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a b s t r a c t

Two n-dimensional vectors A and B, A, B ∈ Rn, are said to be trivially orthogonal if in every
coordinate i ∈ [n], at least one ofA(i) or B(i) is zero. Given the n-dimensional Hamming cube
{0, 1}n, we study the minimum cardinality of a set V of n-dimensional {−1, 0, 1} vectors,
each containing exactly d non-zero entries, such that every ‘possible’ point A ∈ {0, 1}n in
the Hamming cube has some V ∈ V which is orthogonal, but not trivially orthogonal, to A.
We give asymptotically tight lower and (constructive) upper bounds for such a setV except
for the case where d ∈ Ω(n0.5+ϵ) and d is even, for any ϵ, 0 < ϵ ≤ 0.5.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Two n-dimensional vectors A = (A(1), . . . , A(n)) and B = (B(1), . . . , B(n)), A, B ∈ Rn, are said to be trivially orthogonal
if in every coordinate i ∈ [n], at least one of A(i) or B(i) is zero. The vectors A and B are non-trivially orthogonal if they are
orthogonal, but not trivially orthogonal. Consider the following problem: ‘‘Given the n-dimensional Hamming cube {0, 1}n,
what is the minimum cardinality of a subset V of n-dimensional {−1, 0, 1} vectors, each containing exactly d non-zero
entries, such that every point A ∈ {0, 1}n in the Hamming cube has some V ∈ V which is non-trivially orthogonal to
A?’’. It is not hard to see that the all-zero vector and the unit vectors {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} can
never have any non-trivially orthogonal vector in {−1, 0, 1}n. Additionally, the all-ones vector (1, . . . , 1) cannot be non-
trivially orthogonal to any vector in {−1, 0, 1}n consisting of exactly d non-zero entries, when d is odd. We call the vectors
(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, 0, . . . , 1) (and additionally, (1, . . . , 1) when d is odd) as trivial. Since no n-dimensional
{−1, 0, 1} vector with exactly one non-zero entry is non-trivially orthogonal to any non-trivial point of the Hamming cube,
we assume that d ≥ 2 in the rest of the paper.

Definition 1. Let 2 ≤ d ≤ n, where d and n are integers. We define βd(n) as the minimum cardinality of a subset V of
n-dimensional {−1, 0, 1} vectors, each containing exactly d non-zero entries, such that every non-trivial point in the
Hamming cube {0, 1}n has a non-trivially orthogonal vector V ∈ V .

In this paper, we study the problem of estimation of bounds for βd(n).
Before we consider the general version of the problem, we introduce a few definitions. Let [n] denote the finite set

{1, . . . , n}. For any S ⊂ [n], let (i) RS = (r1, . . . , rn) ∈ {−1, 1}n denote the incidence vector corresponding to S: ri is 1 if
and only if i ∈ S; (ii) XS = (x1, . . . , xn) ∈ {0, 1}n denote the incidence vector corresponding to S: xi is 1 if and only if i ∈ S.

* Corresponding author.
E-mail addresses: niranj@iitb.ac.in (N. Balachandran), rogers@cse.iitkgp.ernet.in (R. Mathew), tkmishra@cse.iitkgp.ernet.in (T.K. Mishra),

spp@cse.iitkgp.ernet.in (S.P. Pal).

https://doi.org/10.1016/j.disc.2018.03.015
0012-365X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2018.03.015
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2018.03.015&domain=pdf
mailto:niranj@iitb.ac.in
mailto:rogers@cse.iitkgp.ernet.in
mailto:tkmishra@cse.iitkgp.ernet.in
mailto:spp@cse.iitkgp.ernet.in
https://doi.org/10.1016/j.disc.2018.03.015


N. Balachandran et al. / Discrete Mathematics 341 (2018) 1732–1739 1733

The inner product ⟨A, B⟩ is the standard dot product
∑n

i=1aibi, where A = (a1, . . . , an), and B = (b1, . . . , bn). Let G([n], E(G))
denote the hypergraph where [n] is the set of vertices and E(G) is the set of hyperedges. We denote the set of all distinct
k-sized subsets of [n] as

(
[n]
k

)
for k ≤ n.

We now define a general version of the aforementioned problem in terms of bicolorings of a hypergraph. Let G be
a hypergraph on the vertex set [n]. Corresponding to the trivial vectors/points of the Hamming cube, the singleton sets
and the empty set (and additionally, the set [n] when d is odd) are the trivial hyperedges or trivial subsets of [n]. Let X S

denote a ±1 bicoloring of vertices of S ⊆ [n], i.e. X S
: S → {+1, −1}, for some S ⊆ [n], S ̸= φ. We abuse the

notation to denote the subset of vertices colored with+1 (resp.,−1) with respect to bicoloring X S as X S(+1) (resp., X S(−1)),
i.e. X S(+1) = {i ∈ S : X S(i) = +1} and X S(−1) = {i ∈ S : X S(i) = −1} for S ̸= φ.

Definition 2. Given a hypergraph G, a hyperedge A ∈ E(G) is said to be induced-bisected by a bicoloring X S of a subset
S ⊆ V (G), if |A ∩ X S(+1)| = |A ∩ X S(−1)| ̸= 0. A set X = {X S1 , . . . , X St } of t bicolorings is called an induced-bisecting family
of order d for G if

1. each Si ⊆ [n] has exactly d vertices, 1 ≤ i ≤ t , 2 ≤ d ≤ n, and
2. every non-trivial hyperedge A ∈ E(G) is induced-bisected by at least one X Si , 1 ≤ i ≤ t .

Let βd(G) denote the minimum cardinality of an induced-bisecting family of order d for hypergraph G.

From Definitions 1 and 2, it is clear that the maximum of βd(G) over all hypergraphs G on [n] is βd(n).

Example 1. Let H be the hypergraph with all the 2n
− n − 1 non-trivial subsets of [n] as hyperedges and let d = 2. For

any S ∈
(
[n]
2

)
, let X S color one point in S with color +1 and the other with −1. Observe that X = {X S

|S ∈
(
[n]
2

)
} forms an

induced-bisecting family of order 2 for H. β2(H) ≤
(n
2

)
. Moreover, this upper bound is also tight: if X {a,b}

̸∈ X , {a, b} ∈
(
[n]
2

)
,

then the hyperedge {a, b} ∈ H cannot be induced-bisected.

1.1. Application

In biology, a character is a feature of an organism thatmaybe present as various traits.1 Adrug companywishes to perform
a comparative study of its new drug with an existing drug (these drugs have small half-life2 periods). Consider a population
of n individuals participating in the drug test. Corresponding to various combinations of traits of various characters, there
are m groups. For instance, individuals with brown eyes forming one group, tall and female individuals constitute another
group. The drug companywishes to determine those traits (or combination of traits) for which the new drug performs better
on individuals possessing the traits than the old drug. In order to make such a comparative study ‘fair’, for each group out
of the m aforementioned groups, the company requires that equal number of individuals must receive the new drug and
the old drug while comparing the effectiveness of the drugs in correlation of traits of that group. The lab facility available to
the company for such a test is limited: at most d individuals can be tested at a time. It is clear that this study may require
multiple rounds of testing. In each round, d individuals are tested: each individual receiving exactly one out of the two drugs.
Note that each round of testing can be viewed as a bicoloring of d out of n element set (representing the population), where
individuals receiving different drugs get different colors in the bicoloring. It is in the best interest of the company tominimize
the number of rounds (i.e. bicolorings) for conducting such a ‘fair’ comparative study.

1.2. Relations to existing work

The problem addressed in this paper can be viewed as a generalization of the problem of bisecting families [1]. Let n ∈ N
and letA be a family of subsets of [n]. Another familyB of subsets of [n] is called a bisecting family forA, if for eachA ∈ A, there
exists a B ∈ B such that |A∩ B| ∈ {⌈

|A|

2 ⌉, ⌊
|A|

2 ⌋}. In the bicoloring terminology, letting S = [n], X S(+1) = B, X S(−1) = [n] \ B,
the bisecting family B maps to a collection X of bicolorings such that for each A ∈ A, there exists a bicoloring X ∈ X such
that |A ∩ X(+1)| − |A ∩ X(−1)| ∈ {−1, 0, 1}. In [1], the authors define β[±1](n) as the minimum cardinality of a bisecting
family for the family consisting of all the non-empty subsets of [n], and they prove that β[±1](n) = ⌈

n
2⌉ [1]. Note that when

d = n andAe denotes the family of non-trivial even subsets of [n], any induced bisecting family of order d forAe is a bisecting
family for the family consisting of all the non-empty subsets of [n]. In other words, βn(Ae) = β[±1](n). However, observe
that when d = n, i.e. S = [n], no odd subset of [n] can be induced-bisected: this follows from the fact that for any odd subset
A, |A ∩ X S(+1)| − |A ∩ X S(−1)| is odd.

Induced-bisecting families can be viewed as an extension of separating families and test covers. A subset S separates a
pair {i, j} if i ∈ S and j ̸∈ S or vice versa. The family S is a separating family for F if every pair {i, j} ∈ F is separated
by some S ∈ S (see [14,9,17,6,16] for detailed results and related problems on separating families). An extension of the
separating family problem is the ‘test cover’ problem: ‘‘Given a family F of subsets of [n], finding a sub-collection T ⊆ F of

1 For instance, ‘eye color’ is a character and, ‘blue eye color’ and ’brown eye color’ are various traits corresponding to this character.
2 The half-life of a drug is the time taken for the drug concentration in the body to be reduced to one-half.
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minimum cardinality such that every pair of [n] is separated by some S ∈ T ’’ (see [12,8,4,3,2]). The problems of separating
families and test covers come under the broader area of combinatorial group testing (see [7]), and are studied in the context
of ‘Wasserman-type’ blood tests of large populations and locating defective items (see [10]), biology [13,18,11] and pattern
recognition [5].

Main result
In this paper, we establish the following theorem.

Theorem 3. Let 2 ≤ d ≤ n, where d and n are integers. Then, 2n(n−1)
d2

≤ βd(n) ≤
(
⌈
2(n−1)
d−1 ⌉

2

)
+ ⌈

n−1
d−1 ⌉(d + 1). Moreover,

βd(n) ≥ n − 1, when d is odd.

When d is odd, βd(n) ≥ max( 2n(n−1)
d2

, n − 1) ≥

2n(n−1)
d2

+n−1

2 ; so the bounds are tight up to constant factors for all values of n
when d is odd.Moreover, the bound is tight up to constant factorswhen d ∈ O(n0.5−ϵ) for any ϵ, 0 < ϵ ≤ 0.5, even if d is even.
However, when d ∈ Ω(n0.5+ϵ) and d is even, there is a gap between the lower and upper bounds, for any ϵ, 0 ≤ ϵ ≤ 0.5.

2. Lower bounds

Let H denote the hypergraph consisting of all the non-trivial subsets of [n]. Let the set X = {X S1 , . . . , X St } of bicolorings
be any optimal induced-bisecting family of order d for H, where t ∈ N.

Considering only the two sized subsets of [n], we note that every two element hyperedge {a, b}, a, b ∈ [n], must lie
in some Si, Si ∈ {S1, . . . , St}; otherwise, no bicoloring in X can induced-bisect {a, b}. So, it follows that

∑
XS∈X

(d
2

)
≥

(n
2

)
,

i.e., βd(n) ≥
n(n−1)
d(d−1) . A constant factor improvement in the lower bound can be obtained by the following observation: the

maximum number of two element subsets {a, b} that can be induced-bisected by any X S
∈ X , |S| = d, is d2

4 . So, we have the
following proposition.

Proposition 4. βd(n) ≥
2n(n−1)

d2
.

Observe that when d is large, say d ∈ Ω(n0.5+ϵ), where 0 < ϵ ≤ 0.5, Proposition 4 only yields a sublinear lower bound.
When d is odd, we can prove a general lower bound of n − 1 on βd(n) using the following version of Cayley–Bacharach
Theorem by Riehl and Graham [15] on the maximum number of common zeros between n quadratics and any polynomial P
of smaller degree.

Theorem 5 ([15]). Given the n quadratics in n variables x1(x1 −1), . . . , xn(xn −1)with 2n common zeros, the maximum number
of those common zeros a polynomial P of degree k can go through without going through them all is 2n

− 2n−k.

Lemma 6. βd(n) ≥ n − 1, when d is odd.

Proof. Let B be a minimum-cardinality induced-bisecting family for all the non-trivial subsets A ⊆ [n]. Let RB denote the
n-dimensional vector representing the bicoloring B ∈ B, i.e. RB ∈ {−1, 0, 1}n and RB contains exactly d nonzero entries.
Consider the polynomialsM(X), N(X), and P(X), X ∈ {0, 1}n.

M(X = (x1, . . . , xn)) =

∏
B∈B

⟨RB, X⟩. (1)

N(X = (x1, . . . , xn)) =

n∑
i=1

xi − 1. (2)

P(X) = M(X)N(X). (3)

Let XA denote the 0-1 n-dimensional incidence vector corresponding to A ⊆ [n]. Note that M(XA) vanishes for each A ⊆ [n]
except (i) the all 1’s vector, (1, . . . , 1), since d is odd, and (ii) possibly the singleton sets. SinceN(XA) vanishes for all singleton
sets, P(XA) vanishes on all subsets A ⊆ [n] except for the set [n] (corresponding to the all 1’s vector). Since the degree of P is
|B| + 1 and P is non-zero only at XA = (1, . . . , 1), using Theorem 5, we have |B| ≥ n − 1. □

However, when d is even, the above lower bounding technique does not work since the polynomial M may vanish at
every point of the Hamming cube {0, 1}n. In this case, we can obtain a lower bound of Ω(

√
d) by considering the maximum

number of hyperedges that can be induced-bisected by a single bicoloring.

3. Induced-bisecting families when n is d + 1

In what follows, we consider the hypergraph H consisting of all the non-trivial hyperedges of [n], where n = d + 1 and
demonstrate a construction of an induced-bisecting family of order d of cardinality d + 1.
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Fig. 1. Vertices in (i) P1 and P2 are colored with +1, (ii) P4 and P5 are colored with −1; the vertex in P3 remains uncolored. X = {X1, . . . , X5} is an induced
bisecting family when n = d + 1 = 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Theorem 7. Let d be an integer greater than 1. Then, d ≤ βd(d + 1) ≤ d + 1. Moreover, βd(d + 1) = d + 1, when d is even.

Proof. We consider the cases when d is even and d is odd separately. We start our analysis with the case when d is even.
Let v1, . . . , vd+1 denote the d + 1 vertices. Consider a circular clockwise arrangement of d + 1 slots, namely P1, . . . , Pd+1
in that order. The slots P1 to P d

2
are colored with +1, slots P d

2 +2 to Pd+1 are colored with −1, and only slot P d
2 +1 remains

uncolored. Each slot can contain exactly one vertex and each vertex takes the color of the slot it resides in. As for the initial
configuration, let vi ∈ Pi, for 1 ≤ i ≤ d + 1. This configuration gives the coloring X1, where (i) X1(+1) = {v1, . . . , v d

2
},

(ii) X1(−1) = {v d
2 +2, . . . , vd+1}, and, (iii) the vertex v d

2 +1 remains uncolored. We obtain the second coloring X2 from X1

by one clockwise rotation of the vertices in the circular arrangement. Therefore, we have, X2(+1) = {vd+1, v1, . . . , v d
2 −1},

X2(−1) = {v d
2 +1, . . . , vd}; the vertex v d

2
remains uncolored. See Fig. 1 for an illustration. Similarly, repeating the process d

times, we obtain the set X = {X1, . . . , Xd+1} of bicolorings. We have the following observations.

Observation 8. If X induced-bisects every non-trivial odd subset of [d+1], thenX induced-bisects every non-trivial even subset
of [d + 1] as well.

To prove the observation, consider an even hyperedge Ae ⊂ [d + 1], and let X ∈ X be the bicoloring that induced-
bisects the odd hyperedge Āe = [d + 1] \ Ae. Note that one vertex in Āe remains uncolored under X . Otherwise, Āe

cannot get induced-bisected under X . Since |X(+1)| =
d
2 and |Āe ∩ X(+1)| =

|Āe|−1
2 , it follows that |Ae ∩ X(+1)| =

|X(+1) \ (Āe ∩ X(+1))| =
d
2 −

|Āe|−1
2 . Similarly, |Ae ∩ X(−1)| =

d
2 −

|Āe|−1
2 . So, Ae is induced-bisected under X . This completes

the proof of Observation 8. □
Therefore, it suffices to prove thatX induced-bisects every non-trivial odd subset of [d+1]. For the sake of contradiction,

assume that A is an odd hyperedge not induced-bisected by X . Let ci = |A ∩ Xi+1(+1)| − |A ∩ Xi+1(−1)|, for 0 ≤ i ≤ d. All
additions/subtractions in the subscript of c are modulo d + 1. Our assumption implies that ci ̸= 0 for all 0 ≤ i ≤ d.

Observation 9. |ci − ci+1| ≤ 2, for 0 ≤ i ≤ d. Furthermore, if ci > ci+1 and ci is odd, then ci − ci+1 = 1.

The first part of Observation 9 follows from the construction and we omit the details for brevity. Note that when ci is odd,
the element in P d

2 +1 cannot belong to the odd hyperedge A. This takes care of the second part of Observation 9. □

Observe that a bicoloring Xj ∈ X , 1 ≤ j ≤ d + 1, induced-bisects the odd hyperedge A if and only if cj is 0. We know
that bicoloring X2 (resp. Xi+1) is obtained from X1 (resp. Xi) by one clockwise rotation of vertices in the circular arrangement.
Thus, during the construction of bicolorings X1 through Xd+1, we perform a full rotation of the vertices with respect to their
starting arrangement in X1. So, it follows that there exist i and j such that ci is positive and ci+j is negative. Combined with
the second part of Observation 9, this implies the existence of an index p such that cp = 0. This is a contradiction to the
assumption that A is not induced-bisected by X . Therefore, every odd subset of [d + 1] is induced-bisected by X , and using
Observation 8, the upper bound on βd(d + 1) follows.

To see that the upper bound is tight, observe that exactly one d-sized hyperedge can get induced bisected under a single
bicoloring — the hyperedge missing the uncolored vertex. This completes the proof of Theorem 7 for even values of d.

Recall that along with the empty set and the singleton sets, the set [d + 1] becomes trivial when d is odd. When d is odd,
the slots P1 to P d+1

2 −1 are colored with +1, slots P d+1
2 +1 to Pd+1 are colored with −1, and only slot P d+1

2
remains uncolored.

If we generate the bicolorings {X1, . . . , Xd+1} as in the proof of Theorem 7, by similar arguments, it can be shown that
{X1, . . . , Xd+1} is indeed an induced-bisecting family for the hypergraph consisting of all the non-trivial hyperedges (see
Appendix for a proof). The fact that βd(d + 1) ≥ d for odd values of d follows directly from Lemma 6. □

We have the following corollary which establishes an upper bound on the cardinality of any induced-bisecting family for
arbitrary values of n.



1736 N. Balachandran et al. / Discrete Mathematics 341 (2018) 1732–1739

Corollary 10. Let H be any hypergraph on vertex set V (H) = {v1, . . . , vn} and let d ≤ n − 1. Let F consist of (d + 1)-sized
subsets of V (H) such that for every B ∈ E(H), there exists an A ∈ F with (i) |B ∩ A| ≥ 2, when d is even; (ii) 2 ≤ |B ∩ A| ≤ d,
when d is odd. Then, we can construct an induced-bisecting family of order d of cardinality |F|(d + 1) for H.

Proof. For any subset A ∈ F , using the procedure used in the proof of Theorem 7, we can obtain an induced-bisecting family
XA for all the non-trivial subsets of A, where |XA| = d + 1. When d is even, XA induced-bisects all the 2d+1

− (d + 1) − 1
non-empty and non-singleton subsets of A; therefore, each B ∈ E(H) with |B ∩ A| ≥ 2 is induced-bisected by XA. When
d is odd, XA induced-bisects all but the empty set, the singleton sets, and A; so, each B ∈ E(H) with 2 ≤ |B ∩ A| ≤ d is
induced-bisected by XA. Repeating the process for each A ∈ F , we get an induced-bisecting family of cardinality |F|(d + 1)
for H. □

Theorem 7 provides evidence for the following property (which is described in Corollary 11) of the odd subsets under
any circular permutation of odd number of elements which may be of independent interest. For any circular permutation σ
of [n], a, b ∈ [n], let distσ (a, b) denote the clockwise distance between a and bwith respect to σ , which is one more than the
number of elements residing between a and b in the permutation σ in the clockwise direction.

Corollary 11. Consider any circular permutation σ of [n], where n is odd. For any odd k-sized subset A ⊆ [n], let (a0, . . . , ak−1)
be the ordering of A with respect to σ . Then, there exists an index i ∈ {0, . . . , k − 1} such that distσ (ai, ai+⌊

k
2 ⌋
) < n

2 and
distσ (ai+⌊

k
2 ⌋+1, ai) < n

2 , where summation in the subscript of a is modulo k.

Proof. Consider a circular clockwise arrangement of n slots, namely P1, . . . , Pn in that order. Put vertex σ (i) in Pi. Now,
following the procedure outlined in the proof of Theorem 7, obtain a bicoloring that bisects A. Pick the uncolored vertex
residing in slot P⌈

n
2 ⌉ with respect to the bicoloring X . Observe that this vertex satisfies the desired property. □

4. Upper bounds for βd(n) and proof of Theorem 3

From Proposition 4, we know that βd(n) ≥
2n(n−1)

d2
. In this section, we prove an upper bound of

(
⌈
2(n−1)
d−1 ⌉

2

)
+ ⌈

n−1
d−1 ⌉(d + 1)

for βd(n).

4.1. A deterministic construction of induced-bisecting families

Lemma 12. βd(n) ≤
(
⌈
2(n−1)
d−1 ⌉

2

)
+ ⌈

n−1
d−1 ⌉(d + 1).

Before proceeding to the proof of the above lemma,we give few definitions that simplify the proof considerably. Let d be a
positive even integer. Let S(n, d) = {P1, . . . , P⌈

2n
d ⌉

} denote a partition of [n], where each P ∈ S(n, d)\ {P
⌈
2n
d ⌉

} is of cardinality
exactly d

2 , and |P
⌈
2n
d ⌉

| ≤
d
2 . Let P

1
⌈
2n
d ⌉

= P
⌈
2n
d ⌉

∪ Q1, P2
⌈
2n
d ⌉

= P
⌈
2n
d ⌉

∪ Q2, where Qi denotes a fixed ( d2 − |P
⌈
2n
d ⌉

|)-sized subset of

Pi. For an even d, we define P(n, d), D(n, d) and B(n, d) as follows.

Definition of P(n, d)

P(n, d) =

⎧⎨⎩S(n, d), if
d
2
divides n

S(n, d) \ {P
⌈
2n
d ⌉

} ∪ {P1
⌈
2n
d ⌉

, P2
⌈
2n
d ⌉

}, otherwise.
(4)

Definition of B(n, d)
d
2 divides n. For each i, j ∈

[ 2n
d

]
, i < j, let Bi,j : Pi ∪ Pj → {+1, −1} denote a bicoloring, where

Bi,j(x) =

{
+1, if x ∈ Pi
−1, if x ∈ Pj.

Let B(n, d) = {Bi,j|i, j ∈
[ 2n

d

]
, i < j} denote the set of bicolorings.

d
2 does not divide n. For each i, j ∈

[
⌈
2n
d ⌉ − 1

]
, i < j, let Bi,j : Pi ∪ Pj → {+1, −1} denote a bicoloring, where

Bi,j(x) =

{
+1, if x ∈ Pi
−1, if x ∈ Pj.

Define the maps B1,⌈ 2n
d ⌉

: P1 ∪ P2
⌈
2n
d ⌉

→ {−1, 1} and Bi,⌈ 2n
d ⌉

: Pi ∪ P1
⌈
2n
d ⌉

→ {−1, 1}, for 2 ≤ i ≤ ⌈
2n
d ⌉ − 1 as follows:

B1,⌈ 2n
d ⌉

(x) =

{
+1, if x ∈ P1
−1, if x ∈ P2

⌈
2n
d ⌉

.
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Bi,⌈ 2n
d ⌉

(x) =

{
+1, if x ∈ Pi
−1, if x ∈ P1

⌈
2n
d ⌉

, for 2 ≤ i ≤

⌈
2n
d

⌉
− 1.

Let B(n, d) = {Bi,j|i, j ∈
[
⌈
2n
d ⌉

]
, i < j} denote the set of bicolorings.

Definition of D(n, d)
D(n, d) = {Dk|Dk = P2k−1 ∪ P2k, k ∈

[
⌈
n
d ⌉ − 1

]
} ∪ {D⌈

n
d ⌉}, where

D⌈
n
d ⌉ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P 2n

d −1 ∪ P 2n
d
, if

d
2
divides n

P1 ∪ P2
⌈
2n
d ⌉

, if
d
2
does not divide n and ⌈

2n
d

⌉ is odd

P
⌈
2n
d ⌉−1 ∪ P2

⌈
2n
d ⌉

, if
d
2
does not divide n and ⌈

2n
d

⌉ is even.

(5)

Proof. If d = n − 1, the statement of the lemma follows directly from Theorem 7. So, we assume that d < n − 1 in the rest
of the proof. We prove this lemma considering the exhaustive cases based on whether d is even or odd, separately.

Case 1. d is even
Let P = P(n, d), B = B(n, d) and D = D(n, d).

Observation 13. For any C ⊆ [n], |C | ≥ 2, if |C ∩ P| ≤ 1, for all P ∈ P , then C is induced-bisected by at least one B ∈ B.

For any C ⊆ [n], |C | ≥ 2, it follows from the premise that there exist Pi, Pj ∈ P , i < j, such that |C ∩ Pi| = |C ∩ Pj| = 1. C
is induced-bisected by the bicoloring Bi,j, thus completing the proof of Observation 13.

Let C denote the family of all the subsets of [n] that are not induced-bisected by any B ∈ B. Rephrasing Observation 13,
for each C ∈ C, there exists a P ∈ P (and thus, a D ∈ D) such that |C ∩ P| ≥ 2 (respectively, |C ∩ D| ≥ 2). Let
D′

= {D ∪ {j}|j ∈ [n] \ D,D ∈ D}. Recall that |D| = d, where d is an even integer less than n − 1. So, each D′
∈ D′ is a

(d + 1)-sized set. Using Corollary 10, every C ∈ C can be induced-bisected using |D|(d + 1) bicolorings. Therefore, we have,
βd(n) ≤ |B| + |D|(d + 1) =

(
⌈
2n
d ⌉

2

)
+ ⌈

n
d ⌉(d + 1), when d is even.

Case 2. d is odd
Let P = P(n − 1, d − 1), B = B(n − 1, d − 1) and D = D(n − 1, d − 1). Since d − 1 is even, P , B and D are well defined.

We extend the domain of each B ∈ B to domain(B)∪ {n}, and assign a +1 color to n in each B. Now, each B ∈ B colors exactly
d elements of [n].

Observation 14. For any C ⊆ [n] with |C | ≥ 2, if n ̸∈ C and |C ∩ P| ≤ 1 for all P ∈ P , then C is induced-bisected by at least
one B ∈ B.

The proof of this observation is exactly the same as the proof of Observation 13.
Let C denote the family of all the subsets of [n] that are not induced-bisected by any B ∈ B. For any D ⊆ [n], let max(D)

denote the maximum integer in the set D. Let D′
= {D ∪ {n} ∪ {max(D) + 1}|D ∈ D}, where the addition is modulo n − 1.

Observation 15. Let D′
= {D′

1,D
′

2, . . . ,D
′

⌈
n−1
d−1 ⌉

} be the family of subsets constructed as above. Then, |D′

i ∩ D′

i+1| = 2, if

1 ≤ i ≤ ⌈
n−1
d−1 ⌉ − 1, and |D′

⌈
n−1
d−1 ⌉

∩ D′

1| ≥ 2.

Recall that each D ∈ D is a (d − 1)-sized subset of [n − 1], where d is an odd integer less than n − 1. So, each D′
∈ D′ is a

(d+ 1)-sized set. From Observation 14, it follows that for each C ∈ C, there exists at least one D′
∈ D′ such that |C ∩D′

| ≥ 2.
Let C′

⊆ C be the family of subsets of [n] such that for each C ′
∈ C′, there exists some D′

∈ D′ such that 2 ≤ |C ∩ D′
| ≤ d.

Using Corollary 10, we can obtain an induced-bisecting family for members of C′ of cardinality |D|(d+ 1). So, it follows that
any C ∈ C \ C′ must contain one or more elements from {D′

1,D
′

2, . . . ,D
′

⌈
n−1
d−1 ⌉

} as its subsets.

For any C ∈ C \ C′, if D′

i ⊆ C , then D′

i+1 ⊆ C: otherwise, from Observation 15, 2 ≤ |C ∩D′

i+1| ≤ d and from definition of C′,
C ∈ C′. So, it follows that C\C′

= {[n]}, and [n] is a trivial setwhen d is odd. Therefore, the cardinality of the induced-bisecting
family for [n] when d is odd is at most |B| + |D|(d + 1) =

(
⌈
2(n−1)
d−1 ⌉

2

)
+ ⌈

n−1
d−1 ⌉(d + 1). □

4.2. Proof of Theorem 3

Statement. Let 2 ≤ d ≤ n, where d and n are integers. Then, 2n(n−1)
d2

≤ βd(n) ≤
(
⌈
2(n−1)
d−1 ⌉

2

)
+ ⌈

n−1
d−1 ⌉(d + 1). Moreover,

βd(n) ≥ n − 1, when d is odd.
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Proof. Theorem 3 follows from Proposition 4, Lemmas 6 and 12. □

Remark 1. By removing some duplicate bicolorings, we can actually improve the upper bound for βd(n) from
(
⌈
2(n−1)
d−1 ⌉

2

)
+

⌈
n−1
d−1 ⌉(d + 1) to

(
⌈
2(n−1)
d−1 ⌉

2

)
+ ⌈

n−1
d−1 ⌉d.

Theorem 3 asserts an upper bound of O(n) on βd(n) when d ∈ Ω(
√
n). Let k(G) denote the minimum cardinality of any

hyperedge of the hypergraph G, i.e., k(G) = mine∈E(G)|e|. For any hypergraph G, the upper bound for βd(G) can be improved
to O(n) even if d ∈ o(

√
n) provided (d − 1)k(G) > n − 1 in the following way. Since (d − 1)k(G) > n − 1, every hyperedge

is large enough so that the family D′ constructed in all the cases of proof of Lemma 12 satisfies the conditions of the family
requirements of Corollary 11. Therefore, the set of bicolorings given by B = B(n, d) (or B(n − 1, d − 1)) can be completely
avoided. Thus, we have the following theorem.

Theorem 16. For any hypergraph G, let k(G) = mine∈E(G)|e|. If (d − 1)k(G) > n − 1, then βd(G) ≤ ⌈
n−1
d−1 ⌉(d + 1).

Remark 2. The proof of Theorem 3 is algorithmic: it yields an induced bisecting family of cardinality at most
(
⌈
2(n−1)
d−1 ⌉

2

)
+

⌈
n−1
d−1 ⌉(d+ 1) cardinality with a running time of O( n

2

d2
+ n). Observe that the running time of our algorithm is asymptotically

equivalent to the cardinality of the family of bicolorings it outputs. Therefore, the asymptotic running time of our algorithm
is optimal whenever it outputs an asymptotically optimal solution. Recall that Theorem 3 asserts tight bounds for βd(n)
except for the case where d is even and d ∈ Ω(n0.5+ϵ), for any 0 < ϵ ≤ 0.5.

We note that if d = O(1), then Theorem 3 asserts that βd(n) = θ (n2). However, the corresponding coefficients are not the
same: the lower bound has the coefficient 2

d2
whereas the upper bound has the coefficient 2

(d−1)2
. It would be interesting to

determine the exact coefficient in this case. Moreover, when d is even and d ∈ Ω(n0.5+ϵ), for any 0 ≤ ϵ ≤ 0.5, we have an
upper bound of O(n) on βd(n); the lower bound for this case is o(n). We believe that βd(n) is more close to the upper bound
and tightening of the bound for βd(n) in this case remains open.
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Appendix. Proof of Theorem 7 when d is odd

Statement. d ≤ βd(d + 1) ≤ d + 1, d is an odd integer.

Proof. As in the proof of Theorem 7, the slots P1 to P d+1
2 −1 are colored with +1, slots P d+1

2 +1 to Pd+1 are colored with
−1, and only slot P d+1

2
remains uncolored. Note that along with the empty set and the singleton sets, the set [d + 1]

becomes trivial under this restriction. Each slot can contain exactly one vertex and each vertex takes the color of the slot
it resides in. As the initial configuration, let vi ∈ Pi, for 1 ≤ i ≤ d + 1. This configuration gives the coloring X1, where (i)
X1(+1) = {v1, . . . , v d+1

2 −1}, (ii) X1(−1) = {v d+1
2 +1, . . . , vd+1}, and, (iii) the vertex v d+1

2 +1 remains uncolored. We obtain
the second coloring X2 from X1 by one clockwise rotation of the vertices in the circular arrangement. Therefore, we have,
X2(+1) = {vd+1, v1, . . . , v d+1

2 −2}, X2(−1) = {v d+1
2

, . . . , vd}; the vertex v d+1
2 −1 remains uncolored. Similarly, repeating the

rotation d times, we obtain the set X = {X1, . . . , Xd+1} of bicolorings.
The proof for X being an induced-bisecting family for any odd hyperedge Ao ⊊ [d + 1] is exactly similar to that given in

the proof of Theorem 7. So, we consider only the even hyperedges. Let ci = |A ∩ Xi+1(+1)| − |A ∩ Xi+1(−1)|, for 0 ≤ i ≤ d.
All additions/subtractions in the subscript of c are modulo d + 1. For the sake of contradiction, assume that A is an even
hyperedge not induced-bisected by X . If we can show that some cj, 0 ≤ j ≤ d, is zero, then we get the desired contradiction.

Observation 17. |ci − ci+1| ≤ 2, for 0 ≤ i ≤ d.

The proof of Observation 17 follows from the construction. Consider the sequence (ci, ci+1, . . . , ci+d+1), where ci ≤ cj,
j ∈ {i+ 1, . . . , i+ d+ 1}, and the addition is modulo d+ 1. Since there is a full rotation of the vertex set with respect to the
slots, it follows that (i) ci ≤ 0, and (ii) there exists another index j such that cj is positive. From Observation 17, it follows
that if none of the cj, j ∈ {0, . . . , d}, is zero, there exists an index p such that cp = −1 and cp+1 = 1. Note that cp = −1
asserts that A ∩ P d+1

2
is non-empty. However, under this configuration, cp+1 can never become 1. This yields the desired

contradiction. □
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