Cyclability, Connectivity and Circumference

Anish Hebbar! and Niranjan Balachandran?

! Indian Institute of Science, Bangalore, India
2 Indian Institute of Technology Bombay, India
anishhebbar@iisc.ac.in  niranj@iitb.ac.in

Abstract. In a graph G, a subset of vertices S C V(G) is said to be
cyclable if there is a cycle containing the vertices in some order. G is
said to be k-cyclable if any subset of k > 2 vertices is cyclable. If any k
ordered vertices are present in a common cycle in that order, then the
graph is said to be k-ordered. We show that when k < v/n + 3, k-cyclable
graphs also have circumference ¢(G) > 2k, and that this is best possible.
Furthermore when k < 37" —1,¢(G) > k+2, and for k-ordered graphs we
show ¢(G) > min{n, 2k}. We also generalize a result by Byer et al. [1] on
the maximum number of edges in nonhamiltonian k-connected graphs
and show that if G is a k-connected graph of order n > 2(k® + k) with
|E(G)| > ("gk) + k2 then the graph is hamiltonian, and moreover the
extremal graphs are unique.
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1 Introduction

We consider only finite, undirected, simple graphs throughout this paper. The
vertex and edge sets of G will be denoted by V(G) and E(G) respectively, the
graph complement by G. The length of the longest cycle in the graph G, also
known as the circumference, will be denoted by ¢(G). The minimum degree,
independence number and connectivity of a graph will denoted by 0(G), a(G)
and x(G) respectively. We will also use dp(v) for the degree of v in H. The
set of neighbours of a vertex v € V(G) will denoted by N(v), and the closed

neighbourhood of v, viz. N(v) U {v} will be denoted by N{v].

A subset S C V(G) of vertices in a graph G is said to be cyclable if G has
a cycle containing the vertices of S in some order. A graph G is said to be k-
cyclable if any k£ > 2 vertices of G lie on a common cycle. Note that the problem
of determining the hamiltonicity of a graph is a special case of cyclability, namely
when k = n. Cyclability and connectivity are interlinked, as was shown by Dirac
[2] who proved for every k > 2, k-connected graphs are also k-cyclable. In fact,
for k = 2 connectivity and cyclability are equivalent, but in general for k£ > 3 it
is not necessarily true that every k-cyclable graph is also k-connected, as can be
seen by considering the graph Ky V 2K} which has connectivity exactly 2 and
is also k-cyclable. For a brief survey of results involving conditions for cycles to
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contain a particular set, refer to [3].

There is a rich literature on conditions guaranteeing the presence of long cy-
cles in graphs, the most classical one being that of Dirac [4] who showed that in
2-connected graphs, ¢(G) > min{n, 26(G)}. Moreover, k-connected graphs have
circumference at least min{n, 2k} from an easy conseqence of Menger’s theorem,
and this is tight. A famous result by Chvétal and Erdds [5] relates the connec-
tivity and independence number of a graph to hamiltonicity, and says that if the
connectivity of a graph G is at least its independence number, then the graph
is hamiltonian. However, not much is known when the requirement of connec-
tivity is weakened to cyclability. Bauer et al. [6] obtained lower bounds for the
length of the longest cycle in 3-cyclable graphs in terms of the minimum degree
and independence number, but not much else is known for k-cyclable graphs for
arbitrary k.

Cyclability has also received interest from an algorithmic and complexity the-
oretic point of view as it is a ’hard’ parameter that can be thought of as a more
quantitative measure of hamiltonicity. Since the classical HAMILTONIAN CY-
CLE problem is NP-complete, the problem of determining whether a graph is k-
cyclable (CYCLABILITY) is NP-complete as well. The problem of determining
whether a given subset S of vertices is cyclable (TERMINAL CYCLABILITY)
has been studied in the Parameterized Complexity framework (FPT) (parame-
terized by |S|) and the best known algorithm has running time O(2/51n0™M) [7].
For some special classes of graphs such as interval graphs and bipartite permu-
tation graphs, Crespelle and Golovach [8] showed that both these problems can
be solved in polynomial time. For |S| = O((loglogn)'/'?), Kawarabayashi [9]
obtained a polynomial time algorithm for TERMINAL CYCLABILITY.

Note that k-connectivity guarantees ¢(G) > min{n,2k} and also ensures k-
cyclability. Thus, a natural question to ask is whether the same bound on the
circumference can be obtained when the connectivity criteria is weakened to
cyclability. When k = n — 1, we would require any set of n — 1 vertices of G to
lie on a common cycle. It turns out that in this case, it is not necessary that
the graph is hamiltonian. Indeed, the existence of hypohamiltonian graphs [10]
of order n is known for all n > 18. Our first result in this paper gives a similar
circumference bound for a wide range of k:

Theorem 1. Let G be a k-cyclable graph, where 2 < k < n. Then,
2k if k< 3
c(G) > lf s nt
kE+2 ifk<p—1
Moreover, for 2 < k < +/n+ 3, this bound on the circumference is best possible.

Note that for k > % it is still possible that one can have a bound of the form
¢(G) > (1 + )k for some fixed positive constant v < 1 as long as k # n — O(1).
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A related notion is the orderedness of a graph, a strong hamiltonian property
that was first introduced by Ng and Schultz [11]. A graph G is said to be k-
ordered if any sequence of distinct vertices T' = {v1,..., v} are present in some
common cycle, in that order. Note that k-ordered graphs are naturally also
k-cyclable, and it is also easy to see that they are (k — 1)-connected. For a
comprehensive survey of results on k-ordered graphs, see [12]. We show that
for k-orderedness, the same circumference bound as k-connectivity holds for all
2<k<n.

Theorem 2. Let G be a k-ordered graph, 2 < k < n. Then, ¢(G) > min{n, 2k}.

Our second pursuit in this paper is to obtain Turdn-type results for the cir-
cumference of k-connected graphs, specifically the maximum number of edges in
nonhamiltonian k-connected graphs. A classical result states that if G is a graph
of order n with |E(G)| > (”gl) + 1, then G is hamiltonian. This was general-
ized by [1] for k < 3, where they showed that if G is k-connected and satisfies
|E(Q)] > (n;k) + k? with n sufficiently large, then the graph is hamiltonian and
the extremal graphs are unique. We further generalize their result and extend it
to any k satisfying n > 2(k? + k).

Theorem 3. Let G be a k connected graph of order n > 2(k* + k). If |E(G)| >
(n—k

5 ) + k2, then G is hamiltonian. Moreover, the extremal graphs are unigue.

The rest of the paper is organized as follows. We lay out some preliminaries
in the next section, and give the proofs of Theorems 1, 2, and 3 in the following
section. We conclude with some remarks and open questions.

2 Preliminaries

When the underlying graph is clear, we will use ¢, &, « instead of §(G), (G), a(G)
for brevity, and also omit the subscript in dg(v). We also use the following well-
known lemma attributed to Dirac repeatedly throughout the paper, and provide
an outline of the proof for completeness.

Lemma 4 ([2]). Any k-connected graph G is k-cyclable. Moreover, it satisfies
¢(G) > min{n, 2k}

Proof Sketch. Suppose some subset S of vertices with |S| = k was not fully
contained in any cycle. Then, take a cycle C' containing as many of the vertices
of S as possible, and pick some v € S that is not in C. By Menger’s theorem, we
can choose k vertex-disjoint paths from v to the cycle C, and these endpoints
divide C' into k segments. Since there are strictly less than k vertices of S in
C, one of the segments does not contain any vertex from S, and thus we can
extend this segment with the 2 disjoint paths from v at the ends of the segment
to obtain a cycle containing more vertices of S, contradiction.

Now consider the longest cycle C' in G and suppose its length is strictly less
than min{n, 2k}. Pick some v € V(G) not in C, and by Menger’s theorem there
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are k vertex disjoint paths from v to C. By the pigeonhole principle, some two
endpoints of these k paths must be adjacent on the cycle C, giving a contradiction
as we can replace the edge between these endpoints with the 2 paths to obtain
a longer cycle.

A famous result by Chvatal and Erdos states the following
Theorem 5 ([5]). If in a graph G, o(G) < k(G), then G is hamiltonian.

A natural generalization of the above is to flip the condition a(G) < k(G),
and instead ask for lower bounds on the circumference of a graph G where
a(G) > k(G). Foquet and Jolivet [13] conjectured the following, which was later
proven by Suil O, Douglas B. West and Hehui Wu.

Theorem 6 ([14]). If G is a k-connected n-vertex graph with independence
k(nt+k—a)

number a and o > k, then G has a cycle of length at least
The following result by Dirac is well-known and was a precursor to a number
of results involving the length of the longest cycle in a graph.

Theorem 7 ([4]). If G is 2-connected and has minimum degree §, ¢(G) >
min{24,n}.

Note that 2-connectivity is equivalent to 2-cyclability. Bauer et al. obtained
a bound on the circumference of 3-cyclable graphs in terms on the minimum
degree and independence number.

Theorem 8 ([6]). If G is 3 cyclable, then
¢(G) > min{n,35 —3,n+ 6 — a}.

Ng and Schultz studied a related hamiltonian property termed k-orderedness,
and showed the following connectivity result. Once again, we include the proof
for completeness.

Lemma 9 ([11]). Let G be a k-ordered graph. Then, G is (k — 1)-connected.

Proof. If not, there exists a set S of k — 2 vertices whose removal disconnects G,
breaking it into at least 2 components. Take 2 vertices u,v in different compo-
nents, then any path from u to v must go through some vertex of S. Thus, let
T consist of u, v and then the vertices of .S, in that order. These vertices must
appear in some cycle in that order, giving a contradiction.

We will also need the concept of graph closure introduced by Bondy and
Chvétal. Define the closure of G, denoted cl(G), to be the graph obtained by
repeatedly joining any two nonadjacent vertices x,y that satisfy d(x)+d(y) > n
in G. They showed that cl(G) is well-defined (independent of the order in which
nonadjacent vertex pairs are considered), and that G is hamiltonian if and only
if ¢l(G) is also hamiltonian.
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Lemma 10 ([15]). Suppose cl(G) = G for a nonhamiltonian graph G of order
n. Then d(z) + d(y) <n —1 for any pair {x,y} of nonadjacent vertices.

This was later generalized to obtain results for higher order connectivity, the
bounds now also involving the independence number. We define

k
or(G) = min{z d(x;),{x1,...xx} an independent set of size k in G}
i=1

Note that o1(G) simply corresponds to the minimum degree J, and Ore’s
theorem [16] states that if oo(G) > n, then the graph is hamiltonian.

Theorem 11 ([17]). Let G be a k connected graph of order n and independence
number a. If o,41(G) > n+ (k — 1)a — (k — 1), then G is hamiltonian.

3 Proofs of the Results

Proof of Theorem 1.
We will first prove the bound for the regime 2 < k < /n + 3. Consider any
k-cyclable graph with «(G) > k. Then, let S be a set of k independent vertices,
and consider the cycle containing it. This gives us a cycle of length at least 2k, as
any 2 independent vertices are not adjacent to each other. Thus, we can assume
a(G) < k—1. Let the connectivity of the graph be k. Using Theorem 6, it suffices
to show
k(n+ Kk — ) @
Tz?k = nZQk(E)—F(a—R)
As k-cyclable graphs are also 2-cyclable, and thus 2-connected, we must have
Kk > 2. Hence, it is sufficient if

k—1

which is always true when
n>k>—3 < k<vn+3

Note that if we only ask for an improvement of the form ¢(G) > (1 + )k for
some positive constant v < 1, by the same argument as above we get o < %,

and it would suffice to have

1 2k? 1 k V4
n2<+7) +(+7) —2<:>n7+92k
4 2 1+~

So the above argument only yields a linear improvement for k up to around 24/n.

Now, suppose 2 < k < ‘%" — 1, and assume to the contrary that ¢(G) <
k + 2. We must have k > 3 as 2-cyclable graphs are 2-connected and hence
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have circumference at least 4 for n > 4. By Theorem 7, we must have § < %

Moreover, a < % as otherwise we could simply take a cycle containing o
many independent vertices. Consider a vertex v with minimum degree ¢, with
neighbourhoud N (v) satisfying |N(v)| = 6. Now, choose v and any k — 1 vertices
from V\N[v], which is possible as long as k —1 < n — 1 — §. Then, any cycle
containing these vertices must also contain some 2 neighbours of v, giving ¢(G) >
k + 2, and we are done.

Thus, we must have k + 6 > n. Note that when 2 < k < 37” —1,n>k+2if
n > 4. So, we must either have 36 —3 < k+1orn+9d —a < k+ 1, otherwise
we are done by Theorem 8.

. . . k+4
The former inequality gives 6 < *3=

, which gives

n<k+46< <k

4k +4 N 3n—4
3 4

k+1

a contradiction. Hence, we must have § > %7 a < 75= giving

k+5 k+1 7T—k
k—l—lzn—l—é—aZn—l—%—%:n—i—T

or equivalently, %” —1>k> %, which is again a contradiction.
We now prove an analogous bound for the circumference of k-ordered graphs.

Proof of Theorem 2.
We know that k-ordered graphs are also k — 1 connected from Theorem 9, thus
k > k — 1. We also must have a < k — 1, as otherwise we can simply take k
independent vertices in any order to obtain a cycle of size at least 2k, in which
case we are done. Hence,

k>k—1>a«

so by Theorem 5, we have that G is hamiltonian, and thus we are done in this
case as well.

In fact, it is not hard to see that the min{n, 2k} bound on the circumference
is achieved for all 2 < k < n. If k > n/2, simply consider the complete graph K,
which is clearly k-connected, k-ordered, k-cyclable and has circumference n. If
k < n/2, consider the complete bipartite graph G = Ky, ,,_r = (4, B, E), which
is is k-ordered, and hence k-cyclable. Indeed, take any sequence of k distinct
vertices T' = (v1,va,...,v;). We construct a cycle containing 7" in that order as
follows.

Let Ty be the set of vertices in 7' and A, with T being defined similarly.
Then, for any v € T4, if the next vertex in the sequence T is in Tz, then simply
follow the edge joining them. Otherwise, first follow an edge to a vertex in B\T,
and then back to the next vertex which must have been in 7T4. Follow the same
procedure for vertices in Tz. At the end, follow the edge joining the first and last
vertex. We cannot run out of vertices as the number of extra vertices outside
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T4 in A that are needed is at most |Ts|, and |A| = k = |Ta| + |T|. Similarly,
|Bl|=n—k>k=|Ta|l+|T5|

We now generalize a result by [1] on the maximal number of edges in a k-
connected nonhamiltonian graph, for k£ = 2,3. We will need the following short
lemma which appears in [1].

Lemma 12 ([1]). Let G be a nonhamiltonian, k-connected graph of order n.
Then k < 5L and [E(G)| > (*5') + (k= 1)(n — k — 1) — 0341(G)

Proof. By Theorem 5, k-connected nonhamiltonian graphs must contain an in-
dependent set I = {x1,..., 21} of k+1 vertices. The graph is disconnected on
removal of the the n—(k+1) vertices of G—1I, thus we must have n—(k+1) > k—1,
or k< ”Tfl

Now consider the independent set I satisfying Zf;l d(z;) = ok+1(G). Let
the edges in G incident on at least one vertex of I be denoted X;. Then X
contains (kgl) edges with both endpoints in I and Zf:ll (n—1—k—dg(z;))
edges with exactly one endpoint in I. Thus, we obtain

k+1

B@) > bl = (]

) +(k—1)n—-k—-1)—0r1(G)
Using a slight variation of the above result and Lemma 10, [1] also show the
following result.

Lemma 13 ([1]). Suppose G = cl(G) for a nonhamiltonian graph G of order
n, and m < a(G). Then

G| > {g(nm) for n odd

Zn—m)+ 2 —1 forn even

2 2

With the above results, we are ready to proceed to the proof of Theorem 3.

Proof of Theorem 3.

First of all, assume k > 2 as we already know that when |E(G)| > (";') + 1,
then G is hamiltonian and consequently connected as well. Assume G is non
hamiltonian. We may assume G = ¢l(G), in which case d(z) +d(y) < n —1
for any two nonadjacent vertices x,y, from Lemma 10. It suffices to prove that
E@)| > (2) = (("3") + ¥2) = k- n — 3+E Note first that if op41(G) <
n+ k% —k—1, by Lemma 12

32+ k
2

|E(G)| > (k;—l)+(k+1)(n—k—1)—(n+k2—k—1):k-n—

as desired. We now assume o411(G) > n + k? — k and show that in this case,
|E(G)| is strictly greater than k -n — WTH“
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> (k*—1)-aty —k344k%43k42
k 2 :

Case 1: Assume n , where y =
Let I = {x1,x2,...,2x41} be a set of k+ 1 independent vertices satisfying

E?ill d(x;) = ox+1(G), and assume without loss of generality that

or11(Q) N n+k*—k

>
d(wn) = E+1 — k+1

Subcase 1la: Suppose d(z1) > n — 2k. Note that V(G) — I — N(z1) is non-
empty, as otherwise we would have d(z1) = n — k — 1, giving d(z;) < k for
2<i<k+4+1lasd(xy)+dx;) <n-—1for 2 <i < k+ 1. This contradicts
0k+1(G) > n+ k* — k. Thus, pick some v € V(G) — I — N(z1), giving dg(v) =
n—1—dg(v) > dg(z1) > n — 2k. Therefore, G contains at least n — 2k — |I]| =
n — 3k — 1 edges with both endpoints not in I. Using the same bound we got in
Lemma 12 but also including the extra edges in G incident with v (that have no
endpoint in ) and using Theorem 11, we obtain

— k+1
|E(G)|>( . >+(k+1)(n—k—1)+(n—3k—1)—ak+1(G)
k2 +9k+4
2(k+2)~n—%—(n+(k—1)a—k)
32 +k 3k2+k  K24+9k+4 k2 —1)-
>k-n— + + R s +/€+—( )a+y—(/€—1)a
2 2 2 k
k2 +k k—1)- k(k? — 3k —2 k% +k
~(hon— +)+( ) oty +k( )>( e .
2 k
as desired, where the last inequality follows from y = w.

Subcase 1b: Suppose next that d(x1) < n—2k—1. Then there exist distinct
vertices vy, vz...,v; € V(G) — I — N(z1), and G contains at least

k
(dg(v1) =k =1)+ (dg(v2) =k = 2) + - + (dg(vk) — 2k) = Zdé(vi) -

i=1

32+ k
2

edges with neither endpoint in 7. Using d(v;) + d(z1) <n—1as G = cl(G), we
get de(vi) > da(z1) > %jfk for all 1 < ¢ < k. Consequently, we obtain at
least
k(n+k*—k) B 3k + k
k+1 2

edges in G with neither endpoint in I. Using Theorem 11 and Lemma 12 again,
we get
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Bl (k;1> HEDm k-1 + k(anl_ o 3k22+k —(n+ (k- 1)a—k)
:(lm_3k22+k)+ki1(”)_(k—1)a+(k;1> —(k+1)2+%+_1k)+k
> (kn = 3k22+k)+ kil(kQ_lk)a+y —(k=Da+ _kQ_gk_Q + ’“(Z:k)
:<lm_3k22+k)+ki1 (_k3+4k;+3k+2+ (—kQ—k;2)(l~c+1)+k3_k2>
>
:k,n_Sk 2+k

as desired.

2
Case 2: Assume n < W

In this case, o > 2];:31’ By Lemma 13, |E(G)| > 1a(n — a). This is a upward
facing parabola for fixed n, so for Z’;:?{ <a<n- Z];:?f, this function is
minimized at o = Zﬁ:i’ Therefore, in this range

_ « n(k? -k -1
B@)| 2 Sn—a) > LRy mE =D

n?k(k? —k—1)+n(2k +1 - k?)y — y?)

2(k% —1)2
If we want the above to be strictly greater than kn — ?”‘CQT'H“,
n?k(k? —k —1) 2(k% —1)2 1—k
— _>kn = n> L =2kt —————
o(kz—1)2 =" ey T A oy

suffices. This is because for k > 5, y = w < 0and 2k+1—k? <0, giv-
ing (2k+1—k2)(y) > 0. Similarly, —y? = CRHIEASEDT (3124 (2 )2
for k > 5, so we only have to check the cases of &k = 2, 3,4 manually which is a
routine check.

nk—y _ nk®—k—1)4y
k2—1 — k2—1 )

In this case however, « is quite large compared to n, so the (;‘) edges in G between
3k>+k
2

Now, it remains to consider the possiblility that « > n—

the vertices of an independent set of size « is strictly greater than k-n —
for all n. Indeed, we manually verify for k < 3, and for k > 4 simply note that
%k +y >0, and hence when n > 2(k% + k) we have

n(k* — 3 —1) _ 9 (9n/15) In 8n

on sk
2_1  — 15 2 )7 30 15"

a >
We now prove that the extremal nonhamiltonian k-connected graphs are
unique for n > 2(k% + k). Recall that we may assume G = cl(G) is a nonhamil-

tonian, k-connected graph of order n > 2k? + 2k with 0441 (G) =n+k?> -k —1
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as equality only holds if all the inequalities in the above proof are tight.

Thus, all the edges in G have atleast one endpoint in I. Let I = {1, 22,..., 7541}
be a set of independent vertices such that k£ < d(z1) < ... < d(xgy1). As men-
tioned in the previous section, we may further assume that all edges in G have
at least one endpoint in I, that is, if z,y € V(G) — I, then {z,y} € E(G). We
will now use the properties of graph closure repeatedly. First, note that we must
have a clique on the remaining n — k — 1 vertices, each of which has degree at
least n — k — 2.

e Say d(xy) > k+ 1 Consider the neighbours of z in the clique. These neigh-
bours have degree at least n — k — 1, and hence since G = ¢l(G), must be
adjacent to xp41 as well as d(xg4+1) > k+ 1, But then, these neighbours have
degree at least n — k, and hence must be adjacent to all of x1,...,2541 by
the same argument. Thus, I and N(I) together form a complete bipartite
graph with |N(I)| > k41 = |I|. If d(xp41) > k+1, then it is easy to see that
the graph is hamiltonian, and otherwise k + 1 = d(x;) Vi € [k + 1], giving

opp1=n+k—k—1=(k+1)? < n=3k+2

which is false as we assumed n > 2k2 + 2k

e Otherwise d(z;) = k, , and hence d(zx11) = o)1 — k> =n—k — 1, so we
have a clique on the n — k vertices in G\{z1, ...,z }. The neighbours of any
2,1 € [k] must have degree at least n — k, and hence are joined to all the z;.
Thus, we obtain the desired extremal graph with exactly ("gk) + k2 many
edges, namely a clique on n — k vertices and k other independent vertices
forming a complete bipartite graph with some k vertices from the clique.

4 Concluding Remarks

A simpler proof of Theorem 1 with a weaker constant can be obtained using
Turdn’s theorem and a theorem of Erdds and Gallai [18] on the length of the
longest cycle in a graph. Consider any k-cyclable graph with a(G) > k. Then, let
S be a set of k independent vertices, and consider the cycle containing it. This
gives us a cycle of length atleast 2k, as any two independent vertices are not
adjacent to each other. Thus, we must have a(G) < k. By a variant of Turan’s

theorem, we also have o > Jj_ T where d is the average degree. Thus, we obtain

2|E(G)|

n

~ n n 1 n
= > > - _
+1 d+1>a_k_1:>|E(G)_2n<k_1 1)

which is larger than 1(2k — 1)(n — 1) if n > 2k?. giving ¢(G) > 2k when

k<\/n/2

It is also interesting to understand what happens to the circumference of
k-cyclable graphs for large values of k. As mentioned earlier in the introduction,
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it is not necessarily the case that ¢(G) =n when k = n — 1 due to the existence
of hypohamiltonian graphs. Thus, we have the following extremal problem.

Conjecture 1. For a given n, let f(n) be the largest value of k£ such that any
k-cyclable graph satisfies ¢(G) > k. From the above, we have f(n) <n — 1 and
from Theorem 1, we know f(n) = £2(n). Is it the case that f(n) =n — 27

We can also ask for what regime of k as a function of n do results of the type
in Theorem 1 hold.

Conjecture 2. For a given n, let g(n) be the largest value of k such that any
k-cyclable graph satisfies ¢(G) > 2k. From Theorem 1 we know g(n) = 2(y/n).
Is it the case that g(n) = O(y/n)?

Moreover, our results only give an improvement of the form ¢(G) > (1+7)k,
0 <~ < 1, for k up to around 24/, and it is natural to ask if such a linear bound
on the circumference can be obtained for much larger regimes of k. Finally, note
that the results of Theorem 3 only hold for n > 2(k% + k). For fixed values
of k < 3, [1] give a tight bound for the minimum value of n for this to hold.
They also note that this bound cannot hold for k¥ = 2(n), in particular the
graph obtained by joining n — k independent vertices to each vertices of Ky, is k-
connected and non hamiltonian, with total number of edges more than (";k) +k2
when ”?'H <k< L"T_lj This still leaves a significant gap in the possible range
of k for which k-connectivity and |E(G)| > (ngk) + k% implies hamiltonicity, as
our result only applies for k = O(y/n).
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