-decreasing
submodular function.
PROOF. By the definition of Ξ(·) it is clear that for S ⊂ T ,
Ξ(S ) ≤ Ξ(T ) when Assumption 2 holds. Therefore, Ξ(·) is
a monotone non-decreasing function.

Let S ⊂ T ⊂ C, and suppose that v < T . To show that Ξ(·) is
submodular it is enough to establish that Ξ(S ∪{v})−Ξ(S ) ≥
Ξ(T ∪ {v}) − Ξ(T ).

Let m be the number of state vertices accessible by both
S and v. Similarly, let n be the number of state vertices
accessible by both T and v. We have

Ξ(S ∪ {v}) = Ξ(S ) + Ξ(v) − m,
Ξ(T ∪ {v}) = Ξ(T ) + Ξ(v) − n.

(5)

Since S ⊂ T , we have m ≤ n. Consequently,
Ξ(v) − m ≥ Ξ(v) − n. (6)

Using (5) and (6) it follows that Ξ(·) is submodular. �
Although maximizing a submodular function Ξ(·) is an NP-
hard problem, there exists efficient greedy algorithms for
providing an approximate solution of (P2) [21], and we em-
ploy one such mechanism in Algorithm 4 that follows:

Algorithm 4: Approximation algorithm for solving (P2)
Input: G(A,C) and maximum number of outputs r
Output: A set S ∗ ⊂ C

1 Initialization: S ∗ = ∅, i← 0
2 while i < r do
3 s∗ ← arg maxs∈C\S ∗ Ξ(S ∗ ∪ {s}) − Ξ(S ∗)
4 S ∗ ← S ∗ ∪ {s∗}
5 i← i + 1
6 if Ξ(S ∗) = d

stop
7 else

go to step 2
8 end
9 end while

10 return S ∗; exit

The next theorem gives a qualitative estimate of how close
a solution obtained by Algorithm 4, is from an optimal so-
lution of (P2):

Theorem 5 Let Ŝ be an optimal solution of (P2), and let
S ∗ be a set returned by Algorithm 4. Then

Ξ(S ∗)
d ≥

(
1 − 1

e
)Ξ(Ŝ )

d . (7)
PROOF. [20, Chapter III, Section 3.9, Theorem 9.3] asserts
that for any monotone non-decreasing submodular function
Ξ(·), the greedy Algorithm 4 returns a set satisfying Ξ(S ∗) ≥
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(1 − 1/e)Ξ(Ŝ ), where Ξ(Ŝ ) B max
{
Ξ(S )

∣∣∣∣ |S | ≤ r
}
. The

assertion follows. �

Algorithm 4 is a greedy method that progressively picks an
output vertex from C and adds it to S ∗ so that the maxi-
mal increase of Ξ(·) is obtained at each iteration. Observe
that at most r indices may be added to S ∗ (See Step 2).
In Step 3 the algorithm loops over at most p indices and
checks their possible contributions to increase Ξ(·) when an
element of C is added to S ∗. Therefore, any operation in the
algorithm will be at most rp times. Given S ∗, we also need
to compute Ξ(S ∗) in Step 3. Under Assumption 2, this is
equivalent to computing the total number of state vertices
accessible by S ∗ ⊂ C. This set of state vertices is obtained
by employing depth-first search which has O(d2 + dr) com-
plexity [6]. Therefore, the overall complexity of Algorithm
4 is O(rp(d2 +dr)). In practice, greedy-type Algorithm 4 for
submodular maximization often outperform their worst-case
theoretical approximation guarantees.

Example 1 We demonstrate our result established in §5 on
the benchmark electrical power grid, the IEEE 118-bus sys-
tem. It consists of 118 buses, 53 power generators, and 65
power loads, connected to each other through network in-
terconnections. A cyber-physical model of the generators
and the loads proposed in [12] is adopted, where a Taylor
linearization is performed at the nominal operating point
to obtain a linear system. The obtained linear system G(A)
has total number of state vertices equal to 407 and the total
number of edges between them is 920. The state variables
of generators and loads of the IEEE 118-bus system are as
follows: PTG is the mechanical power of turbine; PG is the
electrical power of generator; wG is the generator’s output
frequency; aG is the valve opening of generator; PL is the
electrical power delivered to load; wL is the frequency mea-
sured at load; IL is the real power consumed by load.

Assume that a transmission line (i, j) exists between the gen-
erator i and load j, and is represented by a digraph shown
in Fig. 2. The frequency component wL j of bus j influences
the dynamics of the power component PGi of bus i and vice-
versa. This shows that we have outgoing edges from the fre-
quencies into the powers of the components in the neighbour-
ing buses. According to the construction shown in Fig. 2,

aGi ωGi PGi

PL j
ωL jIL j

PTGi

Fig. 2. Illustration of the digraph representation of generator i
connected to load j through a transmission line (i, j).

each state vertex of the generators and the loads has a self-
loop. Therefore, Assumption 2 is valid for G(A). We consider
the given output matrix C = Id, where d = 407. We pro-
vide an approximate solution of the cardinality constrained

sensor placement Problem (P2) by employing Algorithm 4.
Fig. 3 depicts the variation Ξ(·) as the permissible number
of outputs changes. If the number of permitted outputs is
small, then the maximum size of the set of states structurally
observable by the output set obtained from Algorithm 4 is
small, which is natural. However, beyond a certain thresh-
old of the permissible number of outputs, in this case 14,
the set of all the state vertices in G(A) become structurally
observable by the output set obtained from Algorithm 4.

Fig. 3. The change in the cardinality of the set of states structurally
observable by the output set (obtained from Algorithm 4) against
the permissible number of outputs.

6 Concluding remarks

In this article we have addressed two problems related to
optimal sensor placement in linear systems: the minimal
sensor placement problem and the cardinality constrained
sensor placement problem.

◦ We produced an efficient polynomial time algorithm to
solve the minimal sensor placement problem when the
desired bound on the structural observability index is 2.

◦ We have demonstrated an interesting transition in the
hardness of the minimal sensor placement problem as the
desired bound changes from 2 to 3.

◦ The NP-hardness of the minimal sensor placement prob-
lem does not preclude the existence of classes of systems
for which it is possible to determine solutions efficiently.
In fact, we provided a linear time algorithm to solve this
problem under a mild assumption that the system struc-
ture is a directed tree with self-loop at each state vertex.

◦ We proved that the cardinality constrained placement
problem is a hard combinatorial optimization problem
and remains computationally difficult for self-damped
systems. We employed a simple greedy algorithm to
find an (1 − 1

e )-approximate solution of this problem for
self-damped systems.

By standard duality arguments, all our results have analo-
gous counterparts and interpretations for controllability and
actuator placement. Future work involves determining other
interesting subclasses where the current problems can be
solved efficiently, and identifying vulnerable connections be-
tween the states whose deletion leads to sudden jumps in
the observability index of the system.
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