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Abstract. In this paper, we revisit a celebrated result by Dodis et al. from CRYPTO
2004, in relation with the suitability of CBC-MAC and cascade construction for
randomness extraction. We first observe that the proof of three key sub-results are
missing in the paper, which makes it difficult to verify the authors’ claims. Then, using
a detailed and thorough analysis of the collision probability for both the CBC function
and the cascade construction, we provide the missing proofs, thereby establishing the
veracity of this old result. As a side-effect, we have made a significant advancement
in the characterization of graph-based analysis of CBC and cascade construction,
which could be of independent interest.
Keywords: CBC-MAC · cascade construction · tight bound · missing proofs

1 Introduction
At CRYPTO 2004, Dodis et al. proposed that the CBC and cascade functions are
good candidates for randomness extractors [DGH+04], provided the input distribution
has sufficient randomness. In the following, we briefly describe the CBC and cascade
constructions.

The CBC Function was first introduced by Ehrsam et al. [EMST76] in a block cipher
mode of operation for encryption. CBC-MAC — one of the most popular message
authentication code (MAC) mode and a former international standard [2711] — is directly
based on this function. Let n be a positive integer, and π be a permutation of {0, 1}n.
The CBC function CBCπ : ({0, 1}n)∗ → {0, 1}n associated with π, is defined recursively
over a sequence of n-bit blocks M = (M [1] · · ·M [l]) in the following manner:

CBCπ(M) :=
{

0n M = ⊥,

π(M [l]⊕CBCπ(M [1] · · ·M [l − 1])) otherwise,

where ⊥ denotes the empty string. Several other modes like EMAC [BKR94, BdBB+95],
ECBC, FCBC, and XCBC [BR00], TMAC [KI03], OMAC [IK03] etc. are also directly
based on the CBC function and, together with CBC-MAC and several other modes
[Nan09, Yas10], form the CBC-MAC family.

The Cascade Construction was first introduced in the celebrated GGM construc-
tion [GGM84] by Goldreich, Goldwasser and Micali. The Cascade function Cascf :
({0, 1}n)∗ → {0, 1}n, associated with a compression function f : {0, 1}n×{0, 1}n → {0, 1}n,
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is defined recursively over a sequence of n-bit blocks M = (M [1] · · ·M [l]) in the following
manner:

Cascf (M) :=
{

0n M = ⊥,

f(Cascf (M [1] · · ·M [l − 1])∥M [l]) otherwise.

Like CBC, the cascade construction has also been used in several modes, since its first
use in GGM. Perhaps the most notable examples are HMAC and NMAC by Bellare
et al. [BCK96]. Apart from this the envelope MAC by Tsudik [Tsu92], and AMAC by
Bellare et al. [BBT16] are also popular examples of the cascade construction. Indeed,
almost any iterated construction, including the CBC function, can be viewed as a cascade
construction.

The Collision Probability Problem. Coming back to [DGH+04], a key ingredient
in the analysis is the study of these modes as universal hash functions, i.e., the study of
collision probability problem with respect to CBC and Cascade construction. For brevity,
we discuss the problem in context of CBC function. The related problem for cascade
construction is defined analogously.

In the following discussion, we assume that Π is a secret permutation chosen uniformly
at random from the set of all permutations of {0, 1}n. Let M and M ′ be two distinct inputs.
Let CollΠ(M, M ′) denote the event CBCΠ(M) = CBCΠ(M ′). Extending the notation, we
similarly define the collision event for a tuple of q ≥ 2 distinct inputs Mq = (M1, . . . , Mq),
as

CollΠ(Mq) :=
⋃
i<j

CollΠ(Mi, Mj).

We define the collision probability as CPΠ(Mq) := PrΠ (CollΠ(Mq)).
Let CPatk

Π (q, ℓ, σ) = maxMq CPΠ(Mq), where the maximum is taken over all tuples of
q distinct inputs Mq having at most ℓ blocks each, and at most σ blocks in total, and
satisfying the constraint atk, which could be one of the following:

1. eq: each input has exactly ℓ blocks;

2. pf: no input is a prefix1 to others;

3. any: no restrictions over the choice of inputs.

The CBC collision probability is not only interesting in context of randomness extractors.
Indeed, a crucial ingredient in the security proof of any mode in the CBC-MAC family is
to derive a good upper bound on CPatk

Π (q, ℓ, σ) for some fixed choice of atk that depends on
the mode itself. In this paper, we aim to study this specific problem, that we conveniently
name as the CBC collision probability problem or CBC CPP in short, for q = 2.

1.1 Related Works
In most of the previous works, the CBC CPP has been studied within the ambit of
pseudorandom function advantage of some mode in CBC-MAC family. The first major
result on CBC CPP appeared in [BKR94], where Bellare et al. showed that the pseudo-
random function or PRF advantage of CBC-MAC is bounded by O(q2ℓ22−n), under the
assumption that all the queries consist of a fixed number of blocks. This immediately gives
CPeq

Π (q, ℓ, σ) = O(q2ℓ22−n). Maurer [Mau02], and later Bernstein [Ber05], also derived
similar bounds using different proof techniques. Petrank and Rackoff [PR00] extended
the approach in [BKR94] to obtain similar bound on CPpf

Π (q, ℓ, σ). Later, Gorbunov and
1A string X is called a prefix of Y if Y = X∥X′ for some string X′, where ∥ denotes the concatenation

operation.



2 Randomness Extraction and Key Derivation Using the CBC and Cascade Modes

Rackoff extended [GR16] Bernstein’s proof technique [Ber05] to also obtain a similar
bound.

In [DGH+04], Dodis et al. studied CBC CPP for q = 2 and atk = eq, in connection with
randomness extractors, and claimed2 that CPeq

Π (2, ℓ) = O(2−n + ℓ(d∗(ℓ))22−2n + ℓ62−3n),
where d∗(ℓ) is the maximum, over all ℓ′ ≤ ℓ, of the number of positive numbers that
divide ℓ′. Bellare et al. [BPR05] employed a novel graph based analysis, called structure
graphs, to show that CPany

Π (2, ℓ) = O(d∗(ℓ)2−n + ℓ42−2n). All subsequent works on CBC
CPP, since [BPR05], have employed this approach. Most notably, Pietrzak used structure
graphs to show that CPany

Π (q, ℓ, σ) = O(q22−n + q2ℓ82−2n) in [Pie06], which simplifies
to CPany

Π (q, ℓ, σ) = O(q22−n) while ℓ ≪ 2n/8. Later, Jha and Nandi [JN16] discovered
that one of the fundamental lemmata from [BPR05] on structure graphs is in fact wrong,
which invalidated the results in [BPR05], and its subsequent applications [Pie06, Yas10,
GPT15]. They go on to revise the bounds given in [BPR05, Pie06], specifically showing
that CPany

Π (q, ℓ, σ) = O(q22−n + qℓ22−n + q2ℓ42−2n), which simplifies to CPany
Π (q, ℓ, σ) =

O(q2−n/2) while ℓ ≪ 2n/4. This is an improved and tight (in terms of the number of
queries) bound for ℓ≪ 2n/4.

On the contrary, the cascade construction has been mostly studied in a reduction-
based proof style [GGM84, BCK96, Bel06, GPR14, Nan21], where the collision probability
problem is seldom in focus. Dodis et al. studied the cascade construction CPP [DGH+04]
for q = 2 and atk = eq, in connection with randomness extractors, and claimed exactly the
same bound as they claimed in case of CBC.

Crucially, a proof for these claims is missing till now!

The Missing Full Version of [DGH+04]: It is worth noting that, in the CRYPTO
2004 proceedings version, the authors frequently reference the availability of proofs for their
claims in the full version of their paper. However, as of our knowledge up to this point, no
publicly accessible proof has been available. We have made several attempts to contact
the authors with the aim of obtaining the full version of the CRYPTO 2004 proceedings
paper. Unfortunately, we have consistently received responses indicating that a full version
might be unavailable. On one occasion, we were directed to [BPR05] as a potential source
for the complete proof. It’s important to clarify that [BPR05] exclusively offers a bound
of d∗(ℓ)2−n specifically for the CBC CPP (see Remark 1.1 for a comparison with our
bound), with no mention of the cascade construction. Additionally, it has been identified
that even this analysis, as reported in [JN16], overlooks an important case. In summary,
despite multiple efforts to acquire the full version of the paper and, more significantly, a
proof for the aforementioned claims, it can be concluded that a rigorously documented
proof does not appear to be publicly accessible. Consequently, at this stage, the validity of
the statements presented in [DGH+04, Lemma 3, Proposition 1, and Proposition 2], as
well as subsequent results relying on them, remains uncertain.

Structure Graphs. Bellare et al. first introduced structure graphs [BPR05] to analyze
the PRF security of CBC-MAC and ECBC, and as a result to study the CBC CPP as
well. Following a long line of previous works, we also employ this useful technique in our
quest for a progress on CBC CPP. Of note, Bellare et al. acknowledged some unpublished
techniques of Dodis et al. [DGH+04] as the basis for a key structure graph related lemma.
So it is possible that the seeds for this approach were sown in [DGH+04], although it seems
unlikely as there is no explicit mention in the said paper. A fully justified description
of this tool warrants a separate section, with few more notations and space. We refer
the readers to section 3 for a detailed and formal description. Here, we give a brief and
hopefully sufficient introduction so as to convey the motivation of this paper.

Consider the CBC evaluation illustrated in Figure 1.1, over a 4-block input M . We have
xπ

M [i] := yπ
M [i− 1]⊕M [i] for all i ∈ {1, 2, 3, 4}, where xπ

M [i] and yπ
M [i] are referred as the

2A proof of this claim is missing.
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0n ⊕⊕⊕

M [1]

π ⊕⊕⊕

M [2]

π ⊕⊕⊕

M [3]

π ⊕⊕⊕

M [4]

π yπ [4]
xπ [1] yπ [1] xπ [2] yπ [2] xπ [3] yπ [3] xπ [4]

Figure 1.1: Evaluation of CBC function over a 4-block input M .

intermediate inputs and outputs, respectively. We will drop M from the notation whenever
it is clear from the context. Additionally, suppose, M [4] = M [2], and the permutation π is
defined in such a way that yπ[1] = yπ[3], i.e., xπ[1] = M [1] = xπ[3] = yπ[2]⊕M [3]. Let’s
trace this particular CBC computation graphically. We start with an arbitrary vertex,
say u0, denoting the intermediate output yπ[0] = 0n. Next, to represent a transition from
yπ[0] to yπ[1], we take another vertex u1 which corresponds to yπ[1], and draw an edge
(u0, u1) with label M1. We take vertex u2 which corresponds to yπ[2], and draw an edge
(u1, u2) with label M [2] to represent the transition from yπ[1] to yπ[2]. Now, we already
know that yπ[3] = yπ[1] due to the choice of permutation. So we simply draw an edge
(u2, u1) with label M [3] to represent the transition from yπ[2] to yπ[1]. Further, due to
M [4] = M [2] and yπ[3] = yπ[1], the existing edge (u1, u2) with label M [2] = M [4] already
represents the transition from yπ[3] to yπ[4]. The resulting graph, illustrated in Figure
1.2, is the so-called structure graph corresponding to the permutation π and input M . By
extending this idea for a tuple of q inputs, starting at vertex u0 and introducing a new
vertex for each new intermediate output, we can get a structure graph for q inputs.

M [2] = M [4]

M [3]M [1]

u0

u1 u2

Figure 1.2: Structure graph corresponding to the 4-block input M and permutation π.

It is easy to see that the structure graph preserves the collision property, or more
importantly, the accidents3 among the intermediate outputs. More importantly, for two
inputs M and M ′ having l and l′ many blocks, respectively, CBCπ(M) = CBCπ(M ′), if
and only if the vertices corresponding to yπ

M [l] and yπ
M ′ [l′] are the same in the corresponding

structure graph. Consequently, in all structure graph based analysis, the goal is to
characterize certain good graphs, which satisfy the collision property and are relatively
easy4 to count. The occurrence of all other graphs is upper bounded via some generic
lemmata. In [BPR05], the good graphs roughly correspond to the ones in which no
subgraph corresponding to any pair of messages contains more than one cycle. The
characterization of good graphs in [Pie06] is slightly more involved, and ultimately futile
as shown in [JN16]. Jha and Nandi employed a much simpler criteria [JN16] for good
graphs. In addition to the condition used in [BPR05], they additionally require that the
subgraph corresponding to each message is acyclic. This greatly reduces the counting
complexity at the expense of an additional term O(qℓ22−n) in the bound, which simplifies
to q2−n/2 for ℓ≪ 2n/4. Unfortunately, this is the limit of this approach in terms of lifting
the bound for larger values of ℓ, as the additional term O(qℓ22−n) is a necessary evil for
such simplifications.

In this paper, our goal is to use the structure graph technique to establish the veracity
of the three claims made in [DGH+04], vis-á-vis, the CBC and cascade construction
collision probability problems.

3All the collisions which are unpredictable given the messages and temporally old collisions.
4Have a low number of accidents, or surprising collisions.
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1.2 Our Contributions
Our chief technical contributions are twofold:

• First, we give a complete characterization of structure graphs (see section 4) for a
pair of messages, having at most 2 accidents and satisfying the collision event. This
encompasses a similar exercise previously performed by Jha and Nandi for at most 1
accident.

• Second, we derive tight bounds for the CBC CPP (see section 5) when q = 2
and atk ∈ {any, eq}. In a similar manner, we derive tight bounds for the cascade
construction CPP (see section 6) when q = 2 and atk = eq. As a side-effect, our
bounds for the eq case finally validate (see section 7) [DGH+04, Lemma 3] and
[DGH+04, Proposition 1 and 2] — the chief technical contributions in [DGH+04].

In a nutshell, by providing the missing proofs, we establish the complete veracity of three
key results in [DGH+04].

Remark 1.1 (Comparison with the CBC CPP Bounds in [BPR05] and [JN16]). As noted
before, the CBC CPP has also been studied before by Bellare et al. in [BPR05] and Jha
and Nandi in [JN16]. These two previous works study the problem for atk = any, and thus,
their result also imply an identical bound for atk = eq.

Figure 1.3: (log2 ℓ, log2 q)-Trade-off Graph for the bounds of CBC CPP.

We remark that our — and hence the [DGH+04] — bound is tighter than both these
bounds for atk = eq. A comparative graph5 in Figure 1.3 illustrates this observation for
n = 128 and the advantage value 1. In particular, we have

1. the [BPR05] bound,

B1(ℓ, q) := q2d∗(ℓ)
2n

+ 8q2ℓ4

22n

5Using GeoGebra Classic: https://www.geogebra.org/classic
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Note that, we use the revised bound as stated in [JN16].

2. the [JN16] bound,

B2(ℓ, q) := q2

2n
+ qℓ2

2n
+ 8q2ℓ4

22n
.

3. the bound in this paper (and [DGH+04]),

B3(ℓ, q) := q2

2n
+ 9q2ℓd∗(ℓ)2

22n
+ 5q2ℓ6

23n
.

We further use the simplifying assumptions that d∗(ℓ) ≤ 2
√

ℓ (as stated in [DGH+04]),
q, ℓ ≤ 2n/2, and qℓ2 ≤ 2n−1.5. The latter two assumptions prevent the bounds from
becoming trivially greater than 1. We rewrite the three bounds using these assumptions:

B1(ℓ, q) ≤


2q2√ℓ

2n ℓ ≤ 2min{ 2n−6
7 ,n−1.5}

16q2ℓ4

22n ℓ > 2min{ 2n−6
7 ,n−1.5}

B2(ℓ, q) ≤


3q

2n/2 ℓ ≤ 2min{n/4,n−1.5}

3qℓ2

2n ℓ > 2min{n/4,n−1.5}

B3(ℓ, q) ≤


3q2

2n ℓ ≤ 2min{n−6
2 , 2n−5

6 }

15q2ℓ6

23n ℓ > 2min{n−6
2 , 2n−5

6 }

We can thus compare6 the three bounds in three different intervals of message lengths:

• [0, 2n/4]: In this range B1 has a dominating term of q2
√

ℓ/2n, B2 has a dominating
term of q/2n/2, and B3 has a dominating term of q2/2n. This clearly shows that B3
(and B2) are smaller than B1 in this range. Furthermore, B3 is qualitatively better
than B2.

• (2n/4, 2n/3]: Here, B1 is dominated by q2ℓ4/22n, which is qualitatively better than
the dominating term, qℓ2/2n of B2. However, both these bounds are worse than B3,
which is still dominated by q2/2n.

• (2n/3, 2n/2]: In this range, B1 and B2 are still dominated by q2ℓ4/22n, and qℓ2/2n,
respectively, whereas B3 is dominated by q2ℓ6/23n, which is smaller than the domi-
nating terms in B1 and B2 while ℓ < 2n/2.

The above discussion shows that our (and [DGH+04]) bound is strictly better than
both [BPR05] and [JN16], while ℓ < 2n/2. For ℓ > 2n/2, as noted before, both the bounds
become greater than 1. So, a comparison is moot beyond this point.

2 Preliminaries
For two positive integers a ≤ b, we write [a, b] to denote the set {a, a+1, . . . , b}. We simply
write [b] and (b] when a = 1 and a = 0 respectively. The set of all bit strings (including
the empty string) is denoted {0, 1}∗. The length of any bit string X ∈ {0, 1}∗, denoted
|X|, is the number of bits in X. For X, Y ∈ {0, 1}∗, Z = X∥Y denotes the concatenation
of X and Y , where X and Y are the prefix and suffix of Z, respectively. For n ∈ N,
{0, 1}n denotes the set of all bit strings of length n, and {0, 1}≤n :=

⋃n
i=0{0, 1}i. For

X, Y ∈ {0, 1}∗, X∥Y denotes the concatenation of X and Y . For 0 ≤ k ≤ n, we define the
falling factorial (n)k := n!/(n− k)! = n(n− 1) · · · (n− k + 1). The set of all permutations
of {0, 1}n is denoted P(n). For a finite set X , X←$X denotes the uniform at random
sampling of X from X .

6We ignore the constant factors in the bounds for this comparison.



6 Randomness Extraction and Key Derivation Using the CBC and Cascade Modes

2.1 A Simple Counting Problem
Consider the following problem: Given a positive integer k, find the number of pairs (x, y)
of positive integers such that k can be expressed as a positive integer linear combination of
x and y. More precisely, we want to find an upper bound on the size of the following set

Lk := {(x, y) ∈ N2 : ∃ c, d ∈ N, cx + dy = k}.

Let d(k) denote the the number of divisors of k and d∗(k) = maxa∈[k] d(a).

Lemma 2.1. For any positive integer k, |Lk| ≤ k(d∗(k))2.

Proof. Clearly we have at most k many choices for cx and for each choice of cx we have
exactly one choice of dy. Once we fix cx and dy, the number of ways we can choose x and
y is at most d∗(k)2 ways as x and y are divisors of cx and dy respectively.

2.2 The CBC Collision Probability Problem
Throughout the paper, n denotes the block size, and any X ∈ {0, 1}n is referred as a block.
For some positive integer ℓ, and any non-empty M ∈ ({0, 1}n)≤ℓ, M [1] · · ·M [m] n←− M
denotes the block parsing of M , where |Mi| = n for all i ∈ [m].
CBC Function. The CBC function, based on a permutation π ∈ P(n), takes as
input a non-empty message M ∈ ({0, 1}n)≤ℓ and computes (see Figure 2.1) the output
CBCπ(M) := yπ

M [m] on (M [1] · · ·M [m]) n←−M inductively as described below:
yπ

M [0] = 0n and for 1 ≤ i ≤ m, we have

xπ
M [i] := yπ

M [i− 1]⊕Mi,

yπ
M [i] := π(xπ

M [i]).
(1)

yπ [0] ⊕⊕⊕

M1

π ⊕⊕⊕

M2

π ⊕⊕⊕

M3

· · · ⊕⊕⊕

Mm

π yπ [m]
xπ [1] yπ [1] xπ [2] yπ [2] xπ [3] yπ [m− 1] xπ [m]

Figure 2.1: Evaluation of CBC function over an m-block message M . Note that, to lighten the
notations we skipped M from the notations for intermediate input and output tuples.

We call xπ
M := (xπ

M [i])i∈[m] and yπ
M := (yπ

M [i])i∈(m], the intermediate input and
intermediate output tuples, respectively, associated to π and M . Note that, the intermediate
input vector xπ

M is uniquely determined by yπ
M and the message M . Going forward, we

will drop π and M from the notation whenever they are clear from the context.
The CBC Collision Probability Problem. Let M and M ′ be two distinct inputs
having m and m′ many blocks, respectively, and π ∈ P(n). Let Collπ(M, M ′) denote the
event CBCπ(M) = yπ

M [m] = yπ
M ′ [m′] = CBCπ(M ′). We call Collπ(M, M ′) the collision

event for a pair of inputs M and M ′.
By extending the notation, we similarly define the collision event for a tuple of q ≥ 2

distinct inputs Mq = (M1, . . . , Mq), as

Collπ(Mq) =
⋃

i<j∈[q]

Collπ(Mi, Mj). (2)

We define collision probability as CP(Mq) = Pr (CollΠ(Mq)), where the probability is
computed over the randomness of Π←$P(n). Let

CPatk
q,ℓ,σ = max

Mq
CP(Mq)
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where the maximum is taken over all q-tuples of distinct inputs Mq having at most ℓ
blocks each, and the total length over all q inputs is at most σ. Further, the message tuple
satisfies the input constraint atk, which could be one of the following:

1. eq: each input has exactly ℓ blocks;

2. pf: no input is a prefix to others;

3. any: no restrictions over the choice of inputs.

Note that, CPatk
q,ℓ,σ ≤

(
q
2
)
CPatk

2,ℓ as the collision for q inputs is the union of collision events
for each of the

(
q
2
)

pairs of inputs. Bellare et al. [BPR05] proved that

CPany
2,ℓ ≤

2d∗(ℓ)
2n

+ 64ℓ4

22n
. (3)

where d∗(ℓ) = maxℓ′≤ℓ d(ℓ′) and d(ℓ′) is the the number of divisors of ℓ′. In [Wig07],
Wigert showed that d∗(ℓ) = ℓ1/Θ(ln ln ℓ) = ℓo(1). For equal length inputs, Dodis et al. claim
(see [DGH+04, Lemma 3]) that

CPeq
2,ℓ −

1
2n

= O(ℓ× (d∗(ℓ))2

22n
) +O( ℓ6

23n
).

Remark 2.1 (suffix-free message pairs). When we bound CPeq
2,ℓ and CPany

2,ℓ , without loss of
generality, we can assume that the two messages M, M ′ do not have any common suffix.
Since otherwise, we can remove the common suffix and let M1, M ′

1 be the messages after
removing the common suffixes. It is easy to see that whenever collision holds for (M, M ′),
the collision must happen for (M1, M ′

1) also.

3 Structure Graph
Fix a tuple of q distinct inputs M̃ = (M1, . . . , Mq), where Mi ∈ ({0, 1}n)mi . Let σi =∑

j∈[i] mj , and σq ≤ σ. Let Q := {(i, a) | i ∈ [q], a ∈ (mi]}, and ≤ be a natural linear
ordering (known as the dictionary order) over Q, defined as follows:

(i, a) ≤ (i′, a′) if and only if (i < i′) or (i = i′ and a ≤ a′).

In context of the linear ordering (Q,≤) = (α1 ≤ · · · ≤ ασq
), we can naturally define

αi + j as αi+j for any i ∈ [σq] and j ∈ [σq − i]. One can define subtraction analogously.
Sometimes, we also use the subset Q+ := Q \ {(i, 0) : i ∈ [q]}.

For the input tuple M̃ and a permutation π ∈ P(n), let yπ
i denote the output tuple

corresponding to the input Mi, i.e., yπ
i [0] = 0n, yπ

i [a] = π(yπ
i [a− 1] ⊕ Mi[a]), for all

(i, a) ∈ Q. Let v(i, a) := min{(j, b) ≤ (i, a) : yπ
i [a] = yπ

j [b]}.

Structure Graphs: Given the input tuple M̃ and permutation π, the structure
graph Gπ(M̃) := (V, E), is an edge-labeled directed graph, where the set of vertices
V = {v(α) : α ∈ Q}, the set of edges E = {eα := (v(α− 1), v(α)) : α ∈ Q+}, and edge eα

is labeled mα for all α ∈ Q+. Note that, it is possible that eα = eβ for some α, β ∈ Q+,
i.e., they represent the same edge with obviously the same label. When we consider a
single input Mr, the resulting subgraph is simply a walk, that we call an Mr-walk and
denote as Wr, starting at node (1, 0) and following the labels from (Mr[1], . . . , Mr[mr]).
So, a structure graph can also be viewed as a union of Mi-walks for all i ∈ [q].

Example 3.1. Let m1 = (1, 0, 2, 0, 7, 1) and m2 = (4, 1) be two inputs and π(1) =
2; π(2) = 3; π(4) = 5 for some π ∈ P. As mentioned before, we can remove the common
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(1, 0) (1, 1)

(1, 2)(1, 5)

1

02

7

4

Figure 3.1: Structure graph corresponding to the inputs M1 = (1, 0, 2, 0, 7, 1) and M2 = (4, 1),
and permutation π, with π(1) = 2, π(2) = 3 and π(4) = 5. The solid lines correspond to edges in
W1, and dashed lines correspond to edges in W2.

suffix. So, we have y1 = (0, 2, 3, 2, 3, 5) and y2 = (0, 5). The corresponding structure graph
Gπ(M1, M2), illustrated in Figure 3.1, has vertex set V = {(1, 0), (1, 1), (1, 2), (1, 5)} and
edges set

E = {((1, 0), (1, 1)), ((1, 1), (1, 2)), ((1, 2), (1, 1)), ((1, 2), (1, 5)), ((1, 0), (1, 5))}.

Collisions and Accidents: Suppose that Gπ(M̃) is revealed edge by edge in an orderly
fashion following (Q+,≤). We say that an edge eα leads to a collision if v(α) is already
present in the partially revealed graph. A collision formed by edges eα and eβ is generally
denoted as (v(α− 1), v(β − 1); γ), where γ = v(α) = v(β). The only exception occurs
when γ = (1, 0) and there is no prior edge to (1, 0), in which case the collision is denoted
as (v(α− 1); γ), since prior to eα there’s no edge pointing to (1, 0). This exceptional case
is referred as a zero collision, and all other collisions are referred as true collisions. We
refer to v(α− 1) (and v(β − 1), if applicable) as collision source.

Note that it is not possible to recover the intermediate output tuple, by just looking at
a given structure graph. Indeed, multiple intermediate output tuples may give the same
structure graphs. However, a structure graph does preserve the collision relation between
intermediate outputs. More precisely, let Yv(α) denote the variable for the intermediate
output corresponding to the vertex v(α). Obviously, we must have Y1[0] = 0n, otherwise the
resulting intermediate output tuple is invalid. Now, any true collision (v(α− 1), v(β − 1); γ)
implies a linear equation

Yv(α−1) ⊕ Yv(β−1) = mα ⊕mβ ,

since both Yv(α−1) ⊕mα and Yv(β−1) ⊕mβ must equal π−1(Yγ). Any new true collision
can either give a linear equation that is linearly dependent on the linear equations due to
previously discovered true collisions, or it may give an independent linear equation. True
collisions of the latter type are referred as accidents. At a high level, accidents denote
the “surprising” collisions in CBC function computation. Obviously, the number of true
collisions is at least the number of accidents. The following definition due to Jha and
Nandi [JN16] gives a formula for the number of accidents.

Definition 3.1 ([JN16]). Consider the structure graph Gπ(M̃) associated with the input
tuple M̃ and permutation π. Let S(Gπ(M̃)) be the system of linear equations formed by
the true collisions of Gπ(M̃), and let r denote the rank of S(Gπ(M̃)). Let Acc(Gπ(M̃))
be the set of accidents of Gπ(M̃). Then, the number of accidents, denoted acc(Gπ(M̃)) is
defined as

acc(Gπ(M̃)) :=
∣∣∣Acc(Gπ(M̃))

∣∣∣ =
{

r + 1 if Gπ(M̃) has a zero collision,
r otherwise.

Example 3.2. Consider the structure graph from Figure 3.1. Here, we have two true
collisions, namely ((1, 0), (1, 2); (1, 1)) and ((1, 0), (1, 2); (1, 5)), and the associated system
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of equations is

Y1[0]⊕ Y1[2] = M1[1]⊕M1[3]
Y1[0]⊕ Y1[2] = M1[5]⊕M2[1]

Clearly, the two equations are dependent. So the graph has just one accident, and that
accident is ((1, 0), (1, 2); (1, 1)), since it occurs before ((1, 0), (1, 2); (1, 5)). We encourage
the readers to see [BPR05, JN16] for further exposition on true collisions and accidents.

Existing Results on Structure Graphs: We now recall some known and useful
combinatorial results on structure graphs. The proof of these results are already available
in [BPR05, JN16].

Lemma 3.1 ([JN16]). For any structure graph G, if there is a vertex α with in-degree d
then acc(G) ≥ d− 1. Moreover, if the graph has a zero collision then acc(G) ≥ d.

Lemma 3.2 ([BPR05, JN16]). The number of structures graphs associated to M̃ with a
accidents is at most

(
σq

2
)a. In particular, there exists exactly one structure graph with 0

accidents.

Lemma 3.3 ([BPR05, JN16]). For any structure graph G with a accidents, we have

Pr
Π

(
GΠ(M̃) = G

)
≤ 1

(2n − σq)a
.

Corollary 3.1 ([BPR05, JN16]). For a ∈ N and σq < 2n−1, we have

Pr
Π

(
acc(GΠ(M̃)) ≥ a

)
≤

σ2a
q

2an
,

4 Characterization of Structure Graphs
We will characterize all structure graphs of rank 1 and 2 for a message pair (M0, M1).
By counting non-isomorphic structure graphs up to rank 2, we will establish the collision
probability bound of CBC MAC and Cascade. For ease of notation, we will revisit the
concepts of true collisions and structure graphs before engaging in the characterization.

True Collisions and System of equations: A subset C is called strongly connected
component of a directed graph G if for every u, v ∈ VC there is a directed path from u to v.
The number of edges with v ∈ VG as the terminated vertex is called the in-degree of v in G
and denoted as in-degG(v). The number of edges with v ∈ VG as the initial vertex is called
the out-degree of v in G and denoted as out-degG(v). We will write in-deg(v) and out-deg(v)
if the graph is understood from the context. A vertex γ ∈ V is called a true collision vertex
if the in-degree of γ is at least 2. We call v(α− 1) and v(β − 1) pre-collision vertices. A
true collision (v(α− 1), v(β − 1); γ) yields a linear equation

Yv(α−1) ⊕ Yv(β−1) = mα ⊕mβ ,

We yield a system of linear equations Eγ for every true collision with the true collision
vertex being γ. Note that EG = ∪vEv, the union is taken over every true collision vertex v
of G. We denote a directed edge (u, v) by u→ v and an m-labeled directed edge (u, v) by
(u→ v, m).

Structure Graphs: We have seen a detailed discussion on structure graphs in section 3,
here we use a simpler definition for characterization purposes. A structure graph is an
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edge labeled graph G = (V, E ,L), where V, E , and L are set of vertices, set of edges,
and set of labels respectively which are subsets of {0, 1}n with the following property: If
(v(α− 1)→ v(α), mα) and (v(β − 1)→ v(β), mβ) are labeled edges then

Yv(α−1) ⊕mα = Yv(β−1) ⊕mβ ⇔ Yv(α) = Yv(β)

Note that if (v(α− 1) → v(α), mα) and (v(α− 1) → v(β), mβ) are two edges with
labels mα and mβ respectively, where v(α) ̸= v(β) then we must have mα ̸= mβ .

4.1 Core Component
Definition 4.1. Maximal strongly connected component of a structure graph G is called
a core component of the structure graph.

We will characterize rank 1 and 2 structure graphs for a message pair M̃ = (M0, M1). We
will identify possible core components, as core components are building blocks of structure
graphs. We often use messages and walks to refer to each other. For example, instead of
W0 and W1 we say, M0 and M1 and vice versa.

We denote a directed edge (u, v) by u→ v and an m-labeled directed edge (u, v) by
(u→ v, m). If H = (V, E) be a graph then by H ∪ {u→ v} we mean that we are adding
the edge in H i.e. H1 = (VH , EH ∪ {u → v}) and by H\{u → v} we mean that we are
deleting the edge from H i.e. H2 = (VH , EH\{u→ v}). We denote a collision by (u, v; w),
where u and v are precollision vertices and w is the collision vertex, that means u→ w
and v → w are two edges. Let H be a subgraph of G. Rank of H, denoted as rank(H) is
the rank of all equations induced by true collisions present in H. The following results
will be used to characterize core components and structure graphs.

Lemma 4.1. Let H and H ′ be two vertex disjoint graphs, where H ′ is strongly connected
and u ∈ VH and u′ ∈ V ′H . Then rank(H ∪ H ′ ∪ {u→ u′}) = rank(H) + rank(H ′) + 1.

Proof. As H and H ′ are disjoint we clearly have rank(H ∪H ′) = rank(H) + rank(H ′).
Now we add one edge e = (u, u′) with u ∈ H and u′ ∈ H ′. As H ′ is strongly connected,
the in-degree of u′ is at least one and let v → u′ be an edge in H ′. Thus, the edge u→ u′

leads to a new true collision with an equation of the form Yv(u) ⊕ Yv(v) = c for some
constant c. Clearly, this newly added equation is independent of all equations presented in
H and H ′. This completes the proof.

The following results are immediate corollary of lemma 4.1.

Corollary 4.1. Let H be a connected graph, with u /∈ VH and v ∈ VH then rank(H∪{u→
v}) = rank(H) + 1.

Corollary 4.2. Only the core components of rank 0 and 1 are in rank 1 and rank 2
structure graphs. Moreover, if the set of all core components of rank 2 structure graph is
{C1, . . . , Cs} then we have the following possibilities:

1. rank(C1) = 1 and s = 1.

2. rank(C1) = 0 and s = 1.

3. rank(C1) = rank(C2) = 0 and s = 2.
The following result says how a subgraph H can be extended (i.e., an edge is added)

without increasing rank. Before going into the lemma, we describe an important concept
called alternating cycle in a directed graph. Let G = (V, E) be a graph, an alternating
cycle of length at least 4 is a cycle with directions of edges of the cycle alternating. More
formally, if Calt is an alternating cycle with VCalt = {v1, v2, . . . , v2k} then for all i ∈ [k] we
have v2i−1 → v2i ∈ ECalt and for all i ∈ [k − 1] we obtain v2i+1 → v2i ∈ ECalt and finally
v1 → v2k ∈ ECalt .
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Example 4.1. Let us describe the simplest example with 4 vertices. Let the
vertices be v1, v2, v3, v4. By the above description we obtain the following edges
(v1, v2), (v3, v4), (v3, v2), (v1, v4).

Lemma 4.2. Let H be a graph, v is a vertex of H, in-degH(v) ≥ 1 and u→ v /∈ EH such
that rank(H ∪ {u → v}) = rank(H) then u ∈ VH and u → v ∈ ECalt , where Calt is an
alternating cycle and Calt\{u→ v} ⊆ H.

Proof. There are two conclusions of the lemma, assume the contrary, if u /∈ VH then
by Corollary 4.1 the hypothesis is not true i.e. rank(H ∪ u→ v) ̸= rank(H). A
contradiction. If u→ v /∈ ECalt then the hypothesis is false as the rank will get increased
by 1. A contradiction. This completes the proof.

The proof is straightforward as the only way not to increase the rank if the added edge
forms an alternating cycle. Note that the given condition of the lemma ensures that there
would be a newly added true collision due to adding the edge u→ v.

Thus, checking for rank 0 and rank 1 core components using the aforementioned
lemma is sufficient. We proceed towards the characterization of rank 0 and rank 1 core
components.

4.2 Characterization of Core Components

Figure 4.1: Core Components (left to right): C0, C1-8, C1-d8, C1-88.

4.2.1 Rank 0 Core Component

Lemma 4.3. Core components of rank 0 are directed cycles (see Figure 4.1).

Proof. Let C = (VC , EC) be a rank 0 core component with n vertices. Since it is a strongly
connected component of rank 0, in-degree of every vertex is 1. Also, out degree of every
vertex is exactly 1. Since core component is a strongly connected component, out-deg(v) ≥ 1
for every v ∈ VC. Thus we have out-deg(v) = 1 for every v ∈ VC. Hence, rank 0 core
component is a directed cycle.

4.2.2 Rank 1 Core Component

The following lemma characterizes all possible rank 1 core components. There are three
types of rank 1 core components, namely the 8 shaped C1-8 , the digital 8 shaped C1-d8
and the double 8 shaped C1-88.

Lemma 4.4. Core components of rank 1 are C1-8, C1-d8 and C1-88 (see Figure 4.1).

Proof. There can not be three vertices of in-degree 2 in a rank 1 core component because
that will lead to rank at least 2. So, there are at most two vertices of in-degree 2. The
following two cases will arise:

Case 1: Let v1 and v2 are 2 vertices of in-degree 2 in a rank 1 component C. Now
there are two collisions (u1, u2; v1) and (u′1, u′2; v2). Let us call P1 = {u1, u2} and
P2 = {u′1, u′2}. We will show that P1 = P2.
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• If P1 ∩ P2 = ϕ then there are 4 different variables to capture two collisions
and thus we have two independent variables, hence rank will be 2, which is
impossible.

• |P1 ∩ P2| = 1 then there will be 2 independent variables, which yields rank 2,
which is impossible. Hence P1 = P2.

Thus by Lemma 4.2 we argue that there is an alternating cycle Calt, of rank 1 in C .
Thus we obtain C1-88.

Case 2: Suppose there is exactly one vertex v ∈ VC of in-degree 2 in C, then there are two
vertices u1 and u2 such that (u1, u2; v) is a collision, and there are no collisions in C.
Now, there is a vertex v′ ∈ VC such that out-deg(v′) = 2, since sum of in-degrees and
out-degrees are equal in a graph.

• If v = v′, then figure C1-8 is only possibility.
• If v ̸= v′, then figure C1-d8 is only possibility.

4.3 Characterization of Structure Graphs
Let us denote the corresponding walks for massages M0 and M1 as W0 and W1 respectively.
We sometimes abuse the notation and denote walks as M0 and M1 and vice versa.
Assumptions regarding messages: The following are two assumptions we will follow
throughout the discussion unless mentioned otherwise.

1. (Suffix disjoint) M0 and M1 are suffix free, which means W0 and W1 walks do not
share common suffix as edge labels

2. (End vertex same) W0 and W1 share the same end vertex, which means both walks
eventually collide at the same vertex.

Figure 4.2: Accident 1 graphs (row major order): P-R1, C0-R1.1, C0-R1.2.

Paths and Structure graphs consisting of paths: Let G = (V, E) be a graph, a
walk of length s is defined as a sequence W = (u0, u1, . . . , us) such that ui−1 → ui for all
i ∈ [s]. When all vertices of a walk sequence are distinct, we call it a path. An Mi-walk
starting from some initial vertex u0 with no vertex having in-degree 2 must be a path. If a
structure graph G is a union of Mi-walks, then it is called a structure graph comprising of
paths. In the following lemmas 4.5 and 4.6, we will characterize rank 1 and 2 structure
graphs, respectively, using only paths.

Lemma 4.5. Structure graphs of rank 1 using only paths are of the form P-R1 (see
Figure 4.2).

Proof. By the End vertex same assumption there is exactly one collision (u1, u2; v), where
v is the last vertex of both walks W0 and W1. Any other collision in W0 and W1 will
lead to a rank 2 graph by corollary 4.1, which is impossible. Thus, the only possibility is
P-R1.

Lemma 4.6. Structure graphs of rank 2 using only paths are of the form P-R2 (see
Figure 4.3).
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Figure 4.3: Accident 2 graphs: P-R2.

Proof. By the end vertex same assumption there is a collision (u1, u2; v), where v is the
last vertex of both walks W0 and W1. Since rank of the structure graph is 2, we obtain
that there will be a collision (u′1, u′2; v′) such that u1 ̸= u′1 and u2 ̸= u′2, and there is no
other collision by corollary 4.1 hence we obtain P-R2.

We will use core components to produce structure graphs of rank 1 and rank 2. We
will show these are the only possibilities for structure graphs of rank 1 and 2.

4.3.1 Structure graphs of rank 1 using one rank 0 core component

Lemma 4.7. Structure graphs of rank 1 using rank 0 component are of the forms C0-R1.1
and C0-R1.2 (see Figure 4.2).7

Proof. Let C = (V, E) be a core component of rank 0. Without loss of generality, let us
assume that M0 walk W0 enters C, now there is a collision (u1, u2; v). By Corollary 4.1
rank of the structure will be 1. Assume message walk W0 of M0 contains rank 0 core
component C.

Case 1: End vertex is in C. By the Suffix Disjoint assumption of messages M0 and M1,
we have that the end vertex is not an arbitrary vertex in C. We can not afford to
have another collision by W1. Thus, end vertex of W1 is v. Hence we yield C0-R1.2.

Case 2: End vertex is outside of C. Now, M1 walk W1 ends at end vertex v by End
Vertex Same assumption, and we need the rank of the graph to be 1. Let u ∈ C be
a vertex such that u → v is an edge and u′ ∈ W1 be a vertex such that u′ → v is
an edge. Let (uC , uW0 ; vC) be the collision in C. Consider the graph C′ = (V ′, E′)
where V ′ = V ∪ {uW0 , v} and E′ = E ∪ {u→ v, uW0 → vC}. Clearly rank(C′) = 1,
also we have rank(C′ ∪ {u′ → v}) = rank(C′), thus by Lemma 4.2 u′ ∈ V ′ and
u′ → v ∈ ECalt , where Calt is an alternating cycle and Calt\{u′ → v} is a subgraph
of C′. Hence we yield C0-R1.1.

4.3.2 Structure graphs of rank 2 using one rank 0 core component

Lemma 4.8. Structure graphs of rank 2 using one rank 0 component are of the forms
C0-R2.1, C0-R2.2, C0-R2.3, C0-R2.4, C0-R2.5, C0-R2.6 (see Figure 4.4).

Proof. Let us denote the rank 0 core component as C. We will analyze the following cases
depending upon the end vertex of the walk W0 and W1. Let us call the end vertex v. Now,
we consider different sub-cases.

Case 1: Suppose v ∈ VC .

sub-case 1: Since W0 enters C there is a collision (uC , uW0 ; u). End vertex v is some
arbitrary vertex other than u. By the suffix disjoint assumption, W1 can not
enter in C to reach the end vertex v. Thus W1 and C are vertex disjoint, and

7In the graphs C0-R1.1 and C0-R1.2 it may happen that the directed loops will become self-loops
depending on the message blocks, it is implicitly understood that such cases are there even it is not drawn
separately.
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Figure 4.4: Accident 2 graphs (row major order): C0-R2.1, C0-R2.2, C0-R2.3, C0-R2.4, C0-R2.5,
C0-R2.6.

W1 reaches end vertex v in a way that and there is a collision (uW1 , u′C ; v), this
yields C0-R2.1.

sub-case 2: Since W0 enters C there is a collision (uC , uW0 ; u). Suppose end vertex
is u. By the suffix disjoint assumption, W1 can not enter C to reach the end
vertex u. Thus there will be a collision (vW0 , vW1 ; v) where v /∈ VC, thus we
obtain C0-R2.2.

Case 2: Suppose v /∈ VC .

sub-case 1: If W0 leaves C from an arbitrary vertex and v be the last vertex of the
walk. W1 is either vertex disjoint with C or not. Thus, we have the following
conclusions.

• If W1 is vertex disjoint with C, then it forces W1 to collide at v, as there are
two collisions (uC , uW0 , u) and (vW1 , vW0 ; v) where uC ∈ C, uW0 , vW0 ∈W0,
and vW1 ∈W1 and by Corollary 4.1 rank will be 2. This yields C0-R2.4.

• If W1 is not vertex disjoint with C, then W1 will leave the component at
an arbitrary vertex other than pre-collision vertex and meets W0 at end
vertex v, thus rank will be 2 by Corollary 4.1. This yields figure C0-R2.6.

sub-case 2: If W0 leaves C from a pre-collision vertex and W1 meets W0 such that
(uW1 , uC ; v) is a collision then by Lemma 4.2 we have (uW1 , uC ; v) is a collision
in an alternating cycle. Hence, we arrive at the following conclusions.

• If v is the end vertex, then there is a collision (uW0 , uW1 ; u) where uW0 ∈W0
and uW1 ∈W1 , which yields C0-R2.3.

• If v is not end vertex then there is a collision (uW0 , uW1 ; u) where uW0 ∈W0
and uW1 ∈W1 , which yields C0-R2.5.

4.3.3 Structure graphs of rank 2 using two rank 0 core components

Lemma 4.9. Structure graphs of rank 2 using two rank 0 components are of the forms
C00-R2.1, C00-R2.2 and C00-R2.3 (see Figure 4.5).
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Figure 4.5: Accident 2 graphs (row major order): C00-R2.1, C00-R2.2, C00-R2.3.

Proof. Let us study the following two cases.

Case 1: Let us assume two rank 0 components are C1 and C2. Suppose there is a directed
path P = (uC1 → u1 → . . . → un → uC2) between C1 and C2. Now, the resulting
graph is of rank 1 by Corollary 4.1. Without loss of generality, assume M0 enters
component C1, again by Corollary 4.1 we have the rank of the structure graph to be
2. Now, we consider different sub-cases.

sub-case 1: If end vertex v of walk W0 and W1 is in C2, then by Suffix disjoint
assumption it will be only vertex with in-degree 2 in C2. This yields C00-R2.1.

sub-case 2: If end vertex v of both walk is outside C2, then there is a collision
(uW0 , uW1 ; v), since rank remains 2, we have uW0 ∈ C2 and (uW0 , uW1 ; vC2) is a
collision by Lemma 4.2 and that uW0 , uW1 , v and vC forms an alternating cycle
Calt. This yields C00-R2.2.

Case 2: Suppose two rank 0 components C1 and C2 are not connected. Hence, there is no
directed path between the two components. Then both message walks W0 and W1
can not enter a single component. Without loss of generality, assume W0 enters C1
and W1 enters C2 starting from the same initial vertex. Since C1 and C2 are vertex
disjoint, W0 and W1 must collide at a vertex v such that v /∈ VC1 and v /∈ VC2 and
there will be a collision (u1, u2; v) where u1 ∈ W0 and u2 ∈ W1. Since there are
three true collisions (uW0 , uC1 ; vC1), (uW1 , uC2 ; vC2) and (u1, u2; v) and rank of the
structure graph is 2, by Lemma 4.2 we have that uW0 , uC1 , uW1 , uC2 , u1 and u2 form
an alternating cycle C6 which yields C00-R2.3.

Figure 4.6: Accident 2 graphs (row major order): C1-8-R2.1, C1-8-R2.2, C1-8-R2.3.

Figure 4.7: Accident 2 graphs (row major order): C1-88-R2.1, C1-88-R2.2, C1-88-R2.3.

4.3.4 Structure graphs of rank 2 using one rank 1 core component

Lemma 4.10. Structure graphs of rank 2 using rank 1 components are of the
forms C1-8-R2.1, C1-8-R2.2, C1-8-R2.3, C1-88-R2.1, C1-88-R2.2, C1-88-R2.3, C1-d8-R2.1,
C1-d8-R2.2, , C1-d8-R2.3. (see Figure 4.6-4.8)
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Figure 4.8: Accident 2 graphs (row major order): C1-d8-R2.1, C1-d8-R2.2, C1-d8-R2.3.

Proof. We will give a general proof for all three possible types of rank 1 core components,
namely the 8 shaped C1-8 , the digital 8 shaped C1-d8, the double 8 shaped C1-88.

Let C be an arbitrary rank 1 component of any shape. Without loss of generality, let
W0 be the corresponding walk for M0 enters C, then by Corollary 4.1 rank of the resulting
graph is 2.

Case 1: W1 enters at the same vertex of C where W0 will enter, following the same path.
Let us consider the following sub-cases.

sub-case 1: Suppose end vertex v lies in C, i.e. v ∈ VC . By suffix disjoint assumption,
we obtain in-deg(v) = 2. There is a vertex with in-degree 2 in C (one in C1-8,
C1-d8 and two in C1-88). That vertex, being the end vertex, yields three types
of graphs C1-8-R2.1, C1-d8-R2.1 and C1-88-R2.1 respectively.

sub-case 2: Suppose end vertex v does not lie in C, i.e v /∈ VC . Then clearly, there is
a collision (u1, u2; v), where u1 ∈W0 and u2 ∈W1 by Lemma 4.2 we conclude
that u1, u2 ∈ VC , u1 → v and u2 → v are edges on an alternating cycle Calt such
that Calt − {u1 → v, u2 → v} is a subgraph of G. Hence we obtain three types
of graphs C1-8-R2.3, C1-d8-R2.2 and C1-88-R2.2.

Case 2: W1 enters at different vertex of C where W0 will enter. Then clearly there are
two collisions (uW0 , uC ; vC) and (uW1 , u′C ; v′C) and there is an existing collision in the
component itself. By lemma 4.2, it is evident that the edges uW0 → vC , uW1 → v′C ,
v → uC and v → u′C will form an alternating cycle of length 4, where v is the end
vertex of both message walks as well as the existing collision vertex in C. Hence we
obtain three types of graphs C1-8-R2.2, C1-d8-R2.3 and C1-88-R2.3.

5 CBC Collision Probability for Two Messages
We define type-1, type-2, type-2′ and type-3 structure graphs. In type-1 we have two
categories of graphs: type-1-neq and type-1-any. The naming conventions are as follows:
any denotes message length can be equal or unequal, and neq means the message lengths
are unequal. In our notations type-1-any is P-R1 and type-1-neq are two graphs C0-R1.1
and C0-R1.2 (see figure 4.2 ). For type-2 we have two structure graphs of rank 2, which are
C0-R2.4 and P-R2 (see figure 4.4), and in type-2′ we have several rank 2 structure graphs,
namely C1-8-R2.2 and C00-R2.1 (see figure 4.5-4.8). Every structure graph other than
type-1, type-2, type-2′ is called type-3 structure graph.

Let N = 2n, and two messages be M0 = (m1, m2, . . . , m|p|, m|p|+1 . . . , mℓ0) and M1 =
(m1, m2, . . . , m|p|, mℓ0+1, . . . , mℓ0+ℓ1−|p|). Here p = (m1, m2, . . . , m|p|) is the common
prefix of both messages M1 and M2 of length |p|, where 0 ≤ |p| ≤ ℓ1 ≤ ℓ0 := ℓ. Also,
we assume mℓ0 ̸= mℓ0+ℓ1−|p|. In the following subsections, we consider the above two
messages. We define

D = {(i, j) | |p| ≤ i < ℓ0, |p| ≤ j ≤ ℓ0 + ℓ1 − |p|, mi ̸= mj}.
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5.1 Bound on number of non-isomorphic structure graphs of type-1-neq
In type-1-neq we have two structure graphs C0-R1.1 and C0-R1.2. We observe the following:

• Case 1 for C0-R1.1: Let the messages be M0 = p ∥ m|p|+1 ∥ (M ′
0 ∥ y)t ∥M ′

0 ∥ mℓ0

and M1 = p ∥ mℓ1 , , where y is a block of M0, which is a label on the side of the
alternating cycle other than m|p|+1, mℓ1 and mℓ0 . Let us denote |M ′

0 ∥ y| = k. Note
that, if p, m|p|+1, M ′

0 and mℓ0 are fixed then (M ′
0 ∥ y)t is determined. Clearly we

have ℓ0 = |p| + 3 + |M ′
0| + t|M ′

0 ∥ y|. Thus, the upper bound for non-isomorphic
structure graph of this type is d∗(ℓ).

• Case 2 for C0-R1.2: Let messages be M0 = (m0, . . . , mℓ1 , . . . mℓ0) and M1 =
(m0, . . . , mℓ1). Let, p be common prefix, so |p| = ℓ1. So, M0 = p ∥M ′

0 and M1 = p,
then M0 enters the core component of length (ℓ0 − ℓ1) and traverses several times
and then stops at the end vertex. So, M ′

0 = Xt for some t ∈ N. Clearly if M ′
0 is

fixed, we have t|X| = ℓ0− ℓ1. Thus, by determining |X|, we can give an upper bound
for the number of non-isomorphic structure graphs of this type, and clearly, there
can be at most d∗(ℓ) many such choices.

We summarize the above discussion as follows:

Lemma 5.1. The number of non-isomorphic structure graphs of type C0-R1.1 and C0-R1.2
are at most d∗(ℓ).

5.2 Bound on number of non-isomorphic structure graphs of type-2
We have two type-2 graphs, namely P-R2 and C0-R2.4. Note that, up to the common
prefix, the message walks M0 and M1 are determined. Also, the last block of M0 and M1
must be different due to the Suffix Disjoint assumption, and there is a collision at the end
vertex, so there is a fixed collision at the last vertex. Also, there is a collision in the type-2
graph other than the end vertex collision. Note that any type-2 graph is determined by
the other collision than the end vertex collision, and that collision is determined by the
pre-collision vertices. For P-R2, messages will be of the form M0 = p ∥ X ∥ q ∥ Y and
M0 = p ∥ X ′ ∥ q ∥ Y ′ where p is a common prefix and, q is the common part after the
first collision. As pre-collision vertices of the first collision determine any such graph, the
number of non-isomorphic structure graphs of type-2 is at most |D|. Hence, we obtain the
following lemma.

Lemma 5.2. The number of non-isomorphic structure graphs of type-2 is at most |D| (as
defined above).

5.3 Bound on number of non-isomorphic type-2 structure graphs
Consider C1-8-R2.2 (see figure 4.6) and C00-R2.1 (see figure 4.5) be two rank 2 structure
graphs, we will bound the number of maximum possible such structure graphs realizable
by two messages M0 and M1.

Case 1 for C1-8-R2.2 : Let us denote M0 and M1 as M0 = p ∥ mp+1 ∥ M ′
0 and M1 =

p ∥ ml0+1 ∥ M ′
1 respectively where M ′

0 and M ′
1 are remaining message blocks

which traverse core component C1-8 and collide at the end vertex. If we denote
b ∥ X ′ = X and c ∥ Y ′ = Y where X ′ where b and c are message blocks on
alternating cycle. Clearly we have b ∥ M ′

0 = (Xi1 ∥ Y j1 ∥ Xi2 ∥ Y j2 ∥ · · · )
and c ∥ M ′

1 = (Y k1 ∥ X l1 ∥ Y k2 ∥ X l2 ∥ · · · ). If M ′
0 is fixed then we have

k = |M ′
0| = c1|X| + c2|Y | where c1 =

∑
t it and c2 =

∑
t jt, also we have c1 ≥ 2.

Note that the isomorphism of structure graphs is completely determined by |X| and
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|Y |. Thus, using Lemma 2.1, we have at most ℓd∗(ℓ)2 many non-isomorphic graphs
of this type.

Case 2 for C00-R2.1 : M0 can enter either of the components, the analysis is same for
both. If M0 enters both components in C-00. Let us denote the common prefix as p.
Let us denote the structure graph by p ∥ x ∥ z ∥ y, where p is the common prefix of
both messages, x is the first cycle, z is the common part of both messages till from
the leaving vertex of first cycle till end vertex, and finally y be the possible labels on
second cycle. We assume M1 traverses the first cycle c1 times, if number of blocks in
M1 is l then ℓ− (|p|+ |c1x|) = |z|. Fixing c1x and choosing x can be done in ℓd∗(ℓ)
ways, likewise for message M0 choosing y can be done in d∗(ℓ) ways, thus maximum
number of such graphs is ℓ(d∗(ℓ))2.

Similar argument applies to all other rank 2 structure graphs in type-2′. Thus, we have
the following result by counting the number of all possibilities in type-2′.

Lemma 5.3. The number of non-isomorphic structure graphs of type-2′ is at most
18ld∗(ℓ)2.

5.4 Collision Probability for Unequal Length Messages
We recall lemma 3.3 that for any structure graph G with v vertices for two messages
M0, M1, with a accidents, we have

Pr
Π

(
GΠ(M̃) = G

)
≤ 1

(2n − v)a
.

We use this result for all structure graphs except the structure graph of type-1-any (only
one such structure graph, denoted as G∗ is present, which represents the collision event
for the message pair (M0, M1)). Let G1,G2,G′2,G3 be the set of all such structure graphs
with collision events and of types type-1-neq, type-2, type-2’ and type-3 respectively. We
have seen that |G1| ≤ d∗(ℓ), |G2| ≤ |D|, |G′2| ≤ 18ℓd∗(ℓ)2 and |G3| ≤ 8ℓ6. We write
CPG := PrΠ

(
GΠ(M̃) ∈ G

)
By using the upper bound for realizing a structure graph and

the bound on the number of such graphs, we have the following:

CPG1 ≤
d∗(ℓ)

(2n − 2ℓ)

CPG′
2
≤ 18ℓd∗(ℓ)2

(2n − 2ℓ)2

CPG2 ≤
|D|

(2n − 2ℓ)2

CPG3 ≤
8ℓ6

(2n − 2ℓ)3

Note that |D| can be in the order ℓ2, and hence we provide a sharper bound for CPG∗

to cancel the collision probability due to the class G2. Moreover, the term CPG1 only
appears for the collision probability of two unequal messages. Now we revisit the event
that GΠ(M0, M1) = G∗. Note that graph G∗ have set of vertices and edges be V = V1 ∪ V2
and E = E1 ∪ E2 ∪ {((0, |p|), (1, ℓ0 + 1)), ((1, ℓ0 + ℓ1 − |p|+ 1), (0, ℓ0))}, where

V1 = {(0, t) | t ∈ (ℓ0]}
V2 = {(1, ℓ0 + t) | t ∈ [ℓ1 − |p|+ 1]}
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E1 = {((0, t), (0, t + 1)) | t ∈ (ℓ0 − 1]}
E2 = {((1, ℓ0 + t), (1, ℓ0 + t + 1)) | t ∈ [ℓ1 − |p|]}

Let v = ℓ0 + ℓ1 − |p| − 1 denote the number of vertices and let S denote the number of
pairwise distinct solutions of (Yv)v∈V such that

1. Y(0,0) = 0n,

2. Y(0,ℓ0−1) ⊕ Y(1,ℓ0+ℓ1−|p|−1) = m(0,ℓ0) ⊕m(1,ℓ0+ℓ1−|p|),

3. (Xv)v∈V are pairwise distinct where X(0,i) = Y(0,i−1)⊕m(0,i), for i ∈ [ℓ0] and X(1,i) =
Y(1,i−1)⊕m(1,i) where i ∈ [ℓ0 + 2, ℓ0 + ℓ1−|p|−1] and X(1,ℓ0+1) = Y(0,|p|)⊕m(1,ℓ0+1).

Lemma 5.4. S ≤ (N)v

N−1 −
|D|(N)v(N−4)

N3 + |D|2(N)v

(N−6)3 where N = 2n.

Proof. Let S0 be the set of variables such that conditions 1 and 2 hold. Let S(i,j) be the
set of variables such that conditions 1 and 2 hold and for some i, j we have X(0,i) = X(1,j),
which can be written as

Y(0,i−1) ⊕ Y(1,j−1) = m(0,i) ⊕m(1,j) (4)

for p ≤ i ≤ ℓ0 < j ≤ ℓ0 + ℓ1 − p and mi ̸= mj . It is evident that

S = |S0| − | ∪(i,j) S(i,j)|.

By the counting version of Bonferonni’s inequality we have,

S ≤ |S0| −
∑

(i,j)∈D

|S(i,j)|+
∑

(i,j) ̸=(r,s)∈D

|S(i,j) ∩ S(r,s)|.

where S(i,j) ∩ S(r,s) be the set of variables such that 1, 2 and for some i, j, r, s we have
X(0,i) = X(1,j), and X(0,r) = X(1,s) which can be written as

Y(0,i−1) ⊕ Y(1,j−1) = m(0,i) ⊕m(1,j) (5)
Y(0,r−1) ⊕ Y(1,s−1) = m(0,r) ⊕m(1,s) (6)

We have the following count for each of the sets:

1. For S0 we have one constraint equation in condition 2, we can choose one of the
variables in N ways, then the other variable is fixed. To hold the pairwise distinct
assumption, we choose (v − 2) variables from the remaining (N − 2) possibilities.
Thus we have

|S0| = N(N − 2)v−2 = (N)v

(N − 1)

2. For S(i,j), we have two equations to look for, namely one in condition 2 and equation
4. We can choose one variable in N ways in 4, and the other variable is fixed. Now,
for the equation in condition 2, we can choose one variable in (N − 4) ways to hold
the pairwise disjoint assumption, then the other variable is fixed. Since we have
made 4 choices already, we can choose the remaining variables in (N − 4)(v−4) ways.
Thus we have

|S(i,j)| = N(N − 4)(N − 4)(v−4) = (N)v(N − 4)
N(N − 1)(N − 2) ≥

(N)v(N − 4)
N3
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3. For S(i,j)∩S(r,s) we have three equations to look for, one in condition 2 and equations
5 and 6. Arguing like above, it is easy to see that the variables of the equations can
be chosen in N(N − 4)(N − 6) ways. We are left with (N − 6) possibilities and we
have to choose (v − 6) variables, hence we obtain

|S(i,j) ∩ S(r,s)| = N(N − 4)(N − 6)(N − 6)(v−6)

= (N)v(N − 6)
(N − 1)(N − 2)(N − 3)(N − 5)

≤ (N)v

(N − 6)3

Hence, we obtain the desired upper bound.

Thus,

CPG∗ ≤ 1
N − 1 −

|D|(N − 4)
N3 + |D|2

(N − 6)3

We will use the following result to estimate the upper bound of CPeq
2,ℓ, for any 1 ≤ m ≤ N

2
we have

1
(N −m) <

1
N

+ 2m

N2 .

Thus,

CPeq
2,ℓ = CPG∗ + CPG′

2
+ CPG2 + CPG3

≤ 1
N − 1 −

|D|(N − 4)
N3 + |D|2

(N − 6)3 + 18ℓd∗(ℓ)2

(N − 2ℓ)2 + |D|
(N − 2ℓ)2 + 8ℓ6

N3

≤ 1
N

+ 18ℓd∗(ℓ)2

N2 + 10ℓ6

N3

The above expression follows through a straightforward algebra and assuming ℓ < 2n/3

(which we can assume, since otherwise the upper bound is more than one) Also, for CPany
2,ℓ

we have to consider CPG1 and add this term with CPeq
2,ℓ and we obtain the bound stated in

Theorem 5.2. Hence, we have proved our main results.

Theorem 5.1 (equal length CBC-MAC collision probability).

CPeq
2,ℓ ≤

1
2n

+ 18ℓd∗(ℓ)2

22n
+ 10ℓ6

23n
.

Theorem 5.2 (any length CBC-MAC collision probability).

CPany
2,ℓ ≤

d∗(ℓ)
2n

+ 18ℓd∗(ℓ)2

22n
+ 10ℓ6

23n
.
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6 Collision Probability for Cascade
6.1 Cascade Definition
Cascade Function. The Cascade function Cascf : ({0, 1}n)∗ → {0, 1}n, associated
with a compression function f : {0, 1}n × {0, 1}n → {0, 1}n, is defined recursively over a
sequence of n-bit blocks M = (M [1] · · ·M [l]) in the following manner:

Cascf (M) :=
{

0n M = ⊥,

f(Cascf (M [1] · · ·M [l − 1])∥M [l]) otherwise,

Going forward, we will drop f and M from the notation whenever they are understood
from the context.
CASCADE Collision Probability Problem. Let M and M ′ be two distinct inputs
having m and m′ many blocks, respectively, and f : {0, 1}n × {0, 1}n → {0, 1}n be a
compression function. We call Collf (M, M ′) the collision event for a pair of inputs M
and M ′. Although we mention it for 2n-bit to n-bit compression function, the same
argument works for (n + d)-bit to n-bit compression function for d > 0. By extending
the notation, we similarly define the collision event for a tuple of q ≥ 2 distinct inputs
Mq = (M1, . . . , Mq), as

Collf (Mq) =
⋃

i<j∈[q]

Collf (Mi, Mj). (7)

We define collision probability as Casc-CP(Mq) = Pr (CollΓ(Mq)), where the probability
is computed over the randomness of uniformly chosen random function Γ. Let

Casc-CPatk
q,ℓ,σ = max

Mq
Casc-CP(Mq)

where the maximum is taken over all q-tuples of distinct inputs Mq having at most ℓ
blocks each, and the total length over all q inputs is at most σ. Further, the message tuple
satisfies the input constraint atk, which could be one of the following:

1. eq-suff: each input has exactly ℓ blocks and there is a common suffix of the inputs;

2. eq-nosuff: each input has exactly ℓ blocks, and there is no common suffix of the
inputs.

6.2 Structure Graph for Cascade Function and Its Characterization
The structure graph for Cascade is similar to the structure graphs of CBC MAC, except
for a few operational differences. Unlike CBC MAC, where we use a permutation π as a
basic building block for the construction, in Cascade construction, we use a compression
function f : {0, 1}n × {0, 1}n → {0, 1}n.
Structure Graphs for Cascade: We have seen a detailed discussion on structure
graphs in section 5, and here we use a simpler definition for characterization purposes.
A structure graph is an edge labeled graph G = (V, E ,L), where V, E , and L are set of
vertices, set of edges and set of labels respectively which are subsets of {0, 1}n and , with
the following property: If (v(α− 1)→ v(α), mα) and (v(β − 1)→ v(β), mβ) are labeled
edges then

Yv(α−1) ∥ mα = Yv(β−1) ∥ mβ ⇒ Yv(α) = Yv(β)

where f(Yv(α−1) ∥ mα) = Yv(α) and f(Yv(β−1) ∥ mβ) = Yv(β) Note that, unlike CBC
construction, in Cascade equality of variables at the collision vertices will not imply
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that concatenations are equal, as f applied to different concatenations can lead to same
functional value.

Rank and Observations regarding Cascade structure graphs: We define rank
of structure graph G to be true collision of G and thus we have rank(G) = TC(G). Thus,
there is no provision for alternating cycles in this graph, as it will increase the number of
true collisions, and as a result the rank will increase. It is not possible that (v → u1; m)
and (v → u2; m) are two labeled edges with the same message label m, then u1 = u2.
There can be parallel edges (v → u; m1) and (v → u; m2) and this will be regarded as a
collision. The characterization problem is the same as stated in section 4: message walks
start at 0n and traverse the structure graph via edges, which are message labels and stop
at the same end vertex.

Assumptions regarding messages: The following are two assumptions we will follow
throughout the discussion unless mentioned otherwise.

1. (Suffix disjoint) M0 and M1 are suffix free, which means W0 and W1 walks do not
share common suffix as edge labels

2. (End vertex same) W0 and W1 share the same end vertex, which means both walks
eventually collide at the same vertex

We exclude graphs with alternating cycles obtained in section 4, as those graphs will
contribute to true collisions, and thus, the rank will be more than the desired. We discard
all such graphs with alternating cycles and obtain a characterization of structure graphs
for the Cascade function.

Different types of structure graphs for Cascade: We describe different
types of structure graphs we will analyse for bounding collision probability. We will first
identify possible core components for rank 1 and rank 2 structure graphs. Since taking the
double 8 shaped core component C1-88 will increase true collision as there is an alternating
cycle, we will consider the following core components: the directed cycle C0 , the eight(8)
shaped C1-8 and the digital eight(8) shaped C1-d8 (see figure 4.1). The following graphs
are possible: P-R1, P-R2, C0-R1.2, C0-R2.1, C0-R2.2, C0-R2.4, C00-R2.1, C1-d8-R2.1 and
C1-8-R2.1 (see figure 4.2- 4.8) as we discard all the graphs with alternating cycles and with
double 8 shaped core component C1-88. The following types are possible:

1. type-1-any: P-R1.

2. type-2: P-R2 and C0-R2.4.

3. type-2′′: C0-R2.1, C0-R2.2, C0-R2.4, C00-R2.1, C1-d8-R2.1 and C1-8-R2.1.

4. type-3′: structure graphs of rank 3 and more.

We consider type-2′′ ⊆ type-2′ since all the other graphs in type-2′ are of higher rank. Here
we have, type-3′ = type-2′ \ type-2′′ ∪ type-3 We are not considering type-1-neq as we will
look for equal length messages.

Note that for a structure graph G of Cascade with v vertices and e edges, we have the
following relation: TC(G) = e− v + 1. Every edge corresponds to an equation, and the
probability of realizing G will be at most (N)v−1

Ne . We use this observation to state the
following lemma for structure graphs of Cascade.
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Lemma 6.1. For any structure graph G with a accidents, v vertices and e edges where Γ
is a random function, we have

Pr
Γ

(
GΓ(M̃) = G

)
≤ (N)v−1

Ne
.

since TC(G) = a = e− v + 1, in particular we have

Pr
Γ

(
GΓ(M̃) = G

)
≤ 1

Na
.

6.3 Collision Probability Analysis
We analyse Cascade collision probability for two equal-length messages M0 and M1 with
the following assumptions:

1. eq-suff: each input has exactly ℓ blocks and there is a common suffix of the inputs;

2. eq-nosuff: each input has exactly ℓ blocks, and there is no common suffix of the
inputs.

The analysis is essentially the same as we have already seen in section 5.4. The only
difference is due to the different types of structure graphs and suffix assumptions. The
number of different types of non-isomorphic structure graphs is given in the following
lemma.

Lemma 6.2. The number of non-isomorphic structure graphs of type-2, type-2′′ and
type-3′ are 4ℓ2, 6ℓd∗(ℓ)2 and 8ℓ6 respectively.

We recall the result of lemma 6.1

Pr
Γ

(
GΓ(M̃) = G

)
≤ 1

Na
.

We use this result for all structure graphs except the structure graph of type-1-any
(only one such structure graph, denoted as G∗, is present, which represents the collision
event for the message pair (M0, M1)). Let G2,G′′2 ,G′3 be the set of all such structure graphs
with collision events and types type-2, type-2′′ and type-3′ respectively. We have seen that
|G2| ≤ 4ℓ2, |G′′2 | ≤ 6ℓd∗(ℓ)2 and |G′3| ≤ 8ℓ6.

Let us denote Casc-CPG := PrΓ

(
GΓ(M̃) = G

)
. By using the upper bound for realizing

a structure graph and the bound on the number of such graphs, we have the following:

Casc-CPG2 ≤
4ℓ2

N2

Casc-CPG′′
2
≤ 6ℓd∗(ℓ)2

N2

Casc-CPG′
3
≤ 8ℓ6

N3

Using the first bound in lemma 6.1 we we will give a better bound for G∗, this follows
through a straightforward manipulation and Bonferroni’s inequality

Casc-CPG∗ ≤ (N)v−1

Nv
≤ 1

N

v−2∏
i=1

(1− i

N
) ≤ 1

N
−

(
v−1

2
)

N2 + 4ℓ4

N3

From the above inequalities, arguing and estimating like section 5.4, we state the following
theorem
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Theorem 6.1 (Cascade collision probability without common suffix).

Casc-CPeq−nosuff
2,ℓ ≤ 1

2n
+ 6ℓd∗(ℓ)2

22n
+ 10ℓ6

23n

Note that, in the above Theorem 6.1, no common suffix essentially implies that there
is a collision at the last vertex of M0 and M1 walk. For common suffixes, there will be
a collision at some point, and after that, the messages share the same blocks. Note that
the collision probability is the same in both scenarios. However, for the common suffix
case, the collision can occur at any vertex, and after that messages share the same blocks.
Also note that collisions occurring at different vertices are disjoint events, and there are at
most ℓ such choices for suffix length. Hence, we state the following theorem.

Theorem 6.2 (Cascade collision probability with common suffix).

Casc-CPeq−suff
2,ℓ ≤ ℓ

2n
+ 6ℓ2d∗(ℓ)2

22n
+ 10ℓ7

23n

7 Applications to Randomness Extraction
In this section, we revisit the results corresponding to randomness extractors as given in
[DGH+04]. These results explicitly depend on good bounds for the CBC (and cascade)
CPP. Based on our revised and thoroughly derived bounds for CBC and cascade CPP,
we restate the updated results. But first, we briefly revisit the notion of randomness
extractors, and restate some notations and definitions from [DGH+04].

7.1 A Short Note on Randomness Extractors
More Notations: For a probability distribution X over {0, 1}ℓ, we define its min-
entropy as the minimum integer m such that for all x ∈ {0, 1}ℓ, PrX (x) ≤ 2−m. We
denote the min-entropy of such X by H∞(X ), and refer to X as an (ℓ, m)-distribution.
The collision probability of X is Col(X ) = PrX,X′ ←$X (X = X′) =

∑
x Pr (X = x)2. Let X1,

X2 be two probability distributions over the set Ω. The statistical distance between the
distributions X1 and X2 is defined as SD(X1,X2) = 1

2
∑

ω∈Ω |PrX1 (ω)− PrX2 (ω)|.

Definition 7.1 (Almost Universal Hash). Let n and ℓ be integers, and {hk}k∈K be a family
of hash functions with domain {0, 1}ℓ, range {0, 1}n and key space K. We say that the
family {hk}k∈K is δ-almost universal (δ-AU) if for every pair of different inputs x, y from
{0, 1}ℓ it holds that PrK←$K (hK(x) = hK(y)) ≤ δ. For a given probability distribution
X on {0, 1}ℓ, we say that {hk}k∈K is δ-AU w.r.t. X if Pr (hK(x) = hK(y)) ≤ δ, where
x, y ∼ X conditioned to x ̸= y.

Definition 7.2 ((Strong) Extractor). Let n and ℓ be integers, and h = {hk}k∈K be a
family of functions with domain {0, 1}ℓ, range {0, 1}n and key space K. We say that h is
an (n, δ)-extractor if and only if for any K uniform over K, and any (ℓ, n)-distribution, we
have

SD(hK(X ), U) ≤ δ,

where U is uniform over {0, 1}n. Additionally, we say that h is an (n, δ)-strong extractor if
and only if

SD((K, hK(X )), (K, U)) ≤ δ.

The following lemma is a straightforward extension of the well-known “Leftover Hash
Lemma” or LHL [HILL99].
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Lemma 7.1 (Lemma 2 in [DGH+04]). Let ℓ and n be integers, let X be a probability
distribution over {0, 1}ℓ, and let {hk}k∈K be a family of hash function with domain {0, 1}ℓ

and range {0, 1}n. If {hk}k∈K is (2−n + ϵ)-almost universal w.r.t. X , U is uniform over
{0, 1}n and K is uniform over K, then

SD((K, hK(X )), (K, U)) ≤ 1
2

√
2n · (Col(X ) + ϵ) ≤ 1

2 ·
√

2n · (2−H∞(X ) + ϵ)

7.2 CBC-MAC as Randomness Extractor
Dodis et al. showed that CBC-MAC based on a uniform random permutation is a good
candidate for strong randomness extractor. Specifically, they showed the following result.

Theorem 7.1 (Theorem 1 in [DGH+04]). Consider the CBC-MAC construction based on
a uniform random permutation Π of {0, 1}n, and let X be an input distribution defined over
ℓ-block strings. Then the statistical distance between CBC-MACΠ(X ) and the uniform
distribution on {0, 1}n is at most√

2n−H∞(X ) + O(2n · ϵ(ℓ, 2n)),

where ϵ(ℓ, 2n) ≤ ℓ(d∗(ℓ))22−2n + ℓ62−3n. In particular, assuming ℓ < 2n/4 and H∞(X ) ≥
2n, the above statistical distance is at most O(ℓ/2n/2).

The proof of this theorem follows from Lemma 7.1 and the following unproved result in
[DGH+04].

Lemma 7.2 (Lemma 3 in [DGH+04]). Consider the CBC-MAC construction based on a
uniform random permutation Π of {0, 1}n. For any x, y ∈ {0, 1}ℓn, if x ̸= y then

Pr
Π

(CBC-MACΠ(x) = CBC-MACΠ(y)) ≤ 1
2n

+ O(ϵ(ℓ, 2n)),

where ϵ(ℓ, 2n) follows the same definition as given in Theorem 7.1.

As an application of our results on the CBC CPP, we provide the first proof for Lemma
7.2.

Proof of Lemma 7.2. This lemma is just a restatement of Theorem 5.1, and hence the
proof follows directly from the proof of Theorem 5.1.

7.3 Cascade as Randomness Extractor
In a similar fashion, Dodis et al. also gave the following result for the cascade construction.

Theorem 7.2 (Theorem 2 in [DGH+04]). Let F = {Fk} be the cascade construction
defined, as in section 6.1, over a family of random functions {fk}. Let X be the input
distribution to F defined over ℓ-block strings, and Xℓ denote the probability distribution
induced by X on the last block X[ℓ] for X ∼ X . Then, if U is the uniform distribution over
{0, 1}n, we have

SD(F (X ), U) ≤
√

2n−H∞(X ) + ℓ · 2−H∞(Xℓ) + O(2n · ϵ(ℓ, 2n)),

where ϵ(ℓ, 2n) follows the same definition as given in Theorem 7.1. In particular, if
H∞(X ) ≥ 2n, H∞(Xℓ) ≥ n, and ℓ ≤ 2n/4, then SD(F (X ), U) ≤ O(ℓ/2k/2).

The proof of this theorem relies on Theorem 7.1 and the following two unproved
propositions.
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Proposition 7.1. Let F = {Fk} be the cascade construction defined over a family of
random functions {fk}. Let x, y be two inputs to F that differ (at least) in the last block,
namely, x[ℓ] ̸= y[ℓ], and let k be any value of the initial key. Then Prf (Fk(x) = Fk(y)) ≤

1
2n + O(ϵ(ℓ, 2n)), where ϵ(ℓ, 2n) follows the same definition as given in Theorem 7.1.

Proposition 7.2. Let F be defined as above, let x, y be two different inputs to F , and
let k be any value of the initial key. Then Prf (Fk(x) = Fk(y)) ≤ ℓ

2n + O(ℓϵ(ℓ, 2n)), where
ϵ(ℓ, 2n) follows the same definition as given in Theorem 7.1.

As an application of our bounds on the cascade construction CPP, we provide the first
proof for Propositions 7.1 and 7.2.

Proof of Propositions 7.1 and 7.2. It is easy to see that Proposition 7.1 is just a
restatement of Theorem 6.1, and similarly, Proposition 7.2 is a combined restatement of
Theorem 6.1 and 6.2. Hence, their proofs directly follow from the proofs of Theorem 6.1
and 6.2.

8 Conclusion
In this paper, we provided some missing proofs from [DGH+04]. In order to derive these
proofs, we employed the graph based technique from [BPR05], called the structure graphs.
As a side-effect of this work, we made some significant progress in characterizing certain
useful structure graphs which could be of independent interest. Specifically, this improved
characterization might also be useful in obtaining better security bounds for some MAC
constructions like EMAC, ECBC, FCBC, etc.
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