1. Show that the wavefunction $\frac{1}{\sqrt{N}} \sum_{\boldsymbol{R}} e^{i \boldsymbol{k} \cdot \boldsymbol{R}} \phi(\boldsymbol{r}-\boldsymbol{R})$
(a) satisfies the Bloch criteria $\psi(\boldsymbol{r})=e^{i \boldsymbol{k} \cdot \boldsymbol{r}} u_{\boldsymbol{k}}(\boldsymbol{r})$, where $u_{k}\left(\boldsymbol{r}+\boldsymbol{R}_{n}\right)=u_{\boldsymbol{k}}(\boldsymbol{r})$
(b) is correctly normalized provided a certain assumption is made. What is the assumption?
2. Calculate the group velocity of a particle at the bottom of the band

$$
E(k)=E_{0}-2|t| \cos k a
$$

and at the corner $(k= \pm \pi / a)$. Show that there is a point of inflection (where the second derivative changes sign) somewhere between $k=0$ and $k= \pm \pi / a$. Make a plot of the effective mass as a function of the wave vector k.
3. Consider a rectangular lattice with unit cell dimensions a and b. Show that the bandstructure would be of the form

$$
E\left(k_{x}, k_{y}\right)=E_{0}-2 t_{1} \cos \left(a k_{x}\right)-2 t_{2} \cos \left(b k_{y}\right)
$$

(a) What is the reciprocal lattice? Draw the first Brillouin zone.
(b) Plot the constant energy contours, assuming $t_{1}>t_{2}>0$ and $a<b$. Why is this physically reasonable?
(c) Plot some constant energy contours. How do the contours look for small k ? How do the shapes change at slightly larger k ? Do all constant energy contours close within the first Brillouin zone?
(d) Suppose $a=b$, i.e. it is a square lattice. What will be the shape of the Fermi level when the band is half full?
4. Tight-binding bandstructure with a single orbital per site on BCC and FCC lattice: Take the side of the conventional cube to be a units in length.
(a) For Body Centered Cubic lattice write down the co-ordinates of the nearest neighbours of $(0,0,0)$
(b) Then show, with 8 nearest neighbour hopping terms and a as the side of the cube

$$
E\left(k_{x}, k_{y}, k_{z}\right)=E_{0}+8 t \cos \frac{k_{x} a}{2} \cos \frac{k_{y} a}{2} \cos \frac{k_{x} a}{2}
$$

(c) For Face Centered Cubic lattice write down the co-ordinates of the nearest neighbours of $(0,0,0)$
(d) Then show, with 12 nearest neighbour hopping terms and a as the side of the cube:

$$
E\left(k_{x}, k_{y}, k_{z}\right)=E_{0}+4 t\left[\cos \frac{k_{x} a}{2} \cos \frac{k_{y} a}{2}+\cos \frac{k_{y} a}{2} \cos \frac{k_{z} a}{2}+\cos \frac{k_{z} a}{2} \cos \frac{k_{x} a}{2}\right]
$$

5. For the graphene lattice with nearest neighbour interaction only, Show that:
(a) the eigenvalues of the Hamiltonian are given by

$$
\begin{aligned}
E\left(k_{x}, k_{y}\right) & =\tilde{E}_{0} \pm t\left|F\left(k_{x}, k_{y}\right)\right| \\
\text { where }|F|^{2} & =1+4 \cos ^{2} \frac{k_{x} a}{2}+4 \cos \frac{k_{x} a}{2} \cos \frac{\sqrt{3}}{2} k_{y} a
\end{aligned}
$$

(b) The reciprocal lattice vectors of the graphene lattice are given by:

$$
\begin{aligned}
& \boldsymbol{b}_{\mathbf{1}}=\frac{2 \pi}{a}\left(1, \frac{1}{\sqrt{3}}\right) \\
& \boldsymbol{b}_{\mathbf{2}}=\frac{2 \pi}{a}\left(-1, \frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

(c) Calculate the co-ordinates of the six points where the two bands touch.
6. Consider the motion of the electrons in a cyclotron orbit induced by a magnetic field (as in the lecture notes). Show that

$$
\left|\begin{array}{ccc}
M_{x x} & M_{x y}+i \frac{e B_{0}}{\omega} & M_{x z} \\
M_{x y}-i \frac{e B_{0}}{\omega} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right|=0
$$

Show that expanding the determinant gives

$$
\frac{\operatorname{det} M}{M_{z z}}=\frac{e^{2} B_{0}^{2}}{\omega^{2}}
$$

