
1 Why is “Thermal Average” needed & how is it done ?
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Real objects atoms/ions are in motion. From a classical point of view this means that their positions are not fixed.
From a quantum mechanical point of view the object may be exploring different eigenstates with the probability

Pn∝ exp−βEn, where n is a label of the eigenstate with energy En and as usual β =
1

kT
We will deal with the

consequence of this for the specific case of the structure factor. The structure factor of a collection of atoms whose
positions are given by rn, is defined as :

S(q⃗) =
∑
n

eiq⃗.r⃗n (1)

The instantaneous position has a mean part and a time varying part (the notation should be self explanatory)

r⃗n = R⃗n + u⃗n(t) (2)

Now if the time dependent part u⃗n is ignored, then we get back the definition of the static structure factor, which is
frequently evaluated for various lattice and basis sets. Recall that even in a solid the amplitude of the the thermal
vibrations of the atoms sitting in lattice sites can be ∼ 10% of the inter-atomic spacing. Important experimental
observables like intensity of X-rays scattered in a particular direction depends of |S(q⃗)|2. How will the averaged time
dependence affect the observed scattered intensity? Will it broaden a peak or do something else? This question
was clearly answered by Debye and Waller. The result is generally called the “Debye-Waller” factor.

⟨S(q⃗)⟩ =

(∑
eiq⃗.R⃗n

)
︸ ︷︷ ︸

static structure factor

∑
eiq⃗.u⃗ne−βH∑

e−βH
=

(∑
eiq⃗.R⃗n

)
︸ ︷︷ ︸

static structure factor

∫
dp⃗ du⃗ne

iq⃗.u⃗ne−βH∫
dp⃗ du⃗ne−βH

(3)

Here we have assumed that the thermal average of all the un will be identical. Since this is fluctuating part of the
position co-ordinate, this is not a particularly wrong assumption. So the problem ultimately reduces to doing a
thermal average of an exponential quantity or an operator. From here on, we can drop the explicit t dependence of
u⃗n, it is implied.

1.1 Classical case

⟨
eiq⃗.u⃗

⟩
=

∫
dp⃗ du⃗eiq⃗.u⃗e−βH∫
dp⃗ du⃗e−βH

(4)

We can take the relevant part of the Hamiltonian to be , with the understanding that ux = x, uy = y, uz = z

H =
p2

2m
+

1

2
mω2

(
x2 + y2 + z2

)
(5)

It is straightforward to see that the momentum co-ordinates are simply going to separate out and cancel, so the
relevant part will be

⟨
eiq⃗.u⃗

⟩
=


∞∫

−∞
e−

1
2βmω2x2

eiqxxdx

∞∫
−∞

e−
1
2βmω2x2

dx




∞∫
−∞

e−
1
2βmω2y2

eiqyydy

∞∫
−∞

e−
1
2βmω2y2

dy




∞∫
−∞

e−
1
2βmω2z2

eiqzzdz

∞∫
−∞

e−
1
2βmω2z2

dz

 (6)

The first term on the RHS can be written, by completing the square on the gaussian integral in the numerator

∞∫
−∞

e−
1
2βmω2x2

eiqxxdx

∞∫
−∞

e−
1
2βmω2x2

dx

=

∞∫
−∞

e
− 1

2βmω2

[
x2−2i qx

βmω2 +
(

qx
βmω2

)2
]
dx

∞∫
−∞

e−
1
2βmω2x2

dx

× e
−

qx
2

βmω2
(7)
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Hence ⟨
eiq⃗.u⃗

⟩
= e

− qx
2

βmω2 × e
− qy

2

βmω2 × e
− qx

2

βmω2 (8)

Now recall the classical equipartition theorem applied to potential energy of the vibrational degrees of freedom,

1

2
mω2

⟨
x2
⟩
=

1

2
mω2

⟨
y2
⟩
=

1

2
mω2

⟨
z2
⟩
=

1

2
kT (9)

and by isotropy ⟨
x2
⟩
=
⟨
y2
⟩
=
⟨
x2
⟩
=

⟨
u2

3

⟩
(10)

Combining the results from equations 10, 9 and 8, we get

⟨
eiq⃗.u⃗

⟩
2 = e−

q2⟨u2⟩
3 (11)

This means that the effect of temperature will be to suppress the value of S(q⃗), but not to broaden it. This is
exactly what one observes in the temperature dependence of the height of the X-ray diffraction peaks, obviously
here q⃗ = G⃗ must be satisfied, where G⃗ is some reciprocal lattice vector.

1.2 The quantum mechanical case

A legitimate question is whether the result will continue to hold if the thermal averaging was carried out quantum
mechanically under similar assumptions. The key assumption we used was that the oscillations are simple harmonic.
However a classical result with harmonic oscillators is not necessarily true if treated quantum mechanically. In this
case however this result, quite remarkably, holds exactly. We will prove a general identity for thermal average of
an operator that is linear in position and momentum co-ordinates or equivalently in a and a†.

If
C = λa+ µa† (12)

Then the following result, called the Bloch identity, holds:

⟨
eC
⟩
=

∑
n
e−βEn

⟨
n|eC |n

⟩
∑
n
e−βEn

= e
⟨C⟩2

2 (13)

provided |n⟩ are harmonic oscillator states and En =
(
n+ 1

2

)
h̄ω as usual. Notice that these are the QM equivalents

of the assumption we used in the classical case.

One can guess that expanding out the exponential will help, but this is quite non-trivial since a and a† do not
commute. To prove equation 13 we need to prove a sequence of results first. Since the operator C is a sum of two
parts, we first ask how to relate eA+B with eAeB , remembering that A, B are non-commuting operators.

1.2.1 How different are eA+B and eAeB?

To address this question we recall a key result about any two operators A and B

eA B e−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . (14)

In the special case the commutator [A,B] is a number, it is easy to see that all terms after the first two in RHS
will vanish. This turns out to be the case for x and p or a and a†.
The result 14 can be proved in the following way. Start by defining a function of a numerical variable u and trying
to write out its Taylor expansion around u = 0

f(u) = euA B e−uA (15)

f ′(u) = euA AB e−uA − euA BA e−uA = euA (AB −BA) e−uA (16)

f ′′(u) = euA A(AB −BA) e−uA − euA (AB −BA)A e−uA = euA [A, [A,B]] e−uA (17)

f ′′′(u) = euA A[A, [A,B]] e−uA − euA [A, [A,B]]A e−uA = euA [A, [A, [A,B]]] e−uA (18)
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One can see that the pattern will continue with each successive derivative. The Taylor expansion then requires the
successive values

f(0) = B (19)

f ′(0) = [A,B] (20)

f ′′(0) = [A, [A,B]] (21)

f ′′′(0) = [A, [A, [A,B]]] (22)

Now, if we assume that the expansion will remain convergent at u = 1, then by writing out the Taylor expansion
one gets

f(1) = eABe−A = f(0) + f ′(0) +
1

2!
f ′′(0) +

1

3!
f ′′′(0) + . . . (23)

By substituting the values of the derivatives the result 14 follows. If the commutator [A,B] = some number, then
it follows that

eA B e−A = B + [A,B] (24)

Now let us get back to the question that we started this section with. Let us define another similar function and
proceed as follows:

f(u) = euAeuB (25)

∴ df

du
= Af + fB

= Af + euABeuB

= Af + euABe−uA︸ ︷︷ ︸
B+u[A,B]

euAeuB︸ ︷︷ ︸
f

= (A + B + u[A,B])f (26)

We can then “integrate” this differential equation with the boundary condition f(0) = 1 between 0 and 1.

df

du
= (A + B + u[A,B]) f (27)

∴
1∫

0

df
1

f
= (A+B)

1∫
0

du + [A,B]

1∫
0

udu (28)

∴ f(1) = eAeB = eA+Be
1
2 [A,B] (29)

Putting A = λa† and B = µa, and noting [λa†, µa] = −λµ we obtain

⟨
eC
⟩

=
⟨
eλa

† + µa
⟩

=
⟨
eλa

†
eµa
⟩

eλµ/2 (30)

1.2.2 How to calculate
⟨
eλa

†
eµa
⟩

eλa
†
eµa =

∞∑
m,n=0

λmµn

m!n!
(a†)m (a)n (31)

Since the matrix elements will be taken in harmonic oscillator eigenstates only m = n terms will exist. So we will
need to evaluate ⟨

eλa
†
eµa

⟩
=

∞∑
n=0

λnµn

n!n!

⟨
a†

n
an
⟩

(32)

3



1.2.3 The evaluation
⟨
a†

n
an
⟩

First note that the evaluation of
⟨
a†a
⟩
is straightforward.

⟨
a†a
⟩
=

∞∑
p=0

e−βph̄ω
⟨
p | a†a | p

⟩
∞∑
p=0

e−βph̄ω

=

∞∑
p=0

p zp

∞∑
p=0

zp
=

1
1

1− z

z
∂

∂z

(
1

1− z

)
=

z

1− z
=

1

eβh̄ω − 1
(33)

where in the intermediate steps we wrote z = e−βh̄ω . To calculate the required thermal averaged quantity, we first
need to get the following expectation value.

� What is the expectation value
⟨
p | a†nan | p

⟩
? This is not a thermal average.

an | p⟩ =


√
p
√
p− 1

√
p− 2 . . .

√
p− n+ 1 | p− n⟩ if p >= n

0 if p < n
(34)

∴ ⟨p | a†nan | p⟩ =


p!

(p− n)!
if p >= n

0 if p < n

(35)

So now,

⟨
a†

n
an
⟩

=

∞∑
p=0

e−βph̄ω
⟨
p | a†nan | p

⟩
∞∑
p=0

e−βph̄ω

(36)

=

∞∑
p>=n

p!

(p− n)!
zp

∞∑
p=0

zp
(37)

= (1− z)

[
n! zn + (n+ 1)! zn+1 +

(n+ 2)!

2!
zn+2 + . . .

]
(38)

= (1− z)n! zn
[
1 + (n+ 1)z +

(n+ 1)(n+ 2)

2!
z2 +

(n+ 1)(n+ 2)(n+ 3)

3!
z3 + . . .

]
(39)

= (1− z)n! zn
(

1

1− z

)n+1

(40)

= n!

(
z

1− z

)n

(41)

Comparing equations 33 and 41 we arrive at an important intermediate result⟨
a†

n
an
⟩
= n!

⟨
a†a
⟩n

(42)

Returning to equation 30 we can now write:

⟨
eC
⟩

=
⟨
eλa

† + µa
⟩

=
⟨
eλa

†
eµa
⟩

eλµ/2 = eλµ/2
∞∑

n=0

λnµn

n!n!

⟨
a†

n
an
⟩
= eλµ/2

∞∑
n=0

(
λnµn

n!

)⟨
a† a

⟩n
(43)

Now what is
⟨
C2
⟩
?
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C2 =
(
λa† + µa

) (
λa† + µa

)
(44)

= λ2a†a† + λµ
(
aa† + a†a

)
+ µ2aa (45)

∴
⟨
C2
⟩

= λ2
⟨
a†a†

⟩︸ ︷︷ ︸
=0

+λµ
⟨
2a†a+ 1

⟩
+ µ2 ⟨aa⟩︸︷︷︸

=0

(46)

∴
⟨
eC

2/2
⟩

= eλµ/2eλµ⟨a
†a⟩ (47)

= eλµ/2
∞∑

n=0

(
λnµn

n!

)⟨
a†a
⟩n

(48)

Comparing this with equation 43, the Bloch identity follows. After which we recall the connection between position
and momentum operators with a and a†

a =

√
mω

2h̄
x + i

√
1

2h̄mω
p (49)

∴ x =

√
h̄

2mω

(
a + a†

)
(50)

Considering C = iqxx , where iqx is a number and x is the “operator”, we can see that this is obviously in the form
λa† + µa.
The relation, ⟨

eiqxx
⟩
= e−qx

2⟨x2⟩/2 (51)

must hold. Squaring the sides and adding the parts coming from y and z, the full result follows as before.

5


