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EP431: Semiconductor Physics: More practice problems.....

1. A 2 dimensional lattice is defined by the two vectors, where a is some length

a1 = a
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Calculate the two reciprocal lattice vectors.

2. An electron, of charge −|e| moves in a (2-dimensional) band whose dispersion relation is given by

E(kx, ky) =
~2

2m0
(3k2x + 5k2y)

An electric field F is applied in a direction 45o to the kx axis. What will be the angle between the direction of
acceleration of the electron and the electric field? Your answer must be a single number, e.g. 8o

3. Consider a 1-d chain of atoms of lattice constant a = 1nm, in which an electron moves under the influence of an
electric field F = 10V.m−1. The relaxation time in the system due to all sources of scattering is τ = 10−14sec
which is typical of many substances. If the electron was originally at k = 0, what fraction of the Brillouin zone
will it be able to explore in its course of motion?

4. Consider an 1-dimensional band of nearly free electrons, plotted in the commonly used reduced zone scheme, as
shown in the figure. Write down the energy and unnormalised wavefunctions corresponding to the points marked
A,B,C,D,E.

5. The unit vectors of a 2D lattice are a1 and a2. The included angle between them is θ. For convenience take a1

to be along x axis. Calculate the reciprocal vectors b1 and b2 explicitly. What are the possible angles between
the reciprocal vectors?

6. Consider a finite chain of 100 identical atoms spaced by 5Å.

(a) What is the linear span of the first Brillouin zone? Give your answer in units of cm−1?

(b) The modulus of the quantity S(k) =
∑
n
exp (ikxn) is defined as the Structure factor, where xn is the

position of the nth atom. What are the location and width of the first peak of |S(k)|2 k ̸= 0, in cm−1?

Your answers must be explicit numbers.

7. Consider an one dimensional band whose dispersion relation is E(k) = E0 − 2γ cos ka, where γ is a measure of
the nearest neighbour interaction and a is the lattice constant. An electron driven by an electric field F moves
in this band without getting scattered.
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(a) Find an expression for the amplitude of Bloch oscillations in this band.

(b) For a bandwidth of 1 ev, and a realistic electric field 10V/m, calculate the amplitude. How does this length
compare to typical mean free paths in a very clean metal at low temperature - say 500 microns?

8. A 2 dimensional system has a dispersion relation

E(kx, ky) =
~2

2mx
kx

2 +
~2

2my
ky

2

Find an explicit algebraic relation for the density of states function D(E). Your answer should be free of any
integrals etc. You may ignore the spin degeneracy.

9. A hypothetical 2-dimensional substance X can freeze in two forms - a triangular lattice with lattice constant a
and a square lattice with the same lattice constant. Consider the band arising out of the outermost spherically
symmetric s state. In which case would you expect the bandwidth to be larger? The credit is entirely for giving
the correct reasoning.

10. Electrons in an one-dimensional band have an energy dispersion given by:

E(k) = E0 − 2|t| coska

Where E0, t and a are constants, k is 1-dimensional and restricted to −π/a < k < π/a. You can ignore spin
degeneracy.

(a) What is the sign of the effective mass near k = 0 and k = ±π/a?
(b) Calculate the co-ordinate of the point where the effective mass changes sign.

(c) Suppose the band is completely full. Calculate the explicit value of the sum total of all group velocities,
i.e. evaluate

L

2π

∫
all states

vg dk

(d) Derive an explicit expression for the density of states D(E) and make a rough sketch with the axes clearly
labelled.

11. The two topmost bands of Graphene can be described by the dispersion relations:

E(kx, ky) = Ẽ0 ± t|F (kx, ky)|

where F (kx, ky) =

(
1 + 2 cos

(
kxa

2

)
e−i

√
3

2 kya

)
Here t is the nearest neighbour hopping matrix element and a = 2.46Å is the lattice constant.

(a) Find the co-ordinates of the set of all points (kx, ky) at the boundary of the first Brillouin zone at which
the two bands touch each other.

(b) Near one of these points the dispersion relation gives E(k) = ~v|k − k0| where k0 is one such point. If
v≈106 m.s−1 estimate the value of t in electron volts.

(12 + 8 marks)

12. For this problem take
~2

2m
= 1 to simplify the algebra, such that for free electrons E(k) = k2. Consider a 1-d

lattice with a lattice constant a and a potential

V (x) = −2V0 cos
2π

a
x

(a) Consider the region close to the zone boundary at
π

a
. The electron states around this point may be written

as a superposition of two plane wave states

ψ(x) = Aeikx +Bei(k−G)x

where G =
2π

a
. Formulate the set of equations necessary to solve for the unknown coefficients A and B.

Solve for the eigenfunctions and show that

E(k) =
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2
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+
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+ V 2
0
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(b) Now suppose we want to solve an inverse problem where the energy E is given and you have to find k. If

E =
G2

4
and the lattice potential is non-zero, what can you say about the possible values (solutions) of k?

Your answer should be a single clear mathematical statement - not a long-winded explanation

13. The Fermi integrals often appear in the calculation of quantities that require an integration over the full set of
particles with the (thermodynamic) Fermi distribution. It is defined as

F 1
2
(z) =

2√
π

∞∫
0

dx
x1/2

1 + exez

(a) Approximate F when z is large and negative

(b) Approximate F when z is large and positive

(c) Answer with reason whether F (z) has a maxima or minima. Using these three information make a quali-
tative sketch of lnF (z) vs z

14. Certain combinations of the Fermi function, occur very frequently in expressions that involve scattering or
transitions. Consider the equilibrium Fermi distribution

f =
1

e(E−EF )/kT + 1

It is useful to be familiar with the combination f(1− f)

Make a rough sketch of how f(1− f) would look as a function of energy. How does the area under the curve of
f(1− f) vary with temperature?

15. A sample of Silicon is doped with ND = 1017cm−3 of Arsenic. The donor level is 54meV below the conduction
band bottom. Ignore the presence of the valence band and assume that all electrons come from the donors only.
Use the non-degenerate approximation for carrier densities. The effective conduction band density of states for
Si at 300K is NC = 2.8×1019cm−3. At T = 300K calculate:

(a) What fraction of the dopants are ionised? Do not assume all donors will ionise! Calculate the fraction.

(b) the location of the Fermi level (EF ) w.r.t the bottom of the conduction band. How far is it from the donor
level? Was the non-degenerate approximation justified?

Your answers must be in numbers - not algebraic expressions.

16. The highest mobility achieved so far in a semiconductor is µ = 3×103m2V−1s−1 at a carrier concentration
n = 2×1015 m−2. This was achieved in a TWO dimensional electron gas in Gallium Arsenide, at very low
temperatures. (The temperature/material are not important in this problem, these are just for information.)
Calculate the mean free path (l) under these circumstances and compare it with the lattice constant (a ∼ 5Å)
of Gallium Arsenide? What is the approximate value of l/a?

17. The figure below shows the band structure of a semiconductor. Notice the two conduction band minima at the
Γ point and the L point. The effective masses at these two points are 0.066m0 and 0.55m0 respectively where
m0 is the free electron mass.

(a) Is this a direct or indirect gap material?
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(b) At high electric fields electrons from Γ valley may be excited to the L valley. How do you expect the
conductivity to be affected? Answer with reason.

(c) Is the density of states higher near Γ valley bottom or the L valley bottom? Answer with reason.

(d) Make a qualitative plot of the velocity of the electrons v(k) with the Γ-L direction (in k space) on the
x-axis.

18. The figure below shows relative locations of the conduction band bottom (EC), acceptor level (EA) and the
valence band edge (EV ). Answer with very brief (one sentence) reasoning. F (E) denotes the probability of
occupation of the level.

(a) Which one(s) of the six figures may be realised in an extrinsic p-type semiconductor in practice? Answer
with very brief reason.

(b) In which case would one have the maximum electron density?

19. The bandgap of Si (in eV) varies with absolute temperature according to the following relation

Eg(T ) = 1.17− 4.73×10−4 T 2

T + 636

Calculate the concentration of electrons (n) in the conduction band of intrinsic Si at 77 K, if it is known that at
300K n = ni = 1×1010cm−3

20. Consider particle of mass m in a ”toy - molecule” potential given by

V (x) = −|V0|L [δ(x) + δ(x− a)]

(a) Write down the wavefunctions for x < 0, 0 < x < a and x > a for potential bound states, with justification.

(b) What must be the boundary conditions at x = 0 and x = a ?

(c) Take mass m to be the free electron mass, V0 = 10eV and L = 1Å. Calculate the minimum distance a for
an antisymmetric wavefunction to exist. Your answer must be a number, expressed in angstrom.

21. A compensated (containing both donor and acceptor impurity atoms in the same region) n-type Si sample at T
= 300 K, shows a conductivity of σ = 16 Ωcm−1 and an acceptor doping concentration of 1017 cm−3. Assume
complete ionization and an electron mobility of µn = 1500cm2V−1s−1. The intrinsic carrier concentration is in
Si at 300K is ni = 1×1010cm−3.

(a) Determine the donor concentration.

(b) Where is the Fermi level w.r.t the bottom of the conduction band?

(c) You have not been given the hole mobility µp. Can you explain using your calculations why it is not
necessary to know that here?

22. Indium Antimonide has a band gap Eg = 0.23eV, relative dielectric constant εr = 18, electron effective mass
m∗/m0 = 0.015.

(a) Calculate the donor ionisation energy (in eV) and the radius of the ground state orbit.

(b) At what minimum donor concentration will appreciable overlap effects between orbits of neighbouring
impurity atoms occur? Give a numerical answer - not an algebraic expression. This approximately marks
the point when the dopant level no longer remains a single level but starts spreading out into a band.

23. Consider a Silicon sample with a carrier density n = 1017cm−3 and electron mobility µn = 700cm2V−1s−1. The
electron effective mass may be taken to be 0.2m0 where m0 is the free electron mass.
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(a) Calculate the classical thermal velocity (vth) and the Fermi velocity (vF ).

(b) Calculate the ratio
vF
vth

. For a good metal (e.g. Cu, Ag, Au, Al etc.) how do you expect this ratio to

change?

(c) Estimate the electric field (in Volts/cm) at which the carrier drift velocity will reach ∼ 10% of the thermal
velocity.

24. Consider a p+n junction in reverse bias. The notation means that the p side is much more heavily doped
(Na >> Nd). At 30 V reverse bias, the junction capacitance is measured to be 1.7nF.cm−2. The material of
the junction is known to to breakdown around an electric field E = 3 × 105V.cm−1 and its relative dielectric
constant ϵr = 12. Estimate the voltage at which this junction would break down.

25. If the intrinsic carrier density is comparable to the carrier density contributed by the ionised dopants, then the
distinction between n and p type material also breaks down. Then a p-n junction would obviously no longer
function as a rectifier or a diode. Using this concept estimate the maximum working temperature of a Si diode
and a GaN diode. You are given that

• The band gaps for Si, GaN are 1.1 and 3.4 eV,

• the intrinsic carrier concentrations at 300K are 1010cm−3 and 10−9cm−3.

• The doping level is 1015cm−3 for all.

26. The barrier voltage V0 of a p-n junction is usually written in the form

V0 =
kT

|e|
ln
NaNd

ni2

where Na and Nd are the doping concentrations on the p and n side respectively. ni is the intrinsic carrier
density.

(a) Do you expect this quantity to increase or decrease with temperature? Answer with a simple calculation.

(b) Suppose Na = Nd = 5× 1017cm−3, the effective masses are 0.9 and 0.2 m0 respectively.

Estimate
δV0
δT

at T = 300K

27. Consider a two dimensional material with a square lattice with lattice constant a. The conduction band dispersion
relation is given to be

E(k) = E0

(
sin2

kxa

2
+ sin2

kya

2

)
This is of course the tight binding result, you can take it as given, where E0 is a constant.

(a) What would be the shape of the Fermi surface for very low carrier densities? Answer with a simple figure
and calculation.

(b) If the Fermi energy EF = E0, what would be the shape of the Fermi surface? Calculate and sketch the
shape. What fraction of the first Brillouin zone is filled if EF = E0 ?

(c) What simple feature distinguishes the Fermi surfaces for EF < E0 and EF > E0?

(d) If the lattice constant is made smaller do you expect E0 to increase or decrease? Answer with reason.

(e) Now consider the 3 dimensional simple cubic lattice where the dispersion is

E(k) = E0

(
sin2

kxa

2
+ sin2

kya

2
+ sin2

kza

2

)
Assume that the bandgap is very large and you are asked to adjust the doping so that EF = E0/20. What
is the required minimum donor concentration?

(f) The effective Bohr radius of the material is aB = 5nm and a = 5Å. At this doping level do you expect the
semiconductor to be metallic or insulating?

28. Consider two electron bands with populations n1 and n2 (per unit area) and mobilities µ1 and µ2 existing in a
semiconductor. You are given a thin wafer of the material in the shape of a rectangle, placed in the xy plane. A
magnetic field is applied perpendicular to it B = (0, 0, B) and the Hall voltage is measured by sending a current
in the x direction and measuring the voltage in the y direction.

(a) Write down the basic matrix equations connecting the current and electric fields.
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(b) Show that the measured Hall coefficient (in the low field regime) is

RH =
Ey

jx
= −1

e

n1µ
2
1 + n2µ

2
2

(n1µ1 + n2µ2)2
B

(c) State clearly what ”low field” means in this context.

(d) Is the slope of RH vs B larger than
1

(n1 + n2)e
or smaller?

29. Consider a semiconductor with an energy band dispersion given by

E(kx, ky) = A(kx
2 + 2ky

2)−B(3kx
4 + ky

4)

where A, B are positive constants.

(a) Now if an electric field is applied in the (1,1) direction, in which direction would an electron at (kx = 0, ky =
0) accelerate? Your answer must be an angle only ( e.g. making 20o to kx axis).

(b) Find at least one point (or points) around which you expect a ”hole” like behaviour.

30. The conduction band minima of Silicon occurs at 6 equivalent regions as shown in the figure.

For the valley in the [100] direction the dispersion
near the minima can be written as

E(k) = Ec +
~2

2m0

[
(kx − k0)

2

mL
+
ky

2

mT
+
kz

2

mT

]
where mL = 0.98 and mT = 0.19 and m0 is the free
electron mass.
Given this information, calculate the conduction
band density of states, NC at T = 300K, including
all degeneracies, where

NC =

∞∫
Ec

D(E) exp
(
−E − Ec

kT

)
dE

where D(E) is the density of states.

31. Two samples of GaAs are doped with 1017cm−3 and 1018cm−3 of donors respectively. The shallow donor level
is 6 meV below the conduction band.

(a) Calculate the location of the Fermi level (w.r.t. the conduction band bottom) and the fraction of donors
that will be ionised at room temperature (T=300K) for each sample.

(b) Under what condition will almost all the dopants ionise at room temperature?

The conduction band effective density of states for GaAs is NC = 4.7×1017cm−3 at T = 300K

32. You are given a TWO dimensional semiconductor with parabolic valence and conduction bands, where the
effective masses are mh and me respectively. There are no dopants put in.

(a) Find the location of the Fermi level as a function of temperature. Your answer should be an algebraic
relation involving Ec, Ev and the effective masses only.

(b) In what way does your result differ from the three dimensional case?

(c) In what (hypothetical) situation would the intrinsic (no doping condition) Fermi level be independent of
temperature?

33. The conduction band of a material has two minimas as shown schematically in the figure (marked Γ and L.)
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The first minima is at Γ-point, k = (0, 0, 0), suppose
the second (L) minima is at k = (k0, 0, 0). In real-
ity it is in the (1,1,1) direction, but that does not
matter for what you are going to do. Initially only
a few states in the Γ ”valley” are populated. An
electric field F is then applied along kx. Estimate
the minimum mobility at which a significant num-
ber of carriers may end up in the other valley. Make
any assumptions you want but clearly state what you
are assuming! (Your answer must be a simple alge-
braic expression, no implicit integrals etc....) Such
a phenomena actually happens in Gallium Arsenide,
which is shown - but you do not need to know any
of the specific details of it to make the estimate.

34. Two ends of an uniformly doped bar of an N-type semiconductor are illuminated with light. The two ends are at
x = −L and x = L, no light falls/penetrates in the region −L < x < L. The doping concentration is Nd >> ni

and the light creates an excess carrier density of γNd (where γ << 1) at the ends.

Find the variation of the hole concentration p(x) along the bar. What is hole concentration at x = 0?

You can assume usual symbols for minority carrier lifetimes, diffusivities, diffusion lengths (i.e τp, Dp, Lp) etc.


