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Minimal Perturbations for Zero Controllability of
Discrete-time Linear Systems: Complexity Analysis

Priyanka Dey and Niranjan Balachandran

Abstract—This article deals with computational complexity of
various problems related to the zero controllability of a discrete-
time linear time-invariant system, assuming that purely structural
conditions at the level of the connections between the system states
and the inputs are known. Given a generically zero controllable
system, the following problems are considered: i) determine
a minimal set of input-connections whose removal makes the
resulting system not generic zero controllability; ii) identify a
minimal cost set of input-connections that must be retained
from the pre-specified set of input-connections while preserving
generic zero controllability property; and iii) given a system that
is not generically zero controllable, find a smallest set of state-
connections whose removal makes the resulting system generically
zero controllable. Problem i) is polynomially solvable. Problems
ii) and iii) are NP-hard, and an approximate solution with best
approximation ratio is provided for each of them. The results of
i) and iii) provide clues to analyze the fragility and hardness of
the system structure. Problems ii) is useful to provide insights on
understanding and deriving results about the properties of the
system.

Index Terms—generic zero controllability, perturbations, feed-
back arc set.

I. Introduction
We consider a discrete-time linear system

x(t+ 1) = Āx(t) + B̄u(t), (1)

where x(t) ∈ Rd and u(t) ∈ Rm are the states and the inputs
at time t, and Ā ∈ Rd×d and B̄ ∈ Rd×m are the given system
and input matrices respectively.
We say that (1) is zero controllable if the states in (1)

can be driven from any initial state x0 at t = 0 to the
zero state at some finite time t = τ [1]. Over the past
few years there has been a surge in the study of various
problems/conditions pertaining to the zero controllability of
a given system; necessary and sufficient conditions for zero
controllability was investigated for bilinear systems in [2], for
fractional discrete-time system in [3], for discrete-time system
with randomly jumping system parameters in [4], for discrete
time behaviour [5], etc., assuming that the accurate values of
the parameters of the system are known.
Since it is usually impossible to get the precise values of

the system parameters that governs a system’s dynamics, we
often rely on structured system theory that only considers the
zero/non-zero pattern of entries of system matrices [6] for
analysis. In particular, we consider the structural counterpart
of zero controllability, namely, generic zero controllability
(see Definition II.1) in this article. Specifically, we study the
following three optimization problems:

PD is with Systems & Control Engineering, and NB is with the Department
of Mathematics, Indian Institute of Technology Bombay, Mumbai 400076,
India.

Emails: dey_priyanka@sc.iitb.ac.in, niranj@math.iitb.ac.in

• (P1): Assuming a generically zero controllable (g.z.c) sys-
tem (1), identify the minimal number of input-connections1
whose removal makes the resulting system not g.z.c.

• (P2): Given a g.z.c system (1), find a set of input-
connections of minimal cost to be retained from the available
set of input-connections while maintaining generic zero
controllability property of the system.

• (P3): Given a not g.z.c system (1), find a smallest set of
connections between the states whose removal makes the
resulting system g.z.c.

(P1) is particularly useful to comment on the resilience of a
large-scale system (modelled as discrete-time linear systems)
under unknown attacks on input-connections/inputs. The re-
moval of these vulnerable connections will not only make
the resulting system not zero controllable but also results in
uncontrollability of the system; see Remark IV.3 for a technical
discussion. For an external adversary, finding such a set of
vulnerable connections is of great interest. For a systems
operator, this information serves to plan effective strategies
to enhance network resilience.
(P2) is essential to study the dynamics of the (nonlinear)

large-scale systems around us and derive information about the
system. We often study their dynamics via Taylor linearization
at the nominal point and represent them in the form of a
linear discrete-time model. A linear model is an accurate
approximation of the original system when the states stay
sufficiently close to the point of linearization, or, by change
of coordinates, the states are close to zero [7]. One way to
steer the states to zero is to design an input matrix such that
the resulting system attains generic zero controllability. In this
direction, (P2) seeks a minimal cost input matrix when the
set of inputs and their input-connections are pre-specified with
each input-connection being linked to a non-negative cost. The
cost arises out of various factors–installation and maintenance
cost of the system, etc. By actuating the system by inputs, we
ensure that results obtained for the linear system is expected
to be valid for the original nonlinear system locally [7].
(P3) is crucial since it provides useful insights regarding

the hardness involved in modifying a system structure.
We establish the following results for the three problems:
◦ (P1) is solvable in O(d2m) time (Theorem IV.1).
◦ (P2) is NP-hard, even with identical input-connection costs
(Theorem IV.4).
◦ There is a O(d2) algorithm with a worst-case approximation
ratio of O(log d) for (P2) (Theorem IV.10 (a) and (c)).2

1The connections from the inputs to states are termed as input-connections.
2This result is under the assumption that the digraph G(A) associated with

A contains cycles. (P2) is easily solvable when G(A) is acyclic.
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◦ Under mild condition (satisfied by many systems), (P2) is
polynomially solvable (Theorem IV.10(b) & Remark IV.11).

◦ (P3) is NP-complete (Theorem IV.15).
◦ We find an approximate solution of (P3) (Lemma IV.16).
Related work: A necessary and sufficient condition for generic
zero controllability of a discrete-time linear system was intro-
duced in [9]. Recently, finding a sparsest input configuration
to guarantee generic zero controllability, when the given
input matrix is unconstrained, was considered in [7]. This
particular problem is a special case of (P2), when all the
input-connections are allowed between the given d inputs and
states and a uniform non-zero cost is assigned to each input-
connection. In [7], the author reduced this problem to an
instance of the minimum set cover problem. However, the
complexity of the problem is not addressed. In contrast, our
problem is a vast generalization of that problem.

In the context of (P1), considerable efforts have been
made to examine the consequences of unknown attacks on
controllability or observability of a system. For instance, the
preservation of observability under sensor failure is studied
in [10]. Controllability preservation under failure of agents
and connections between agents has been studied in [11],
[12]. However, the focus of most of the prior works is to
classify agents/connections depending on the effect of their
failure on controllability. Recently, the problem of identifying a
set of input-connections of minimal cardinality when removed
would lead to a system’s uncontrollability was studied in [13].
This problem turns out to be computationally difficult and no
constant approximation factor solution yet exists for it [13].
Our approach is somewhat different; we inspect the resilience
of the system from the perspective of zero controllability.

In the context of (P3), similar kind of feature that strong
couplings between the states usually lead to loss of control-
lability was observed in [8]. However, in their analysis, the
values of the system parameters were assumed to be known.

Moreover, our results are in sharp contrast to the results
known in the context of structural controllability of a discrete-
time linear system [6]; see Remarks IV.3, IV.12, and IV.17 for
further technical details.

To the best of our knowledge, the literature on problems of
complexity and approximation of different optimization prob-
lems related to generic zero controllability under structural
perturbations seems woefully incomplete. We believe that this
work is a step in that general direction, and hopefully provokes
more investigation of this nature, in the future.

This article unfolds as follows: §II reviews certain graph-
theoretic preliminaries. The formal statements of the problems
are given in §III, and §IV provides methods/algorithms to
solve these problems. In §V, examples are included to illustrate
the usefulness of the techniques established in §IV.

II. Background
Notations: We represent the set of positive integers by N and
we let [r] := {1, 2, . . . , r} for r ∈ N. The size of a finite
set X is denoted by |X|. The identity matrix of dimension r
is denoted by Ir. 0r×s is a zero matrix of dimension r × s,
where r, s ∈ N. We define 1 associated with the (i, j)-th entry
of a matrix A = [Aij ] as 1{Aij 6=0} := 1 if Aij 6= 0, and 0
otherwise.

The linear system (1) is zero controllable (with {0} as the
stability region) if and only if rank

(
Ā− zId, B̄

)
= d for

every z ∈ C\{0} [1, Theorem 1], where C represents complex
numbers. We sometimes use (Ā, B̄) to refer to system (1). In
our investigation, the exact values of the entries of Ā and B̄
does not matter, but the information about the locations of
the fixed zeros in Ā and B̄ are crucial. Therefore, let A ∈
{0, ?}d×d and B ∈ {0, ?}d×m represent the sparsity matrices
of Ā and B̄ in (1) where each entry is either a fixed zero or
an independent free parameter, denoted by star. A numerical
realization of (A,B) is a matrix pair obtained by assigning
numerical values to the star entries of A and B.
Definition II.1. A pair (A,B) is said to be generically zero
controllable (g.z.c in short) if at least one numerical realization
(A′, B′) of (A,B) exists that is zero controllable.3

Given a linear system (1), we associate the states x(t) ∈
Rd and the inputs u(t) ∈ Rm to the state vertices A =
{x1, x2, . . . , xd} and the input vertices U = {u1, u2, . . . , um},
respectively. Consider EA = {(xj , xi) |Aij 6= 0} and EB =
{(uj , xi) |Bij 6= 0}. Define the digraph G(A,B) = (A t
U , EAtEB) associated with the pair (A,B) and t represents
the disjoint union. The edges in EA and EB are referred as
state-connections and input-connections respectively. Some-
times we shall also need the digraph G(A) = (A, EA).
We refer to [14, Section 3] for the definitions of subgraph,

induced subgraph, directed path, cycle, and strongly connected
component (SCC) of G(A). Given G(A,B), a state vertex xi
is said to be reachable if there exists a directed path from some
input uj to xi; otherwise, it is unreachable. G(A) is acyclic if
it contains no cycles. A SCC or a cycle of G(A) is reachable
if all the state vertices it contains are reachable; otherwise it
is unreachable. A SCC is said to be nontrivial if it consists of
at least one edge among its vertices; otherwise it is said to be
trivial. It means that a trivial SCC must contain only one state
vertex with no edges (including no self loops). A SCC Si is
said to be reachable from a SCC Sj if there exists a directed
path from a vertex xk ∈ Sj to a vertex xn ∈ Si in G(A).
A SCC is said to be source strongly connected component
(SSCC) of G(A) if there exists no incoming edges from the
vertices of other SCCs into any vertex in it.

A pair (A,B) is said to be irreducible if and only if every
state vertex in G(A,B) is reachable from input set U [9]. If a
pair (A,B) is irreducible then it is also g.z.c. 4 However, when
a pair (A,B) is not irreducible then we establish a connection
between generic zero controllability and certain properties of
G(A,B) by decomposing the vertex set of digraph G(A) =
(A, EA) into A = ArtAurn, where Ar is the set of states that
are reachable and Aurn is the set of states that are unreachable.
Definition II.2. The digraph induced by the vertices of Aurn

represents the unreachable part of the graph G(A) associated
with the pair (A,B) denoted by Gurn(A,B) = (Aurn, Eurn),
where Eurn is the set of edges between the vertices in Aurn.

It is easy to see that a pair (A,B) is irreducible iff
Gurn(A,B) is empty since no state vertex is unreachable.

3 If one numerical realization is zero controllable then almost all numerical
realizations of (A,B) is zero controllable.

4A irreducible pair (A,B) has generically rank
(
A− zId, B

)
= d for all

z ∈ C \ {0} [15].
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The following theorem characterises a generically zero
controllable system (A,B) when (A,B) is not irreducible.
Theorem II.3. [9, Theorem 4.4, p. 93] Let (A,B) be a linear
system (1) and G(A,B) = (At U , EAtEB) be its associated
digraph. Let Gurn(A,B) represent the unreachable part of
G(A) associated with pair (A,B) from Definition II.2. The
pair (A,B) is g.z.c if and only if (iff in short) Gurn(A,B)
does not contain any cycle.

If G(A) is acyclic then the system is g.z.c even without any
input-connections (i.e., B = 0d×m) as Gurn(A,B) = G(A).
If G(A) contains cycles then we have:
Theorem II.4. Let (A,B) be a linear system (1) and
G(A,B) = (A t U , EA t EB) be its associated digraph.
Let Gurn(A,B) represent the unreachable part of G(A)
associated with pair (A,B) from Definition II.2. Suppose
G(A) contains cycles. The pair (A,B) is g.z.c iff each cycle
is reachable in G(A,B).
Proof. Let the pair (A,B) be g.z.c. For an irreducible pair
(A,B), all the cycles are automatically reachable. If (A,B)
is not irreducible then each cycle is reachable since the
unreachable part Gurn(A,B) contains no cycles.
Suppose every cycle is reachable in G(A,B). If (A,B)

is irreducible then it is automatically g.z.c. If not, then the
reachability of all the cycles of G(A) implies that Gurn(A,B)
has no cycles. By Theorem II.3, the pair (A,B) is g.z.c.

A simple consequence of the above theorem is as follows.
Corollary II.5. Let (A,B) be a linear system (1) and suppose
G(A) is not acyclic. The pair (A,B) is g.z.c iff each nontrivial
SCC is reachable in G(A,B).
Remark II.6. Given G(A,B) = (A t U , EA t EB), the
determination of the unreachable state vertices can be done by
using depth-first search [16] in O(d2+dm) time. The existence
of cycles in the associated unreachable part Gurn(A,B) (if
non-empty) is checked again via depth first search in O(d2)
complexity. Thus, generic zero controllability of a pair (A,B)
can be checked in O(d2 + dm) run time complexity.

III. Problem formulation
We now introduce several norms and operations that will

arise in the rest of the article. For a matrix N ∈ {0, ?}r×s,
where r, s ≥ 1 are positive integers, we let: ‖N‖0 denote the
number of non-zero entries in the matrix N . Suppose wij ≥ 0
be a cost corresponding to each Nij 6= 0. We define ‖N‖w :=∑r

i=1

∑s
j=1 wij1{Nij 6=0}, where 1 is defined in §II. Given

N ∈ {0, ?}r×s and M ∈ {0, ?}r×s,
◦ M ⊂ N if Mij = ? implies Nij = ?.
◦ The operation N 	M ∈ {0, ?}r×s with M ⊂ N is:

[N 	M ]ij :=

{
? if Nij = ? andMij = 0,

0 otherwise.

We formally state the three optimization problems of interest:
(a) Given A ∈ {0, ?}d×d and B ∈ {0, ?}d×m. Let the pair
(A,B) be g.z.c. Solve

minimize
Bu⊂B

‖Bu‖0
such that (A,B 	Bu) is not g.z.c.

(P1)

(b) Given A ∈ {0, ?}d×d and B ∈ {0, ?}d×m. Let the pair
(A,B) be g.z.c. Recall G(A,B) = (A t U , EAtEB). Define

K :=
{
B′
∣∣∣B′ ⊂ B and (A,B′) is g.z.c

}
. (2)

By assumption, K always contains at least one element since
the given pair (A,B) is g.z.c. Let wij ≥ 0 denote the cost of
the input-connection (uj , xi) ∈ EB in G(A,B). Solve

minimize
B′∈K

‖B′‖w . (P2)

Special case of (P2): Assume that a fixed and non-zero cost
is assigned to each input-connection in G(A,B). In this case
(P2) reduces to: minimize

B′∈K
‖B′‖0 . (P ′2)

(c) Let A ∈ {0, ?}d×d and B ∈ {0, ?}d×m. We assume that
the pair (A,B) is not g.z.c. Solve

minimize
As⊂A

‖As‖0
such that (A	As, B) is g.z.c.

(P3)

Remark III.1. Problem (P1) is trivially invalid if the graph
G(A) contains no cycles since the system remains g.z.c even
after removal of all the input-connections. Therefore, for (P1),
we assume that the given pair (A,B) is such that the digraph
G(A) contains at least one cycle.

IV. Main Results
A. Problem (P1) is polynomial time solvable
Recall that G(A) = (A, EA) and G(A,B) = (A t U , EAt

EB). We assume that the given pair (A,B) is g.z.c such
that G(A) contains at least one cycle. By Corollary II.5, each
nontrivial SCC of G(A) are reachable in G(A,B). To solve
(P1), we take the collection of nontrivial SCCs {Sj}qj=1 of
G(A). We say that a SCC Sj is reachable from an input vertex
ui (denoted byui → Sj) if there exists a directed path from ui
to some xk ∈ Sj . We employ Algorithm 1 to find the minimum
number of input-connections Tdel(A,B) whose removal makes
at least one nontrivial SCC of G(A) unreachable from the
input set U , and consequently makes the resulting system not
g.z.c (by Corollary II.5).
Algorithm 1: Procedure to determine Tdel(A,B).
Input: G(A,B) = (A t U , EA t EB)
Output: Tdel(A,B) to solve (P1)

1 Identify the nontrivial SCCs {Sj}qj=1 of G(A).
2 Replace each ei = (uj , xk) ∈ EB by creating an input

vertex u′i connected via a directed edge to xk.
3 Define Lj = 0 for all j ∈ [q]
4 for each nontrivial SCC Sj , j ∈ [q]
5 for i = 1, 2, . . . , |EB |
6 if u′i → Sj

Lj = Lj + 1
7 end
8 end for
9 end for

10 Define Tdel(A,B) := min1≤j≤q Lj .

Theorem IV.1. Let the pair (A,B) be a g.z.c linear system
(1) and G(A,B) be its associated digraph. Suppose G(A) (as-
sociated with A) contains at least one cycle. Then Tdel(A,B)
obtained by Algorithm 1 solves (P1) in O(d2m) time.
Proof. Without loss of generality, assume that Lj associated
with the nontrivial SCC Sj has the least value among all
{Li}qi=1 in Algorithm 1, i.e., Tdel(A,B) = Lj . Then, we
obtain Bu as follows:

Bu
r` ←

{
? if u′i → Sj and ei = (u`, xr) ∈ EB ,

0 otherwise.
(3)
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Note that Tdel(A,B) = ‖Bu‖0. Clearly, (A,B 	 Bu) is not
g.z.c since Sj is unreachable in G(A,B 	 Bu). To prove
optimality of Bu, we proceed by contradiction. Let B′ ⊂ B
be a feasible solution of (P1), i. e., (A,B 	 B′) is not g.z.c
such that ‖B′‖0 < ‖Bu‖0. By Corollary II.5, Gurn(A,B	B′)
contains at least one nontrivial SSC of G(A), say Sk. Then the
number of non-zero entries in B′ must be at least equal to Lk

(computed in Algorithm 1) since Lk is the minimum number
of input-connections essential to ensure the reachability of Sk.
Therefore, ‖B′‖0 ≥ Lk ≥ Tdel(A,B) = ‖Bu‖0, which is
a contradiction. Therefore, it follows that Bu (from (3)) and
hence, Tdel(A,B) solves (P1).
The SCCs of G(A) can be determined by using depth-first

search twice in time O(|A| + |EA|) [16]. Here |A| = d and
|EA| ≤ d2. The collection of nontrivial SCCs from them can
be identified in linear time since it involves to check whether a
SCC has at least one edge or not. Hence, the nontrivial SCCs
are obtained in O(d2) time (Step 1). The complexity of Step 2
is linear in number of edges in EB , i.e., O(|EB |). The overall
complexity of Steps 3-9 is O(q |EB |). Since |EB | ≤ dm and
q ≤ d, Algorithm 1 has O(d2m) run complexity.

Remark IV.2. Let N = {N1,N2, . . . ,Nq1} be the collection
of nontrivial SSCCs (if present) of G(A), subset of the set
of nontrivial SCCs of G(A).5 If rest of the nontrivial SCCs
are reachable from some nontrivial SSCCs, then (P1) can
be solved easily. The generic zero controllability of the pair
(A,B) and the definition of SSCC ensure that every nontrivial
SSCC Ni has at least one input-connection from some input
vertex uj ∈ U to a state vertex xk ∈ Ni in G(A,B). Each
one of them in N has directed edges from only input vertices.
Thus, for each nontrivial SSCC Ni, if all the associated input-
connections are removed, then Ni becomes unreachable from
U . It follows that Tdel(A,B) := min1≤i≤q1 deg−(Ni), where
deg−(Ni) and q1 denote the number of input-connections of
G(A,B) entering Ni and the number of nontrivial SSCCs.
Remark IV.3. The notions of structural controllability and
generic zero controllability are closely related to each other.
Generic zero controllability depends on the connectivity of
the system, whereas structural controllability emphasizes on
the irreducibility and the generic rank of the system. Over
the past few decades, structural controllability has been the
subject of a lot of interest, see e.g., [6], [17]. Consider
a structurally controllable discrete-time system (A,B) such
that G(A) contains cycles. Since Gurn(A,B) is empty, the
pair (A,B) is also generically zero controllable. If removal
of a subset of input-connections violates the generic zero
controllability of the system then it also makes the resulting
system structurally uncontrollable. However, the converse may
not be true. Given a structurally controllable system, the
problem (P) of identifying a subset of input-connections
of minimum cardilnality, whose removal would result in a
structurally uncontrollable system is NP-hard [13]. In contrast,
we demonstrate that (P1) is polynomially solvable.6

5N ⊂ {Sj}qj=1. However, we use a different notation for them to
distinguish between them from the rest of the nontrivial SCCs of G(A).

6(P) is valid without imposing any assumption on the system whereas (P1)
is valid when G(A) contains cycles. Therefore, (P) is NP-hard and (P1) is
solvable w.r.t. the conditions where they are valid.

B. NP-hardness of Problem (P2) and Approximation
Before moving to (P2), we describe the weighted set cover

problem (WSCP in short), a well-studied NP-hard problem
[16] that will be used later. Let U be a universe containing
N elements, i.e., U = [N ] with a collection of r sets P =
{Zi}ri=1 such that each Zi ⊂ U and

⋃r
i=1 Zi = U . A non-

negative cost function c : P → R+ assigns cost to each set in
P . The objective is to find an L∗ ⊂ P such that

⋃
Zi∈L∗ Zi =

U and
∑

Zi∈L∗ c(Zi) ≤
∑

Zi∈L̃ c(Zi) for any L̃ that covers
U , i.e,

⋃
Zi∈L̃ Zi = U . Each set Zi is an element of P . There

exist greedy algorithms to find an approximate solution to the
WSCP with an approximation ratio of (1 + logN) [19].
Theorem IV.4. (P ′2) is NP-hard.
Proof. Given A ∈ {0, ?}d×d and B = Id ∈ {0, ?}d×d, the
problem of finding the minimum number of input-connections
required to preserve generic zero controllability is NP-hard
[18, Theorem 5].7 This implies that (P ′2) is also NP-hard since
parameters A and B = Id is a special instance of (P ′2).

Since (P ′2) is a special case of (P2), it follows that (P2)
is also NP-hard. However, (P2) is trivially solvable when
G(A) is acyclic with optimal solution B∗ = 0d×m. Therefore,
NP-hardness arises due to existence of cycles in G(A). In
fact, it infers from the proof of Theorem 5 in [18] that (P ′2)
remains NP-hard whenG(A) contains cycles since the instance
constructed in the proof belongs to this class. Hereafter, we
assume that G(A) contains at least one cycle and find an ap-
proximate solution of (P2) via the following two subproblems:
Part (a): Recall that N = {Ni}q1i=1 denotes the collection

of nontrivial SSCCs of G(A). We have the following problem:
Problem IV.5. Given (A,B), find B∗e ∈ arg minB′⊂B ‖B′‖w
such that each nontrivial SSCCs in N is reachable in
G(A,B∗e ).

Algorithm 2: Algorithm to find B∗e
Input: A ∈ {0, ?}d×d, B ∈ {0, ?}d×m
Output: A matrix B∗e ⊂ B

1 Find the nontrivial SSCCs N = {Ni}q1i=1 of G(A)
2 if N = ∅ then B∗e = 0d×m
3 else
4 let D ← ∅
5 for each Nj do

choose an input-connection of the least cost of the
form (uk, x`) ∈ EB where x` ∈ Nj and uk ∈ U
among all existing input-connections associated with
Nj .

6 D ← D ∪ (uk, x`)
7 end for
8 Define: B∗e as [B∗e ]`k = ? if e = (uk, x`) ∈ D, and 0

otherwise.
9 end

Clearly, the procedure involved in Algorithm 2 guarantees
that an input-connection of the least cost is selected for each

7The structural controllability of a discrete-time linear systems with delays
in behaviour sense is dealt in [18]. It is proved that a discrete-time system (1)
is structurally controllable in behaviour sense iff it is g.z.c. A special instance
of (P ′

2) with A and B = Id is shown to be NP-hard. In the proof, the
delays are assumed to be zero. Hence, the system constructed in the proof is
a discrete-time linear system.
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nontrivial SSCCs in N (if non-empty). Thus, we obtain an
optimal B∗e that solves Problem IV.5. In Algorithm 2, finding
the nontrivial SCCs and their partial order to identify the
nontrivial SSCCs among them involves O(d2) computations
(Step 1). The steps 5-7 takes time linear in |EB |. Since
|EB | ≤ dm, the complexity of Algorithm 2 to find a solution
of Problem IV.5 is O(max {d2, dm}). This completes Part (a).

Part (b): Let W = {R1,R2, . . . ,Rp} denote the set of
those nontrivial SCCs of G(A) that are unreachable from the
vertices of any nontrivial SSCC in N . If N = ∅ (from Part
(a)) then all the nontrivial SCCs of G(A) are assumed to be
unreachable from N . In other words, all the nontrivial SCCs
of G(A) belongs to set W . Thus, if N = ∅ then W 6= ∅
since G(A) contains at least one cycle C. The nontrivial SCC
containing C belong to W .
Problem IV.6. Given (A,B), find B∗n ∈ arg minBn⊂B ‖Bn‖w
such that each nontrivial SCC in W is reachable in G(A,B∗n).

Clearly, Problem IV.6 is trivially solvable whenW = ∅, i.e.,
if W = ∅ then B∗n = 0d×m. Thus, for further analysis in Part
(b), we assume that W 6= ∅. Let M = {xi}ni=1 denote the set
of those state vertices of A such that for each xi ∈ M there
exists an uj ∈ U with (uj , xi) ∈ EB . We define the cost of
actuation of each xi ∈M as ci := min(·,xi)∈EB

wi,·, i.e., the
cost of the input-connection with end vertex xi that has the
least cost among the set of all input-connections associated
with xi. Define a variable F : M → U for each state vertex
xi ∈M as: F (xi) = uk if (uk, xi) ∈ EB has the cost ci. For
each xi ∈ M , if more than one input-connection has cost ci
then any one of them is selected to define F . Note that the
vector F can be obtained in linear complexity of |EB |, i.e.,
O(dm). A nontrivial SCC Rj is reachable from a state vertex
xi (denoted by xi → Rj) if xi has a directed path to some
xk ∈ Rj or xi ∈ Rj . We reduce Problem IV.6 to weighted
set cover problem (WSCP in short) via Algorithm 3.

Algorithm 3: Reduce Problem IV.6 to a WSCP
Input: G(A,B), M = {xi}ni=1, {ci}ni=1, and F
Output: The input matrix Bn(L) ∈ {0, ?}d×m

1 Find the nontrivial SCCs unreachable from the
nontrivial SSCCs in N , W = {Rj}pj=1

2 The weighted set cover problem is defined as follows:
3 U = {1, 2, . . . , p} as Universe
4 Sets Zi = {j | j ∈ [p] and xi → Rj} for i ∈ [n]
5 cost associated with each Zi= ci for i ∈ [n]
6 Given a cover L such that ∪Zi∈LZi = U , define:
7 cost of cover L, c(L) =

∑
Zi∈L ci

8 State vertices selected under L,
M(L)← {xi | Zi ∈ L}

9 Define:

[Bn(L)]ij ←

{
? if xi ∈M(L) and F (xi) = uj ,

0 otherwise.

The generic zero controllability of the given pair (A,B)
ensures that a solution of the WSCP exists since all the
nontrivial SCCs are reachable in G(A,B). In Algorithm 3,
given G(A), we determine the nontrivial SCCs in the set W
(Step 1). The set cover problem is constructed as follows:

The universe U contains the indices of the nontrivial SCCs
in W (Step 1). Each Zi (associated with xi ∈M ) contains the
indices of those nontrivial SCCs Rj ∈ W that are reachable
from the state vertex xi. Each set Zi is assigned a cost of
actuation ci (discussed earlier) in Step 5. Given a solution L
to the WSCP, we define its associated cost c(L) (Step 7). The
set of state vertices selected under L (given by M(L)) and
the obtained input matrix Bn(L) are defined in Step 8 and
9, respectively. An optimal solution to Problem IV.6 is taken
as B∗n and an optimal solution to the WSCP in Algorithm
3 is considered as L∗. We prove that an ε-approximation
algorithm for the WSCP obtained via Algorithm 3 gives such
an algorithm to Problem IV.6 too.
Lemma IV.7. Given G(A,B) , G(A), and the corresponding
weighted set cover problem (WSCP) obtained using Algorithm
3. Then, for any ε ≥ 1, if L is an ε-optimal solution to the
WSCP, then Bn(L) is an ε-optimal solution to Problem IV.6.
Proof. The proof of the lemma has two steps: (i) we prove
that an optimal solution L∗ to the WSCP gives an optimal
solution Bn(L∗) to Problem IV.6 and (ii) we show that if
c(L) ≤ εc(L∗) then ‖Bn(L)‖w ≤ ε ‖B∗n‖w.
For (i), given a feasible solution L∗ to the WSCP, the

construction of Bn(L∗) via Algorithm 3 confirms that each
nontrivial SCC in W is reachable from some input in
G(A,Bn(L∗)). Thus, Bn(L∗) is a feasible solution to Problem
IV.6. Recall that for a state vertex xi ∈ M with cost of
actuation ci = min(·,xi)∈EB

wi,·, we have F (xi) = uj if the
input-connection (uj , xi) has the least cost of ci (considered
as the cost of set Zi in Algorithm 3). By steps 5,7,8, and 9

‖Bn(L∗)‖w =

d∑
i=1

m∑
j=1

wij1{[Bn(L∗)]ij 6=0} =
∑

{xi∈M(L∗)
F (xi)=uj}

wij

=
∑

xi∈M(L∗)

ci =
∑

Zi∈L∗
ci = c(L∗).

(4)
To prove optimality we proceed by contradiction. Suppose
there exists another feasible solution to Problem IV.6, B′ ⊂
B such that ‖B′‖w<‖Bn(L∗)‖w. Let K = {xi |B′ij =
? for some uj ∈ U}. Clearly, K ⊂ M . Each xi ∈ K has
a cost of actuation ci. By definition of ci, it follows that∑
xi∈K

ci =
∑
{xi∈K

F (xi)=u`}

wi` ≤
d∑

i=1

m∑
j=1

wij1{B′ij 6=0} = ‖B′‖w .

Corresponding to K, define ZK={Zi | xi ∈ K} containing
the sets associated with the state vertices in K. Clearly, ZK

satisfies the condition ∪Zi∈ZK
Zi = U since B′ is a feasible

solution of Problem IV.6 and the nontrivial SCCs of W are
reachable from the vertices in K, obtained by using B′. Also,

c(ZK) =
∑

Zi∈ZK

ci =
∑
xi∈K

ci ≤ ‖B′‖w < ‖Bn(L∗)‖w = c(L∗).

This leads to a contradiction and completes the proof of (i).
By Algorithm 3, it is easy to see that if L is a feasible solution
to the WSCP then Bn(L) is a feasible solution to Problem IV.6
and c(L) = ‖Bn(L)‖w (by employing similar steps as in (4)).
By (4), c(L∗) = ‖Bn(L∗)‖w = ‖B∗n‖w. So, if c(L) ≤ εc(L∗)
then ‖Bn(L)‖w ≤ ε ‖B∗n‖w. This proves part (ii).
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In Algorithm 3, we first find the successors of the vertices in
the nontrivial SSCCs inN by using depth-first search in O(d2)
time and remove them from the graph. The nontrivial SSCs of
the resultant graph are the SSCs in W and finding them takes
at most O(d2) time. Since the size of U and P = {Zi}ni=1

are bounded by d, the sets can be determined in O(d2) time.
Thus, the reduction to the WSCP in Algorithm 3 takes O(d2)
computations. Also, given a cover L, the states selected under
L (Step 8) and Bn(L) (Step 9) can be obtained in linear time.
Using the Lemma IV.7, we have the following theorem.

Theorem IV.8. Suppose (A,B) be a g.z.c. linear system (1).
Then, there exists a polynomial time algorithm that approxi-
mates Problem IV.6 to a factor of 1 + log d, where d denotes
the number of states.
Proof. Algorithm 3 transforms Problem IV.6 to WSCP in
polynomial time. From Lemma IV.7, a polynomial time ε-
optimal algorithm for the WSCP provides a polynomial time
ε-optimal algorithm for Problem IV.6. The size of the con-
structed universe U in Algorithm 3 is p, where p is the number
of nontrivial SCCs in the set W . Since p ≤ d, the greedy
algorithm given in [19, p. 234] for solving the WSCP gives
an (1 + log d)-optimal solution to Problem IV.6.

Algorithm 3 transforms an instance of Problem IV.6 to
an instance of the WSCP. By using greedy approximation
algorithm of [19], we solve a WSCP to get an approximate
solution to Problem IV.6. This completes Part (b).
Remark IV.9. We assume that G(A) contains at least one
cycle. In our analysis the computation of the setW depends on
the existence/non-existence of N . Then we have the following
cases: if N 6= ∅ then either (a) W 6= ∅ or (b) W = ∅; (c)
if N = ∅ then W 6= ∅. The presence of cycle(s) ensures that
one case among them is always satisfied.

Next, we give Algorithm 4 and main theroem to solve (P2)
by using Part (a), Part (b), and Remark IV.9.
Algorithm 4: Algorithm to solve (P2)
Input: A ∈ {0, ?}d×d, B ∈ {0, ?}d×m
Output: The input matrix Ba ∈ {0, ?}d×m

1 Find an optimal solution of Problem IV.5 from Part
(a), say B∗e

2 Find an approximate solution of Problem IV.6 from
Part (b), say Bn if W 6= ∅ else set Bn = 0d×m

3 Ba ← B∗e tBn

Theorem IV.10. Suppose that the given pair (A,B) be a g.z.c
linear system (1) such that G(A) contains at least one cycle.
Let N = {Nj}q1j=1 be the collection of the nontrivial SSCCs
and W = {Ri}pi=1 be the set of nontrivial SCCs unreachable
from the vertices of any nontrivial SSCC in N of G(A).
Assume B∗ be an optimal solution of (P2). Let Ba be the
output of Algorithm 4. Then we have the following cases:
(a) if N 6= ∅ andW 6= ∅ then Ba ∈ K is an O(log d)-optimal

solution of (P2).
(b) if N 6= ∅ andW = ∅ then Ba ∈ K and ‖Ba‖w = ‖B∗‖w.
(c) if N = ∅ andW 6= ∅ then Ba ∈ K is an O(log d)-optimal

solution of (P2).
The overall complexity of Algorithm 4 is O(max{d2, dm}).
Proof. Case (a): Consider Ba = B∗e tBn. B∗e ensures that all
the nontrivial SSCCs in N are reachable in G(A,Be). Among

the rest of the nontrivial SCCs, those reachable from some
vertex of a nontrivial SSCC are also reachable in G(A,Be).
Next, consider the nontrivial SCCs in W unreachable from
N . The input matrix Bn confirms that these nontrivial SCCs
are reachable from U in G(A,Bn). Therefore, Ba = B∗e tBn

ensures that every nontrivial SSC is reachable in G(A,Ba).
By Corollary II.5, Ba ∈ K. Let B∗n be an optimal solution
to Problem IV.6. By Theorem IV.8, ‖Bn‖w ≤ ε ‖B∗n‖w with
ε = 1 + log d. Let B∗ be a solution of (P2). It is easy to see
that B∗ satisfies the following inequalities

‖B∗‖w ≥ ‖B
∗
e‖w and ‖B∗‖w ≥ ‖B

∗
n‖w .

Then, 2 ‖B∗‖w ≥ ‖B
∗
e‖w + ‖B∗n‖w .

2 ‖B∗‖w ≥ ‖B
∗
e‖w +

‖Bn‖w
ε

≥
‖B∗e‖w + ‖Bn‖w

ε
=
‖Ba‖w
ε

2ε ‖B∗‖w ≥ ‖Ba‖w , where ε = 1 + log d ≥ 1.

Case (b): Here Bn = 0d×m and Ba = B∗e . Each nontrivial
SCCs of G(A) is reachable in G(A,Ba). Therefore, Ba ∈ K.
For an optimal solution B∗, it is sufficient to ensure the
reachability of every nontrivial SSCCs as W = ∅. Thus,
‖B∗‖w = ‖B∗e‖w = ‖Ba‖w and (P2) is solved optimally.
Case (c): Here B∗e = 0d×m and Ba = Bn. SinceN = ∅, every
nontrivial SCC of G(A) is inW and is reachable in G(A,Ba).
Thus, Ba ∈ K and ‖Ba‖w = ‖Bn‖w ≤ ε ‖B∗n‖w = ‖B∗‖w.
Step 1 requires O(max{d2, dm}) computations. The formu-

lation of the WSCP by Algorithm 3 and the greedy selection
for finding an approximate solution to Problem IV.6 (when
W 6= ∅) requires O(d2) and O(d) complexity [19], respec-
tively. Hence, Algorithm 4 takes O(max{d2, dm}) time.
Remark IV.11. Consider structurally cyclic system (A,B)
where G(A) is spanned by a disjoint union of cycles of state
vertices. In several systems, it happens that the dynamics of a
state depends on its immediate past, depicted as a self loop.
These systems also belongs to the class of structurally cyclic
systems. In structurally cyclic systems, every state vertex is
contained in a cycle. This implies that each state vertex must
be reachable for ensuring generic zero controllability and every
SSCC of G(A) is nontrivial. Thus, N 6= ∅. By Definition of
SSCC, all the states are reachable iff all the (nontrivial) SSCCs
are reachable. This implies that W = ∅. Hence, (P2) is solved
optimally for this class (Theorem IV.10 case (b)).
Remark IV.12. The problem of determining the minimal num-
ber of states to be actuated to ensure structural controllability
is polynomial solvable [20], [21]. However, (P2) is NP-hard.
C. Complexity of Problem (P3) and Approximation
By assumption, the given pair (A,B) is not g.z.c. If a pair

(A,B) is not g.z.c then it is reducible. Then, by Theorem II.3,
G(A) contains at least one cycle in the associated unreachable
part Gurn(A,B) of the pair (A,B). Consider the definition:
Definition IV.13 ([22]). A minimum feedback arc set of a
digraph G is a set of edges of minimum cardinality whose
removal make the resultant graph free of cycles, i.e., breaks
the cycles present in the graph G.
We have the following proposition that will play a key role.

Proposition IV.14. Let (A,B) be a not g.z.c system and
Gurn(A,B) be its associated unreachable part (Definition
II.2). The cardinality of an optimal solution of (P3) is equal
to cardinality of a minimum feedback arc set of Gurn(A,B).
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Proof. Let Eopt be a minimum feedback arc set of
Gurn(A,B) of cardinality k. Let Aopt be the matrix associated
with Eopt such that [Aopt]ij = ? if (xj , xi) ∈ Eopt, and
0 otherwise. Note that the set of unreachable states remain
unchanged even after removal of the state-connections in Eopt

in the resulting digraph G(A 	 Aopt, B). Thus, the digraph
induced by these unreachable states, i.e., Gurn(A	 Aopt, B)
is acyclic. By Theorem II.3, (A	Aopt, B) is g.z.c. This shows
that a feasible solution to (P3) of cardinality k exists. Next,
we prove that every feasible solution of (P3) has cardinality
at least k which completes the proof. Suppose Â ⊂ A be such
that (A	Â, B) is g.z.c. Let Ê be the edges associated with the
non-zero entries of Â. Clearly, the set of states unreachable in
G(A,B) are also unreachable in G(A	 Â, B). The existence
of no cycle in digraph Gurn(A	Â, B) implies that there exists
an E1 ⊂ Ê whose deletion breaks the cycles in Gurn(A,B),
i.e., E1 is a feedback arc set of Gurn(A,B). It means that∥∥∥Â∥∥∥

0
=
∣∣∣Ê∣∣∣ ≥|E1| ≥|Eopt| = k, and the assertion follows.

We show that (P3) is NP-complete by using the minimum
feedback arc set problem (MFAP). For a digraph G and a
positive integer k, it is NP-complete to decide whether the
cardinality of a minimum feedback arc set is at most k [22].
Theorem IV.15. (P3) is NP-complete. 8
Proof. Since generic zero controllability is verifiable in poly-
nomial time (See Remark II.6), the decision version of (P3)
is in NP. To prove the NP-hardness, we construct an instance
of (P3) from the instance of the MFAP, i.e., a digraph G
containing cycles.9 Let G = (V,E) be a digraph with V =
{x1, x2, . . . , xd} and eij = (xj , xi) ∈ E. Construct a pair
(A,B), where A ∈ {0, ?}(d+1)×(d+1) and B ∈ {0, ?}(d+1)×1:

Aij ←

{
? if eij ∈ E,
0 otherwise.

Bi1 ←

{
? if i = d+ 1,

0 otherwise.

Then G(A) = (A, EA), where A = {x1, x2, . . . , xd, xd+1}
and EA = E. Notice that Gurn(A,B) = (A \ xd+1, EA) is
simply the input digraph G. The constructed pair (A,B) is
not g.z.c since Gurn(A,B) has cycles (by Theorem II.3).

Consequently, by Proposition IV.14, the cardinality of an
optimal solution of (P3) is less than a given number k, if and
only if the minimum feedback arc set of G has cardinality
below k. Since the reduction can be performed in polynomial
time, and the MFAP is NP-complete, the assertion follows.

Next, we give an approximation of (P3) by using the MFAP.
Lemma IV.16. Let (A,B) be a not g.z.c linear system (1)
and G(A,B) be its associated digraph. Let Gurn(A,B) =
(Aurn, Eurn) be the associated unreachable part of G(A)
defined in Definition II.2. Then, for any ε ≥ 1, if E′ ⊂ Eurn

be an ε-optimal solution of the MFAP on Gurn(A,B) then A′
such that [A′]ij = ? if (xj , xi) ∈ E′, and 0 otherwise, is an
ε-optimal solution of (P3).
Proof. i) It follows from the proof of Proposition IV.14 that
if Eopt ⊂ Eurn is an optimal solution of the MFAP on

8A problem is NP-complete if it is NP-hard and its decision version lies in
NP.

9 The hardness of the MFAP can be shown by using the vertex cover
problem [16] where the constructed instance G of the MFAP in the proof has
cycles. Thus, the problem remains NP-complete even when the digraph G in
every instance has cycles. The hardness arises due to existence of cycles.

Gurn(A,B) then Aopt is an optimal solution of (P3) with
|Eopt| = ‖Aopt‖0. ii) Observe that if E′ is a feasible solution
of the MFAP on Gurn(A,B) then A′ is a feasible solution to
(P3) with ‖A′‖0 = |E′|. Thus, given |E′| ≤ ε |Eopt| implies
that ‖A′‖0 ≤ ε ‖Aopt‖0, and completes the proof.
The best known approximation algorithm for solving the

MFAP for a digraph G = (V,E) has a non-constant ratio
of O(log |V | log log |V |) [23, Corollory 6, p. 164]. From
Lemma IV.16, by finding an approximate solution of MFAP
on Gurn(A,B) for a given pair (A,B), we obtain an
A′ that solves (P3) approximately. Therefore, we get an
O(log |Aurn| log log |Aurn|) solution A′ to (P3).
Remark IV.17. It is well-known that the deletion of state-
connections can never strengthen the structural controllability
of a system [6], [13]. In fact, given a structurally controllable
system, determining a minimal set of state-connections whose
removal makes the resulting system structurally uncontrollable
was investigated in [13] and shown to be NP-complete. Thus,
(P3) may appear counter-intuitive at first. However, we demon-
strate that by appropriately removing the state-connections the
resulting system attains generic zero controllability.

V. Illustrative example
Example 1: We consider a multi-agent network to demon-

strate the applicability of (P1). Let the communication graph
of the agents be G = (V,E), where V represents the set
of agents and E be the communication links between them.
Let N−(xi) be the in-neighbours of agent xi. Each agent is
assumed to be single integrator and communicate with itself.
An agent xi updates its states as

xi(t+ 1) = aiixi(t) +
∑

xj∈N−(xi)

aijxj(t), (5)

where xi(t) is its state at time t. In this setting, a set of the
states, say J , are selected to be driven by individual external
inputs. By taking into consideration the external inputs, we
rewrite the system in compact form as:

x(t+ 1) = Ax(t) + IJ u(t), (6)

where IJ is obtained from the identity matrix by retaining
the columns corresponding to states connected to inputs. In
our analysis, we focus only on the zero/non-zero structure of
A ∈ {0, ?}d×d and IJ ∈ {0, ?}d×|J |. Observe that A has a
zero-free diagonal.
We consider a set of eight agents connected to each other

via a communication graph shown in Figure. 1. Every state
(agent) linked to an input is enclosed in a blue box. Here

Fig. 1: The communication graph of a multi-agent system.
Each agent has a self-loop and are not depicted here.

J = {x1, x2, x4, x6, x8}. Observe that the pair (A, IJ ) is
g.z.c since it is irreducible. Every state vertex (agent) has a
self loop. Under the condition that there exists a self loop at
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each state, a pair (A,B) is structurally controllable iff it is
irreducible [24, Theorem 2]. Therefore, (A, IJ ) is structurally
controllable. We determine the collection of nontrivial SCCs
as {x1, x2}, {x3}, {x4}, {x5, x7}, and {x8}. Among them,
the nontrivial SSCCs are N1 = {x1, x2} and N2 = {x4},
collected in N , with deg−(N1) = 2 and deg−(N2) = 1.
Since the rest of the nontrivial SCCs are reachable from at
least one of the SSCCs in N , we use Remark IV.2 to solve
(P1). Thus, Tdel(A, IJ ) = min1≤i≤2 deg−(Ni) = 1 and Iu
that solves (P1) is such that Iu44 = ?, and 0 otherwise. Clearly,
(A, IJ 	 Iu) is not g.z.c since Gurn(A, IJ 	 Iu) contains a
cycle/nontrivial SCC at {x4}. It follows that (A, IJ 	 Iu)
is not structurally controllable (see Remark IV.3). Thus, if
the input-connection/input corresponding to Iu of cardinality
one is removed then the resulting system is not g.z.c and
consequently, makes the system structurally uncontrollable.

Example 2: We illustrate the results obtained in §IV-B to
solve (P2) on an electric power grid. In particular, we consider
the IEEE-5 bus system. It is linearized around a nominal
point and represented as a discrete-time system by using the
modelling given in [25]. It comprises of three generators and
two loads linked to each other through transmission lines. The
digraph G(A) of the model is depicted in Fig. 2 containing
18 states. The states x1, x4, and x7 denote the frequencies
of generators 1-3. In the generators 1-3, the states x2, x5,
and x8 represent the mechanical power of the turbine, and x3,
x6, and x9 are their valve opening. For the loads 1 and 2,
x10 and x13 denote their frequency measured locally and the
real energy consumed by them is given by states x11 and x13,
respectively. The injected/received power variables to/from the
network exhibit the connections between the components. The
dynamics of these power variables depends on the frequency
of the neighbouring bus components. For the generators and
the loads, the injected/received power variables are denoted by
x14, x15, x16, x17, and x18, respectively.

Fig. 2: The digraph G(A) of the IEEE-5 bus system is shown.
Every state vertex has a self-loop and are not depicted to avoid
clutter. An undirected edge represents bidirectional edges.

We assume that the initial input matrix is B = Id ∈
{0, ?}d×d (where d = 18) and an uniform cost is given to
every input-connection. Clearly, the given pair (A, Id) is g.z.c
since Gurn(A, Id) is empty. The nontrivial SSCCs of G(A)
are N1 = {x11} and N2 = {x13} (shown in blue boxes in
Fig. 2). Notice that all the state vertices are reachable from
either N1 or N2. Thus, the set W defined in Part (b) of §IV-B
is empty and the conditions of case (b) of Theorem IV.10 are
satisfied. In this case, we solve (P2) easily by using Algorithm
4 and obtain B∗ = B∗e with B∗11,11 = ?, B∗13,13 = ?, and 0
otherwise, as a solution of (P2).
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