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1 Introduction

We will be concerned with the following coloring variant known as list coloring,
defined independently by Vizing [34] and by Erdős, Rubin, and Taylor [18]. A
list assignment L on a graph G = (V,E) is a collection of sets of the form
L = {Lv ⊂ N : v ∈ V (G)}, where one thinks of each Lv as a list of colors
available for coloring the vertex v ∈ V (G). A graph G is L-choosable if there
exists a function color : V (G) → N such that color(v) ∈ Lv for every v ∈ V (G)
and color(v) ̸= color(w) whenever vw ∈ E(G). A graph G is called k-choosable
if it is L-choosable for every k-list assignment L (i.e., an assignment of lists of
size at least k, also called k-lists). The least integer k for which G is k-choosable
is the choice number, or list chromatic number, of G and is denoted χℓ(G). If
χℓ(G) = k, we also say that G is k-list chromatic. Notice that the usual notion
of graph coloring is equivalent to L-coloring when all the lists assigned by L are
identical. This also shows that χ(G) ≤ χℓ(G) for all graphs G, and in general
the inequality can be strict [18,34].

1.1 Motivation

k-choosability is computationally hard. It is well-known that computing the
chromatic number is an NP-hard problem [25]. The restricted problem of finding
a 4-coloring of a 3-chromatic graph is also NP-hard [24]. Even the problem of
3-colorability of 4-regular planar graphs is known to be NP-complete [14].

Naturally, list coloring is also a computationally hard problem, but much more:
for instance, it is well-known [22] that the problem of deciding whether a given
planar graph is 4-choosable is NP-hard—even if the 4-lists are all chosen from
{1, 2, 3, 4, 5} [13]—and so is deciding whether a given planar triangle-free graph is
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3-choosable [22]. But, contrast the latter with the fact that every planar triangle-
free graph is 3-colorable by Grötzsch’s theorem [21], and that a 3-coloring can be
found in linear time [15]. In other words, restrictions on graph parameters—such
as the girth, as in Grötzsch’s theorem—that allow for efficient coloring algorithms
need to be strengthened further in order to get list coloring algorithms of a similar
flavor.

Note that even proving nontrivial bounds for the choice number is far tougher
than the corresponding problem for the chromatic number. Some of the no-
table instances of such bounds being determined include Brooks’s theorem for
choosability [34,18], Thomassen’s remarkable proof that every planar graph
is 5-choosable [32], and Galvin’s solution to the famous Dinitz problem [20].
Other interesting examples include the fact that planar bipartite graphs are
3-choosable [5] and that any 4-regular graph decomposable into a Hamiltonian
circuit and vertex-disjoint triangles is 3-choosable [19]. However, there is a fun-
damental difference between the former and latter examples, as we elaborate
below.

L-coloring is algorithmically hard. Consider the problem: given a list
assignment L on a graph G, can one efficiently determine whether or not G is L-
choosable, and in the case when G is L-choosable can one also efficiently specify a
proper coloring from these lists? The theorems of Brooks, Thomassen and Galvin
mentioned earlier are some of the few instances where such algorithms are known
for a large class of graphs. In the other examples that we mentioned, the proof
uses the combinatorial nullstellensatz [4], in particular a powerful application
found by Alon and Tarsi [5]. Hence, it does not allow one to extract an efficient
algorithmic solution to the problem of L-coloring when the list assignment L
is specified, except in certain special cases. That there is no known efficient
algorithm that produces a 3-list coloring from a given list assignment in these
examples illustrates the difficulty of the problem of efficiently finding a proper L-
coloring even for graphs of small maximum degree. Even just for planar bipartite
graphs, an algorithmic determination of a list coloring largely remains open [13].

Hence, efficient L-coloring algorithms for large classes of graphs are interesting.
We also place our work within the context of recent results on efficient list coloring
algorithms for similar classes of graphs in Section 1.3 below.

1.2 Our work

As noted earlier, in order to find good bounds for the choice number it is
natural to place restrictions on certain graph parameters. We shall focus on a
certain class of graphs G having bounded degeneracy number d(G), defined as
d(G) := maxH≤G{δ(H)}, where the maximum is taken over all induced subgraphs
H of G, and δ(H) is the minimum degree of H. A simple inductive argument [3]
shows that χℓ(G) ≤ d(G) + 1 for every simple graph G. This improves the
rudimentary upper bound χℓ(G) ≤ ∆(G) + 1, where ∆(G) is the maximum
degree of G. A natural choice for a large collection of graphs with bounded
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degeneracy number is the class of graphs that are embeddable in a fixed surface,
where by a surface we mean a compact connected 2-manifold, and a graph is
embeddable in a surface if, informally speaking, it can be drawn on the surface
without any crossing edges. In this paper, we will be concerned only with toroidal
graphs, that is, graphs that are embeddable on the torus S1.

Let G = (V,E) be a toroidal graph, and let F be the set of its faces in
an embedding into S1. The graphs satisfying degree(v) = d for all v ∈ V and
degree(f) = m for all f ∈ F , for some d,m ≥ 1, have been of interest [6,7]
especially in the study of vertex-transitive graphs on the torus [30]. A simple
calculation using Euler’s formula shows that the only possible values of (d,m)
are (3, 6), (4, 4) and (6, 3). Our focus will be on the graphs of the last kind,
namely the 6-regular triangulations on the torus. Since triangulations have the
maximum possible number of edges in any graph with a fixed number of vertices
and embeddable on a given surface, one might additionally expect this class of
graphs to present a greater obstacle to an efficient solution to the list coloring
problem as compared to the others.

The main result of this paper, Theorem 1, is a linear time algorithm for 5-list
coloring a large class of these toroidal 6-regular triangulations. Our result is
nearly tight for this class in the sense that the list size is at most one more than
the choice number for any graph in this family. In fact, in Corollary 1 we find an
infinite family of 5-chromatic-choosable graphs for which a list coloring can be
specified in linear time.

Here, T (r, s, t) is a triangulation obtained from an r× s toroidal grid, r, s ≥ 1
(see Definition 1 for a precise statement):

Theorem 1. Let G be a simple 6-regular toroidal triangulation. Then, G is
5-choosable under any of the following conditions:
(1) G is isomorphic to T (r, s, t) for r ≥ 4;
(2) G is isomorphic to T (1, s, 2) for s ≥ 9, s ̸= 11;
(3) G is isomorphic to T (2, s, t) for s and t both even;
(4) G is 3-chromatic.
Moreover, the 5-list colorings can be given in linear time. Furthermore, none of
these graphs are 3-choosable. Hence, χℓ(G) ∈ {4, 5} if any of the cases (1) to (4)
hold for G.

We are currently unable to comment on the choosability of the excluded graphs,
but we note that they consist only of nine nonisomorphic 5-chromatic graphs,
as well as a subcollection of triangulations of the specific form T (1, s, t) that are
4-chromatic. For any tuple (r, s, t), there is a simple formula describing each tuple
(r′, s′, t′) such that T (r, s, t) is isomorphic to T (r′, s′, t′) (see [6,29]), and there
are at most 6 such tuples for any (r, s, t). It is also not difficult to see that the
loopless multigraphs T (r, s, t) are all 5-choosable. So, in this sense, Theorem 1
covers the 5-choosability of “most” 6-regular toroidal triangulations. Furthermore,
among those graphs covered in Theorem 1, the 5-chromatic ones are precisely
those isomorphic to T (1, s, 2) for s ̸≡ 0 (mod 4). Thus, we have:
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Corollary 1. If G is isomorphic to T (1, s, 2) for s ̸≡ 0 (mod 4), s ≥ 9, s ̸= 11,
then G is 5-chromatic-choosable, i.e. χ(G) = χℓ(G) = 5. Moreover, a 5-list
coloring can be found in linear time.

To the best of our knowledge, the method of proof that we employ is novel, in
that we develop a framework that allows us to systematically compare the lists on
vertices that are not too far apart, and that allows us to compute the list coloring in
an efficient manner. By using the differential information between lists on nearby
vertices, we reduce the list configurations that need to be considered. This kind
of “list calculus” differs from other list coloring algorithms in the literature, which
instead reduce the possible graph configurations by exploiting general structure
results on the family of graphs under consideration (minimum girth, edge-width,
etc.), while the specific lists on the graphs remain nebulous. Our method of proof
could prove fruitful in other areas where a structure theorem—such as Theorem 2
in our case—allows one to shift attention towards the configuration of the lists
themselves. We also emphasize that our linear-time algorithm for 5-list coloring
these graphs is nearly best possible, since any fixed vertex needs to be “scanned”
very few times.

1.3 Related work

Colorability vs. choosability. Note that it follows from Brooks’s theorem
for choosability that any 6-regular toroidal triangulation not isomorphic to K7

is 6-choosable. Albertson and Hutchinson [2] showed that there is a unique
simple graph in this family that is 6-chromatic, which has 11 vertices, and
Thomassen [31] later classified all the 5-colorable toroidal graphs. But a precise
characterization of all the 5-chromatic 6-regular toroidal triangulations was
completed only recently [12,35,29]. Our results are the first in this line to attempt
to characterize the list colorability of the 6-regular triangulations on the torus.

Choosability of grids. The problem of determining the choice number of
4-regular toroidal m× n grids, for m,n ≥ 3, has been raised by Cai, Wang and
Zhu [10]. These graphs are a special case of those satisfying (d,m) = (4, 4). It
is easy to show by induction that these grids are all 3-colorable, and the above
authors conjecture that they are also 3-choosable. Recent work by Li, Shao,
Petrov and Gordeev [26] has nearly determined the choice number of these grids
as follows: if mn is even, then the choice number is 3, else it is either 3 or 4.
Contrasting this with Theorem 1, we note that both nearly determine the choice
number in the sense that the true value of the choice number is either equal to,
or one less than, the computed value for each member of the family. However,
their result does not a priori give an efficient algorithm for L-coloring the toroidal
grids since their proof uses the combinatorial nullstellensatz, whereas our result
actually gives a linear time algorithm for L-coloring the toroidal triangulations.

Recent algorithmic advances for list colorings. Dvořák and Kawarabayashi
[16] have shown that there exists a polynomial time algorithm for 5-list coloring
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graphs embedded on a fixed surface. Postle and Thomas [28] have proved that
for any surface Σ and every k ∈ {3, 4, 5} there exists a linear time algorithm for
determining whether or not an input graph G embedded in Σ and having girth
at least 8− k is k-choosable. In particular, when Σ = S1 and k = 5, this implies
that there is a linear time algorithm for determining whether or not any of the
6-regular triangulations under consideration in this paper are 5-choosable. This
work was later extended by Postle in [27], wherein he showed that for each fixed
surface Σ there exists a linear time algorithm to find a k-list coloring of a graph
G with girth at least 8− k for k ∈ {3, 4, 5}. Again, when Σ = S1 and k = 5, this
says that there is a linear time algorithm to find a 5-list coloring of a 6-regular
triangulation on the torus.

Our results in this paper are stronger than those mentioned above for the class
of 6-regular toroidal triangulations. Firstly, the high degree of the polynomial
time algorithm in [16] makes it impractical to implement, though the authors
suggest that it should likely be possible to reduce the bound enough to make the
algorithm practical at least for planar graphs. Secondly, the linear time algorithm
in [28] is contingent upon an enumeration of the 6-list critical graphs on the
torus. Indeed, the authors show that there are only finitely many 6-list critical
graphs on the torus, but a full list of these graphs is not explicitly known, and
their bound on the maximum number of vertices any 6-list critical graph on the
torus can have is far too large to be amenable to a straightforward enumerative
check.1 Also, their linear time algorithm does not specify an L-coloring in the
case when the graph is L-choosable for a given list assignment L. Thirdly, the
linear time algorithm in [27] first requires a brute-force computation of the list
colorings for any such list assignment on graphs of “small” order. However, the
bound on the sizes of these small graphs is far too large to be computationally
feasible, which makes the algorithm itself of mostly theoretical interest, as noted
in a recent work by Dvořák and Postle [17].

This is in contrast with the results in this paper, wherein the 5-choosable
graphs identified in Theorem 1 can also be given 5-list colorings in linear time,
unlike as in [28]. Furthermore, the non-3-choosability of the 3-chromatic graphs
T (r, s, t) is not covered by the results in [28] since these graphs have girth equal
to 3, whereas their algorithm for 3-list coloring is applicable only for graphs
having girth at least 5. Lastly, our proof of Theorem 1 supplies an implementable
algorithm for 5-list coloring all the toroidal graphs under consideration without
the need for running a brute-force check on any of them, in contrast with [27].

Structure of this paper. In the rest of this paper, we sketch the proof of
Theorem 1. We relegate the full details to the arXiv version [8] due to space
constraints.

1 It is worth contrasting this with the corresponding colorability problem: while
Thomassen [33] has shown that for every fixed surface there are only finitely many
6-critical graphs that embed on that surface, explicit lists of these 6-critical graphs
are known only for the projective plane [1], the torus [31] and the Klein bottle [11,23].
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2 Proof of Theorem 1

Definition 1. For integers r ≥ 1, s ≥ 1 and 0 ≤ t ≤ s − 1, take V = {(i, j) :
1 ≤ i ≤ r, 1 ≤ j ≤ s} to be the vertex set of the graph T (r, s, t) equipped with
the following edges. If r = 1, then (1, j) is adjacent to (1, j ± 1), (1, j ± t) and
(1, j ± (t+ 1)). If r > 1, then: for each 1 < i < r, (i, j) is adjacent to (i, j ± 1),
(i±1, j) and (i±1, j∓1); (1, j) is adjacent to (1, j±1), (2, j), (2, j−1), (r, j+t+1)
and (r, j + t); (r, j) is adjacent to (r, j ± 1), (r − 1, j + 1), (r − 1, j), (1, j − t)
and (1, j − t− 1).

Here, addition in the first coordinate is taken modulo r and in the second coordi-
nate is taken modulo s. It is clear that each T (r, s, t) is a 6-regular triangulation
of the torus. Conversely:

Theorem 2 (Altshuler [7], 1973). Every 6-regular triangulation on the torus
is isomorphic to T (r, s, t) for some integers r ≥ 1, s ≥ 1, and 0 ≤ t < s.

Also, define the cylindrical triangulation C(r, s) to be the graph obtained from
T (r + 1, s, 0) by deleting the column Cr+1. Next, we compile some well-known
results (see [18], for instance) on the colorability of paths and cycles:

Lemma 1. 1. An even cycle is 2-list chromatic.
2. An odd cycle is not 2-colorable, and hence not 2-choosable. However, if L

is a list assignment of 2-lists on an odd cycle such that not all the lists are
identical, then the cycle is L-choosable.

3. If L is a list assignment on an odd cycle having one 1-list, one 3-list, and all
the rest as 2-lists, then the cycle is L-choosable.

4. If L is a list assignment on a path graph having one 1-list, and all the rest as
2-lists, then the path is L-choosable.
Moreover, the L-colorings can all be found in linear time.

The following lemma due to S. Sinha (during an undergraduate research internship
with the first author) is in a similar spirit to Thomassen’s list coloring of a near-
triangulation of the plane [32], and is a key ingredient in the proof of case (1) in
Theorem 1.

Lemma 2. For r ≥ 3, s ≥ 3, let G = C(r, s) be a cylindrical triangulation.
Suppose that L is a list assignment on G such that:
(1) there exists 1 ≤ j ≤ s such that the exterior vertices (1, j) and (1, j − 1) have

lists of size equal to 4;
(2) every other exterior vertex has a list of size equal to 3;
(3) every interior vertex has a list of size equal to 5.
Then, G is L-choosable. Moreover, an L-coloring can be found in linear time.

Proof (sketch). By inductively coloring the rightmost column using Lemma 1, it
suffices to consider the case r = 3. Color the vertex (2, s) with c ∈ L(2,s) \ L(1,s),
which exists since C2 has 5-lists. This reduces the sizes of the lists on each of the
neighbors of (2, s) by 1, except for L(1,s), which still has size equal to 4. Now,
use Lemma 1 to color C3, and then color the remaining vertices in the order as
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indicated in Fig. 1. The numbers indicate the reduced list sizes at that step of
the coloring algorithm (note that the edges between the top and bottom rows
are not shown in this and all subsequent figures). At the final step we are left to
color a triangle with lists of sizes 1, 2, and 3, which is easily done.
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Fig. 1. Illustration of the sizes of the lists on the vertices at each step for G = C(3, 5)

2.1 Reductions for the proof of case (1)

Suppose that T (r, s, t), for r ≥ 4, s ≥ 3, has a 5-list assignment L. We assume
that not all the lists are identical, since these graphs are all 5-colorable in linear
time by the results in [12,35,29].

Reduction 1. For every vertex, its list is contained in the union of its lists on
its two left neighbors (as well as of its right neighbors).

Proof (sketch). If not, choose a color for v that is not in the union of the lists
of those two neighboring vertices. Use Lemma 1 to color the entire column of v,
and notice that Lemma 2 is now applicable.

Next, focus on a pair of adjacent vertices on the same column that have distinct
lists. Applying Lemmas 1 and 2 as before to this pair and their neighbors on an
adjacent column (say, the left one), we can cut down to:

Reduction 2. Whenever (i, j) and (i, j − 1) have distinct lists assigned by L,
one of the following three configurations holds (and also one of a similar set of
configurations obtained by analysing the vertices adjacent on the right column):
(a) L(i,j) = L(i−1,j+1) and L(i,j−1) = L(i−1,j−1);
(b) L(i,j) = L(i−1,j+1) = L(i−1,j) and L(i,j−1) ̸= L(i−1,j−1);
(c) L(i,j) ̸= L(i−1,j+1) and L(i,j−1) = L(i−1,j) = L(i−1,j−1).

For the third reduction, focus on a pair of adjacent vertices on adjacent columns
that have the same lists. For the fourth reduction, focus on a face in which
the two adjacent vertices lying on the same column have the same lists. Using
Reduction 2 on the former, and Lemmas 1 and 2 on the latter, we get
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Reduction 3. Whenever u and v are adjacent vertices on distinct columns with
Lu = Lv, there is a vertex w adjacent to both u and v such that Lw = Lu = Lv.

Reduction 4. Whenever u, v and w are mutually adjacent vertices having
identical lists, with v and w lying on the same column, at least one of the vertical
neighbors of u has a list identical to Lu.
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Fig. 2. Illustration of the ten configurations arrived at after reductions

What remains is to exploit the structure of 6-regular triangulations given by
Theorem 2 with the rigidity imposed on the list assignment by Reductions 1
to 4. For a list L, define the list-class of L in G, denoted G[L], to be induced
subgraph of G on those vertices v such that Lv = L. Let L ∈ L and let H be a
(maximal connected) component of G[L]. If V (H) is a singleton, we call H an
isolated component, else we call H a nonisolated component.

Lemma 3. Suppose that L obeys Reductions 1 to 4.
(1) Let H be an isolated component, V (H) = {(i, j)}. Then, there are distinct

lists L′, L′′ ∈ L such that L(i−1,j+1) = L(i,j+1) = L(i+1,j+1) = L(i+1,j) = L′

and L(i−1,j) = L(i−1,j−1) = L(i,j−1) = L(i+1,j−1) = L′′.
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(2) Let H be a nonisolated component of a list-class G[L], with v ∈ V (H). Then,
at least one vertical neighbor of v also belongs to V (H).

Putting together all of the above, we get a complete description of the list
assignment L from only the information of lists assigned on every four or five
consecutive vertices in any one column: the lists propagate across columns in any
of precisely ten ways, as shown in Fig. 2. The lists labelled L3 and L4 in Fig. 2
belong to isolated components. For the full details for how one arrives at these
ten configurations, the reader is requested to see [8].

2.2 Proof of case (1)

Ideally, one would like to complete the proof with another application of Lemma 2.
However, an induction argument as in the proof of the lemma does not directly
work here, since a naive coloring of C1 need not give a cylindrical triangulation
satisfying the hypothesis (1) of the lemma. Applying a little more discretion in
our choices, we use the small set of allowed configurations for L to arrive at the
following two-step coloring scheme (assume r = 4 without loss of generality):
1. Properly color C1 and a set J of alternate vertices in C3 such that (after

reducing the lists) C2 has one 4-list and the remaining as 3-lists.
2. Properly color C4, then the remaining vertices in C3, and finally C2.

Assuming step 1 is successfully achieved, we complete step 2 as illustrated in
Fig. 3.
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Fig. 3. Sizes of the lists on the columns C2, C3 and C4 in step 2 when s = 6 and 7,
respectively

Step 1 crucially uses the reduction into the ten cases illustrated in Fig. 2.
Indeed, for each of the ten configurations that could appear on the column C1,
we describe an explicit procedure for coloring C1, as well as for picking out the
set J and a coloring for it, so that step 1 is completed. This is a three stage
process; for the full details, the reader is again referred to [8].
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2.3 Proofs of cases (2) to (4)

Notice that Lemma 2 is not applicable on C(r, s) for r ≤ 2, so cases (2) and
(3) of Theorem 1 require a different line of attack. So, we shall instead use the
narrow length of the r × s grid to place restrictions on the list assignment L.
The analysis is therefore shorter in these cases compared to case (1) as discussed
above, but we omit the proof here due to space constraints and instead refer the
reader to [8].

For case (4), the 5-choosability of the 3-chromatic 6-regular toroidal triangu-
lations was settled in a previous work [9], but a small modification is required to
get a linear time algorithm, for which we apply a lemma of Bondy, Bopanna, and
Siegel [5] instead of the theorem of Alon and Tarsi [5]. The necessary changes
are explicated in [8].

2.4 Proof of non-3-choosability of the graphs in cases (1) to (4)

Note that T (r, s, t) is 3-chromatic if and only if s ≡ 0 ≡ r − t (mod 3). Let
L1 := {1, 2, 3}, L2 := {2, 3, 4}, and L3 := {1, 3, 4}. Let L be the list-assignment
that assigns these lists to the columns of T (r, s, t) (r ≥ 4, s ≥ 3) as follows: C1

and C2 are assigned L1, C3 is assigned L2, and C4, . . . , C4 are assigned L3. Let
the vertices (1, 1) and (1, 2) be properly colored using L in any manner. This
uniquely determines a proper coloring of the induced subgraph on C1 ∪ C2.

Now, there is a unique way to extend this coloring properly to the induced
subgraph on C2 ∪ C3 as follows: simply extend the coloring from C2 to C3 using
the same lists used on C2, namely L1 = {1, 2, 3}; then, recolor all the vertices in
C3 that have the color 1 with the color 4. In this manner, one can see that the
coloring is extended uniquely to the rest of C3, with 4 occuring in those places
where 1 would have occured had C3 also been colored using L1 = {1, 2, 3}.

Next, repeat the same process to extend the coloring on C3 to a proper
coloring on the induced subgraph on C3 ∪ C4 ∪ · · · ∪ Cr as follows: color the
vertices in C4 ∪ · · · ∪ Cr using the colors used on C3, namely L2 = {2, 3, 4}, and
then recolor those vertices in C4 ∪ · · · ∪Cr that have the color 2 with the color 1.

Now, we note that this coloring cannot be proper on all of T (r, s, t) because
this process of successive relabelling has mapped the tuple (1, 2, 3) to (2, 1, 3).
Thus, for this to be a proper coloring of T (r, s, t), the original coloring on C1

must arise as the unique extension of the coloring on Cr to the induced subgraph
on Cr ∪ C1; but, (2, 1, 3) is not a cyclic permutation of (1, 2, 3), so this cannot
happen for any t.

The rest of the cases (i.e., r ≤ 3) are handled similarly, and we direct the
reader to [8] for the full details.
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