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Abstract

For a set L of positive proper fractions and a positive integer r ⩾ 2, a fractional
r-closed L-intersecting family is a collection F ⊂ P([n]) with the property that for
any 2 ⩽ t ⩽ r and A1, . . . , At ∈ F there exists θ ∈ L such that |A1 ∩ · · · ∩ At| ∈
{θ|A1|, . . . , θ|At|}. In this paper we show that for r ⩾ 3 and L = {θ} any fractional
r-closed θ-intersecting family has size at most linear in n, and this is best possible
up to a constant factor. We also show that in the case θ = 1/2 we have a tight
upper bound of ⌊3n2 ⌋ − 2 and that a maximal r-closed (1/2)-intersecting family is
determined uniquely up to isomorphism.

Mathematics Subject Classifications: 05D05, 05B99, 03E05

1 Introduction

The theory of set systems with restricted intersection sizes is a classical and well-studied
problem and the basic template of the problem is as follows. Given a set L of non-negative
integers, determine the maximum size of a family F ⊂ P([n]) of subsets of [n] := {1, . . . , n}
such that for distinct A,B ∈ F we have |A ∩B| ∈ L. This problem has its origins in the
de Bruijn–Erdős theorem with further extensions including the Ray-Chaudhuri–Wilson
inequality, the Frankl–Wilson inequality, and the Alon–Babai–Suzuki inequality among a
host of other interesting results [5, 12, 7, 6, 1, 11, 13] and has spawned several variants,
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each with its own set of highlights and difficulties besides ushering in a wide range of
combinatorial and algebraic tools that are now an integral component of combinatorial
techniques for extremal problems.

A recent variant [4] of this problem, which is the principal focus of this paper, intro-
duces the notion of fractional intersecting families which goes as follows. Suppose L =
{θ1, . . . , θℓ} is a set of proper positive fractions with 0 < θi =

ai
bi

< 1 and gcd(ai, bi) = 1
for each i. We say that F ⊂ P([n]) is a fractional L-intersecting family (or that F is
fractionally L-intersecting) if for any two distinct sets A,B ∈ F there exists θ ∈ L such
that |A∩B| ∈ {θ|A|, θ|B|}. The most natural question again is: how large can a fractional
L-intersecting family be? This problem still remains unresolved; the best known bounds
are a poly-logarithmic factor away from optimal bounds [4]. The notion of fractional in-
tersecting families has produced other related variants, including the notion of fractional
L-intersecting families of vector spaces [8] and fractional cross-intersecting families [9, 14].
Attempts to obtain a linear upper bound for |L| = 1 have led to conjectures on ranks of
certain ensembles of matrices [2, 3], so the problem of fractional intersecting families has
generated a considerable amount of interest.

In this paper we propose a more hierarchical extension of this notion of fractional
intersecting families. But before we get to the notion in more precise terms, we return
to the original problem concerning the size of fractional intersecting families for some
motivation. For the rest of the paper, we shall always have L = {θ} where θ = a

b
is a

proper positive fraction with gcd(a, b) = 1, and we shall also use the term “θ-intersecting”
interchangeably with “L-intersecting”.

One of the main results in [4] states that if F is a fractional L-intersecting family
with L = {a

b
} then |F| ⩽ Ob(n log n). On the lower bound side, there are constructions

of fractional L-intersecting families of size Ω(n). For θ = 1
2
, one can improve upon the

constant a little more; there exist bisection closed families1 of size ⌊3n
2
⌋ − 2. What makes

the problem of determining the size of maximal bisection closed families more interesting
and intriguing is that there are non-isomorphic families of size ⌊3n

2
⌋ − 2. The simplest

example (and an instructive one at that) is the following.

Example 1. For the sake of simplicity, denote the set {x1, . . . , xℓ} by x1 · · ·xℓ. Then,
the family

F =

{
{12, 13, . . . , 1n, 1234, 1256, . . . , 12(n− 1)n}, n ≡ 0 (mod 2);

{12, 13, . . . , 1n, 1234, 1256, . . . , 12(n− 2)(n− 1)}, n ≡ 1 (mod 2),

is not only bisection closed, but also hierarchically bisection closed in the following sense:
for any sets A1, . . . , Ar ∈ F we also have |A1 ∩ · · · ∩Ar| ∈ {1

2
|A1|, . . . , 12 |Ar|}. The easiest

way to see this is to note that for this family, the subfamilies of sizes 2 and 4 are sunflowers,
and also that any collection of subsets in F have non-empty intersection.

The other known bisection closed families of size ⌊3n
2
⌋ − 2 arise from a construction

using Hadamard matrices, and do not satisfy this stronger property.

1When θ = 1/2 a fractional L-intersecting family is also called a bisection closed family in [4].
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Example 2. Let H be an m × m Hadamard matrix, i.e. a matrix whose entries lie in
{±1}, and with all the rows being mutually orthogonal. Assume that H is normalized so
that the first row is the all-ones vector. Let J denote the m×m all-ones matrix. Consider
the matrix H H

H −H
H −J

 ,

and delete the first and (2m+1)th rows. Viewing the remaining rows as the ±1 incidence
vectors of subsets of [2m], one can verify that this defines a family F ⊂ P([n]) that is
2-bisection closed, where n = 2m. Since there are 3m−2 sets in F , we have |F| = 3n

2
−2.

One of the principal reasons why a linear bound, let alone a tight bound, for the
size of a bisection closed family is elusive is this diffusive nature of the known families
of maximal size. But since this last example seems to be structurally different from the
others, it raises the following more natural question: how large could a hierarchically
bisection closed family be?

In order to make this precise, we make a formal definition.

Definition 3. Let r ⩾ 2 and L = {θ1, . . . , θm} be a set of fractions in (0, 1). So, θi = ai/bi
for some positive integers ai, bi such that gcd(ai, bi) = 1, for each 1 ⩽ i ⩽ m. A family
F of subsets of [n] is called hierarchically r-closed L-intersecting (or simply r-closed L-
intersecting) if, for each 2 ⩽ t ⩽ r and any t distinct sets A1, . . . , At in F we have
|
⋂t

i=1Ai| ∈ {θj|Ai| : 1 ⩽ i ⩽ t, 1 ⩽ j ⩽ m}.
When L = {θ}, an r-closed L-intersecting family is also called an r-closed θ-intersecting

family. In particular, when θ = 1/2, we call such a family r-bisection closed.

Note that if a θ-intersecting family is r-closed, then it is also s-closed for all 2 ⩽ s ⩽ r,
which explains why we refer to such a family as hierarchically closed.

The natural question that arises is the following. Suppose r ⩾ 3. If F ⊂ P([n]) is
r-closed θ-intersecting, then determine the optimal upper bound for |F|. Note that if
r = 2, then we are back to the case of fractional L-intersecting families, so it behooves
us to set r ⩾ 3 if we hope to see any different emergent phenomenon arising from the
definition. And the main thesis of this paper is that setting r ⩾ 3 makes a big difference.

It is imperative to compare this notion with another generalization that appears in [10]
which goes as follows. For an integer r ⩾ 2, and L as above, a family F is said to be
r-wise fractionally L-intersecting if for any distinct A1, . . . , Ar ∈ F there exists θ ∈ L
such that |A1 ∩ · · · ∩Ar| ∈ {θ|A1|, . . . , θ|Ar|}. Again, the problem of determining the size
of a maximum r-wise fractional L-intersecting family is optimally determined in [10] up
to poly-logarithmic factors, and it appears that to get beyond the poly-logarithmic factor
needs newer ideas (see [4] for more details on this). Our notion of r-closed θ-intersecting
is somewhat related and yet vastly different as the main results of our paper will attest.

We are now in a position to state the main results of the paper.

Theorem 4. Let F be an r-bisection closed family over [n], with r ⩾ 3. Then,

|F| ⩽ ⌊3n
2
⌋ − 2 (∗)
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for all n ⩾ 2. Moreover:

1. (Tightness) For each n ⩾ 2, there exists an r-bisection closed family Fmax over [n]
which attains the bound in (∗).

2. (Uniqueness) For any family F over [n] that attains the bound in (∗), there is a
permutation σ of [n] such that Fmax = σ(F) := {σ(A) : A ∈ F}, where σ(E) :=
{σ(a) : a ∈ E} for any set E ∈ P([n]).

3. (Stability) There exists an absolute constant C > 0 such that the following holds. If
|F| ⩾ (3

2
− ϵ)n for some 0 < ϵ < 0.1, then for some permutation σ of [n],

|σ(F) \ Fmax| < Cϵn.

When F is a general r-closed θ-intersecting family, where θ is not necessarily equal to
1/2, we do not have a tight upper bound on |F|. But, we are able to establish a linear
upper bound on |F| even in this case.

Theorem 5. Let F be an r-closed θ-intersecting family over [n], with r ⩾ 3. Let θ =
a/b ∈ (0, 1) with gcd(a, b) = 1, a, b > 0.

1. If a > 1, then |F| ⩽ 2
(
ln(b)−ln(a)+1

b−a

)
(n− a) + 1.

2. If a = 1, then we have two cases:

(a) if b = 2 and F contains a set of size 2, then |F| ⩽ (1 + ln(2))(n− 1) + 1;

(b) otherwise, |F| ⩽
(2 ln(b)

b−1

)
(n− 1) + 1.

The rest of the paper is organized as follows. We start with some preliminary results
along with some terminology and develop some tools and lemmas in the next section.
In Section 3, we prove Theorem 5, and then use this to prove Theorem 4. We finally
conclude with some remarks and open questions in Section 4.

2 Preliminaries

In what follows, we always assume that F is an r-closed θ-intersecting family with r ⩾ 3.
We denote by F(i) the collection of all i-element sets in F , that is, F(i) := F ∩

(
[n]
i

)
.

Our first observation is that the possible sizes that could appear in any intersection of
t sets (2 ⩽ t ⩽ r) in F is quite limited.

Proposition 6. Let 2 ⩽ t ⩽ r and suppose A1, . . . , At ∈ F are distinct sets with |A1| ⩽
· · · ⩽ |At|. Then, |A1 ∩ · · · ∩ At| ∈ {θ|A1|, θ|A2|}.

Proof. Since 2 ⩽ t ⩽ r, we have θ|A1| ⩽ |A1 ∩ · · · ∩ At| ⩽ |A1 ∩ A2| ⩽ θ|A2|, and so
|A1 ∩ · · · ∩ At| ∈ {θ|A1|, θ|A2|}.
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Next, we show that one can often define a core of a set A ∈ F with certain nice
properties.

Definition 7. For A ∈ F , define the set Tor(A) of θ-intersectors of A by

Tor(A) := {B ∈ F : |B| ⩾ |A|, |A ∩B| = θ|A|}.

Note the condition |B| ⩾ |A| in the definition of Tor(A).

Proposition 8. If Tor(A) ̸= ∅, then A ∩B = A ∩B′ for all B,B′ ∈ Tor(A).

Proof. We have θ|A| ⩽ |A∩B∩B′| ⩽ |A∩B| = |A∩B′| = θ|A|. Hence, A∩B∩B′ = A∩B
and A ∩B ∩B′ = A ∩B′. Thus, A ∩B = A ∩B′.

Definition 9. For A ∈ F such that Tor(A) ̸= ∅, define the core of A by

Cor(A) := A ∩B

for any B ∈ Tor(A).

Proposition 8 shows that Definition 9 is well-defined. For a set A ∈ F , Cor(A) is not
defined if f Tor(A) = ∅. The next two results describe when this may happen.

Proposition 10. Let |F(i)| ⩾ 2. Then Tor(A) ̸= ∅ for all A ∈ F(i).

Proof. If A,B ∈ F(i) are two distinct sets, then |A ∩ B| = θ|A|, so B ∈ Tor(A). Hence,
Tor(A) ̸= ∅.

Corollary 11. If A ∈ F(i) such that Tor(A) = ∅, then F(i) = {A}.

In fact, Proposition 10 implies that the family F is a union of uniform sunflowers.

Definition 12. A family F of subsets of [n] is called a sunflower if, for C :=
⋂

A∈F A, we
have A ∩B = C for all distinct A,B ∈ F .

Lemma 13. Every nonempty F(i) is a sunflower.

Proof. If |F(i)| ⩽ 2, then this is trivial. Let |F(i)| ⩾ 3. To show that |F(i)| is a sunflower,
it suffices to show that Cor(A) = Cor(B) for any two sets A,B ∈ F(i). The proof of
Proposition 10 shows that A ∈ Tor(B) and B ∈ Tor(A) for any two sets A,B ∈ F(i).
Hence, Cor(A) = A ∩B = B ∩ A = Cor(B).

Remark 14.

1. Note that the set C in Definition 12 is usually called the core of the sunflower. In
particular, if the sunflower is a singleton set {A}, then C = A.

However, our definition of core is Definition 9. This matches with the above notion
when |F(i)| ⩾ 2. But, when F(i) = {A}, Cor(A) is either undefined (if Tor(A) = ∅),
or a subset of A having cardinality θi (if Tor(A) ̸= ∅).
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2. The property of being 3-closed is crucially used in the proof of Proposition 8. Thus,
if F is not 3-closed, then Definition 9 cannot be made, and Lemma 13 need not
hold. Indeed, Example 2 shows that there are 2-bisection closed families that do
not satisfy this property.

We now establish some notations that we will use throughout the rest of this paper.
Let

S := {i ∈ [n] : F(i) ̸= ∅}, imin := min(S),

Snor := {i ∈ S : Tor(A) ̸= ∅ for all A ∈ F(i)}, imax := max(Snor),

Sexc := {i ∈ S : Tor(A) = ∅ for some A ∈ F(i)}.

Note that S = Snor ⊔ Sexc. We say that F(i) is a normal sunflower if i ∈ Snor, and
we say that it is an exceptional sunflower if i ∈ Sexc. Define Fnor :=

⋃
i∈Snor

F(i) and
Fexc :=

⋃
i∈Sexc

F(i). Then, F = Fnor ⊔ Fexc. Define Pet(A) := A \ Cor(A) for each
A ∈ Fnor. For the sake of brevity, we also define the following:

Set(F(i)) :=
⋃

A∈F(i)

A for any i ∈ S,

Pet(F(i)) :=
⋃

A∈F(i)

Pet(A) for any i ∈ Snor,

Cor(F(i)) := Cor(A) for any A ∈ F(i), i ∈ Snor.

Furthermore, let

F(⩾ i) :=
⋃
j⩾i

F(j) and F(I) :=
⋃
i∈I

F(i) for any I ⊂ [n].

Thus, we may also speak of Pet(F(⩾ i)) and Set(F(⩾ i)), as well as Pet(F(I)) and
Set(F(I)) for any I ⊂ [n].

Observation 15. Proposition 10 and Corollary 11 show that if Tor(A) ̸= ∅ for some
A ∈ F(i), then i ∈ Snor, and if i ∈ Sexc, then |F(i)| = 1.

2.1 The structure of Fnor

The next few results describe the structure of the normal sunflowers in F in relation to
the cores.

Observation 16. The proof of Lemma 13 shows that if A,B ∈ Fnor with |A| = |B|, then
Cor(A) = Cor(B).

Lemma 17. If A,B ∈ Fnor with |A| < |B|, then Cor(A) ⊊ Cor(B).
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Proof. Let A′ ∈ Tor(A), B′ ∈ Tor(B). Consider A∩A′∩B = Cor(A)∩B ⊆ Cor(A). Since
θ|A| ⩽ |A ∩ A′ ∩ B| ⩽ |Cor(A)| = θ|A|, we have A ∩ A′ ∩ B = Cor(A) and Cor(A) ⊆ B.
Since |B| ⩽ |B′|, we can run the above argument with B′ in place of B to show that
Cor(A) ⊆ B′. Hence, Cor(A) ⊆ B ∩ B′ = Cor(B). Lastly, Cor(A) ̸= Cor(B) because
|Cor(A)| = θ|A| ≠ θ|B| = |Cor(B)|.

Lemma 18. Suppose that i, j ∈ S such that i < θj. If A ∈ F(i) and B ∈ F(j), then
B ∈ Tor(A). In particular, i ∈ Snor.

Proof. Since |A ∩ B| ⩽ |A| < θj, we must have |A ∩ B| = θi. Hence, B ∈ Tor(A). Thus,
i ∈ Snor by Observation 15.

Lemma 19. Let A ∈ Fnor. If there exists B ∈ F(imax) such that Pet(A) ∩ Cor(B) ̸= ∅,
then Cor(B) ⊆ A. Moreover, there is at most one set A ∈ Fnor for which this happens.

Proof. Note that |A| < imax by Observation 16. Let C ∈ Tor(B), and consider A∩B∩C =
A ∩ Cor(B) ⊆ Cor(B). By Lemma 17, Cor(A) ⊆ Cor(B), and Pet(A) ∩ Cor(B) ̸= ∅ by
assumption. Hence, θ|A| < |A ∩ Cor(B)|, which implies that θimax ⩽ |A ∩ B ∩ C| =
|A ∩ Cor(B)| ⩽ |Cor(B)| = θimax. Thus, Cor(B) ⊆ A.

Now, suppose that there exists A′ ∈ Fnor distinct from A for which there exists B′ ∈
F(imax) such that Pet(A′)∩Cor(B′) ̸= ∅. By Lemma 13, Cor(B) = Cor(B′). So, Cor(B) ⊆
A ∩ A′, which implies that |A ∩ A′| ⩾ θimax, a contradiction.

Denote by Enor the unique set A ∈ Fnor for which there exists B ∈ F(imax) such that
Pet(A) ∩ Cor(B) ̸= ∅, whenever it exists. Define F∗

nor := Fnor \ {A ∈ Fnor : A = Enor}.

Corollary 20. For all A,B ∈ F∗
nor, Pet(A) ∩ Cor(B) = ∅.

Proof. If |A| > |B|, then Cor(A) ⊋ Cor(B) by Lemma 17, so Pet(A) ∩ Cor(B) = ∅.
If |A| = |B|, then this follows from Observation 16. Let |A| < |B|, and suppose z ∈
Pet(A) ∩ Cor(B). Then, by Lemma 17, z ∈ Cor(B′) for any B′ ∈ F(imax). Hence,
Pet(A) ∩ Cor(B′) ̸= ∅, which implies by Lemma 19 that A = Enor, a contradiction.

Lemma 17 and Corollary 20 say that F∗
nor has the following structure: the cores of

F∗
nor form an increasing chain, and any petal is disjoint from every core. In fact, these

two results can be used to show that, for F∗
nor, “r-closed” is equivalent to “s-closed” for

any r, s ⩾ 3.

Proposition 21. F∗
nor is s-closed θ-intersecting for all s ⩾ 2.

Proof. It suffices to show this for all s > r ⩾ 3, and by induction it is enough to show
this for s = r + 1. Let A1, . . . , Ar+1 ∈ F∗

nor be any r + 1 distinct sets. Without loss of
generality, suppose that |A1| ⩽ · · · ⩽ |Ar+1|.

First, suppose that |Ai| = |Aj| for some i < j. Then, Cor(A1) ⊆
⋂r+1

k=1 Ak ⊆ Cor(Ai)
by Lemma 17 and Observation 16. But, by Corollary 20, Pet(A1) ∩ Cor(Ai) = ∅. Hence,⋂r+1

k=1 Ak = Cor(A1). Thus, |
⋂r+1

k=1Ak| = θ|A1|. So, we are done in this case.
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Next, suppose that |Ai| < |Aj| for all i < j. Consider U = A1 ∩ · · · ∩ Ar and
V = A1 ∩ · · · ∩ Ar−1 ∩ Ar+1. By Proposition 6, we know that |U |, |V | ∈ {θ|A1|, θ|A2|}.
Also, |U ∩ V | ⩽ min{|U |, |V |}. Note that U ∩ V = A1 ∩ · · · ∩ Ar+1.

By Lemma 17, Cor(A1) ⊆ U ∩ V . So, if |U | = θ|A1| or |V | = θ|A1|, then θ|A1| ⩽
|U ∩ V | ⩽ θ|A1|, and we are done in this case. So, assume that |U | = θ|A2| = |V |.
Consider U ⊆ A1 ∩ A2. Since θ|A2| = |U | ⩽ |A1 ∩ A2| ⩽ θ|A2|, we have U = A1 ∩ A2.
Similarly, V ⊆ A1 ∩ A2 and θ|A2| = |V | ⩽ |A1 ∩ A2| ⩽ θ|A2|, so V = A1 ∩ A2. Hence,
U ∩ V = A1 ∩ A2, and |U ∩ V | = |A1 ∩ A2| = θ|A2|, so we are done.

The final result of this section provides a linear upper bound on the size of F when
F = F∗

nor and Tor(A) = {B ∈ F : |B| ⩾ |A|} for every A ∈ F . Also, the proof technique
will be used later on in the proof of Theorem 5 in Section 3.

Lemma 22. Suppose that for all A,B ∈ F∗
nor such that |A| < |B|, we have B ∈ Tor(A).

Then, |F∗
nor| ⩽ ⌊n−a

b−a
⌋.

Proof. For simplicity of notation, assume that F = F∗
nor. Suppose that S = {i1, . . . , ik}

with i1 < · · · < ik. Let C := Cor(F(ik)). Define Yj := Set(F(ij)) \ C for each 1 ⩽ j ⩽ k.
By Lemma 17 and Corollary 20, Yj = Pet(F(ij)) for each 1 ⩽ j ⩽ k. Since B ∈ Tor(A)
whenever A ∈ F(ij) and B ∈ F(ij′) for j < j′, we must have Pet(A)∩Pet(B) = ∅. Thus,
Yj ∩ Yj′ = ∅ for all j ̸= j′. Now, notice that

|F(ij)| =
|Yj|

(1− θ)ij
,

since the petals in F(ij) are pairwise disjoint sets with each having size (1− θ)ij. Thus,

|F| =
k∑

j=1

|F(ij)| =
k∑

j=1

|Yj|
(1− θ)ij

.

We also have
∑k

j=1|Yj| ⩽ n− |C| = n− θik. It is now easy to see that |F| is maximized

when |Yj| = (1−θ)ij for 2 ⩽ j ⩽ k, and |Y1| is the largest integer ⩽ n−θik−
∑k

j=2(1−θ)ij
which is divisible by (1−θ)i1. Thus, the maximum of |F| taken as S varies over all subsets
of [n] of size k, with k varying from 1 to n, occurs when k = 1 and i1 = b, where θ = a/b
in least form, a, b > 0. This maximum is easily seen to be ⌊n−a

b−a
⌋.

2.2 The structure of Fexc

The next few results describe the structure of the exceptional sunflowers in F in relation
to the cores.

Lemma 23. Suppose that Snor ̸= ∅. Let i ∈ Sexc such that i > imax. If F(i) = {A}, then
Cor(F(imax)) ⊆ A.

Proof. Let B ∈ F(imax) and C ∈ Tor(B). Consider A ∩ B ∩ C = A ∩ Cor(B) ⊆ Cor(B).
Since, θ|B| ⩽ |A ∩B ∩ C| ⩽ |Cor(B)| = θ|B|, we have Cor(B) ⊆ A, as required.
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Lemma 24. Suppose that Snor ̸= ∅. Let i ∈ Sexc such that i < imax. If F(i) = {A},
then, either |A ∩ Cor(F(imax))| = θi, or Cor(F(imax)) ⊆ A. Moreover, there is at most
one i < imax such that the latter case holds.

Proof. Let B ∈ F(imax) and C ∈ Tor(B). Consider A ∩ B ∩ C = A ∩ Cor(B) ⊆ Cor(B).
If |A ∩ B ∩ C| < θimax, then we must have |A ∩ Cor(B)| = θi, which is the former case.
If |A ∩ B ∩ C| = θimax, then A ∩ B ∩ C = Cor(B), since |Cor(B)| = θimax. Hence,
Cor(B) ⊆ A, which is the latter case. Lastly, suppose for the sake of contradiction that
there exists i′ ∈ Sexc, i

′ ̸= i, such that i′ < imax, F(i′) = {A′}, and Cor(B) ⊆ A′. Then,
A ∩ A′ ⊇ Cor(B), so |A ∩ A′| ⩾ θimax, which is a contradiction.

Denote by Eexc the unique set in Fexc such that |Eexc| < imax and Cor(F(imax)) ⊆ Eexc,
whenever it exists.

Lemma 25. Let θ = a/b, gcd(a, b) = 1. Let A ∈ F such that b ∤ |A|. Then, A ∈ Fexc,
and there is at most one such set A in F . Moreover, if Snor ̸= ∅, then Cor(F(imax)) ⊆ A.

Proof. For any A1 ∈ F distinct from A, we must have |A ∩A1| = θ|A1|, since θ|A| is not
an integer. So, Tor(A) = ∅, which implies that A ∈ Fexc. If there were another such set
A′, then |A ∩ A′| can be neither θ|A| nor θ|A′|, which is a contradiction.

Let Snor ̸= ∅, B ∈ F(imax), and C ∈ Tor(B). Consider A ∩ B ∩ C = A ∩ Cor(B).
Since, |A ∩ B ∩ C| ̸= θ|A|, we have θimax ⩽ |A ∩ B ∩ C| ⩽ |Cor(B)| = θimax. Hence,
A ∩B ∩ C = Cor(B), which implies that Cor(B) ⊆ A.

Denote by Eθ the unique set in F such that b ∤ |Eθ| (where θ = a/b, gcd(a, b) = 1),
whenever it exists. Define F∗

exc := Fexc \ {A ∈ Fexc : A = Eexc or Eθ}. Define F∗ :=
F∗

nor ∪ F∗
exc.

2.3 The structure of F∗

Observation 26. If θ = a/b, gcd(a, b) = 1, then |A| ≡ 0 (mod b) for all A ∈ F∗.

Proposition 27. |F∗| ⩽ |F| ⩽ |F∗|+ 1.

Proof. It suffices to show that at most one of Enor, Eexc, and Eθ can belong to the family F .
If Snor = ∅, then neither Enor nor Eexc can exist by definition. So, suppose that Snor ̸= ∅.
Then, Cor(F(imax)) ⊆ Enor, Eexc, and Eθ by Lemmas 19, 24, and 25, respectively. Hence,
the size of the intersection of any two of these sets must be at least |Cor(F(imax))| = θimax,
which is neither θ|Enor|, nor θ|Eexc|, nor θ|Eθ|, which is a contradiction.

3 Proofs of Theorems 4 and 5

Assume that F = F∗. Lemma 18 motivates us to partition the family F as F =⊔
k⩾0F(Ik), where Ik := (imin/θ

k−1, imin/θ
k] for k ⩾ 1, and I0 := {imin}. Suppose that

Snor ̸= ∅. Let C := Cor(F(imax)). Define Yk := Set(F(Ik)) \ C.
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Observation 28. If v > u+ 1, then Yu ∩ Yv = ∅.

Proof. It suffices to show that if A ∈ F(i) (i ∈ Iu ∩ S) and B ∈ F(j) (j ∈ Iv ∩ S),
then A ∩ B ⊆ C. It follows from the definitions of Ik, k ⩾ 0, that i < θj for any such
i and j. Thus, by Lemma 18, B ∈ Tor(A), so A ∩ B = Cor(A). Hence, by Lemma 17,
A ∩B ⊆ C.

Observation 29. ∑
k odd

|Yk| ⩽ n− |C| ⩽ n− θimin,∑
k even

|Yk| ⩽ n− |C| ⩽ n− θimin.

Proof. This is immediate from the previous observation.

Observation 30. Let i ∈ Ik. Then,

|F(i)| ⩽ |Yk|
(1− θ)i

.

Proof. Let i ∈ Snor. By Lemma 17 and Corollary 20, A \C = Pet(A) for all A ∈ F(i), so
Yk ⊇ Pet(F(i)). By Lemma 13, Pet(A)∩Pet(A′) = ∅ for all distinct A,A′ ∈ F(i). Hence,
|Yk| ⩾ |Pet(F(i))| =

∑
A∈F(i)|Pet(A)|. Since |Pet(A)| = (1 − θ)i for all A ∈ F(i), we are

done.
Let i ∈ Sexc and F(i) = {A}. First, consider the case when i > imax. Since Yk ⊇ A\C,

and C ⊆ A by Lemma 23, we have |Yk| ⩾ |A| − |C| = i − θimax > i − θi. So, we are
done. Next, consider the case when i < imax. Since we assume that F = F∗, we have
|A ∩ C| = θi by Lemma 24. Hence, |A \ C| = i− θi. Since Yk ⊇ A \ C, we are done.

We also need the following result.

Lemma 31. Let η > 1, and let m ⩾ 1 be an integer. Consider the sequence (sk)k⩾1 given
by

sk :=
1

⌊mηk−1⌋+ 1
+

1

⌊mηk−1⌋+ 2
+ · · ·+ 1

⌊mηk⌋
.

Then, limk→∞ sk = ln(η).
When η is an integer, the sequence (sk)k⩾1 is monotonically increasing to ln(η). In

general, sk < ln(η) + 1
m

for all k ⩾ 1.

Proof. Let Hn denote the nth harmonic number, Hn =
∑n

i=1 1/i. It is well-known that
limn→∞(Hn − ln(n)) = γ, the Euler–Mascheroni constant. Hence,

sk = H⌊mηk⌋ −H⌊mηk−1⌋ = ln

(
⌊mηk⌋
⌊mηk−1⌋

)
+ ϵ(⌊mηk⌋)− ϵ(⌊mηk−1⌋),
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where limn→∞ ϵ(n) = 0. Since

η − 1

mηk−1
<

⌊mηk⌋
⌊mηk−1⌋

<
η

1− 1
mηk−1

,

we have limk→∞ sk = ln(η).
When η is an integer, the monotonicity of the sequence (sk)k⩾1 is a corollary of the

following more general observation, where n ⩾ 1 is any integer:

ηn∑
i=n+1

1

i
<

ηn∑
i=n+1

1

i
+

(
1

ηn+ 1
− 1

ηn+ η

)
+ · · ·+

(
1

ηn+ η − 1
− 1

ηn+ η

)
=

η(n+1)∑
i=(n+1)+1

1

i
.

To show that sk < ln(η) + 1
m

for all k ⩾ 1, observe that

sk <

∫ ⌊mηk⌋

⌊mηk−1⌋

1

t
dt

⩽ ln(mηk)− ln(⌊mηk−1⌋)

= ln(η) + ln

(
mηk−1

⌊mηk−1⌋

)
< ln(η) +

1

⌊mηk−1⌋

⩽ ln(η) +
1

m
.

3.1 Proof of Theorem 5

Now, we are ready to prove Theorem 5.

Proof. We assume throughout that F = F∗, since it suffices to compute |F∗| by Propo-
sition 27.

First, observe that if Fnor = ∅, then only F(I0) and F(I1) can be nonempty by
Lemma 18. Furthermore, each nonempty F(i) is a singleton set. Therefore, |F| ⩽
1
b

(
imin

θ
− imin

)
+ 1, which is maximized when n = imin

θ
. Hence, this gives the bound

|F| ⩽ ⌊ (1−θ)n
b

⌋+ 1, which is stronger than those in the statement of Theorem 5.
For the rest of the proof, suppose that Fnor ̸= ∅. Let imin = mb for some m ⩾ 1 by

Observation 26. For k ⩾ 1, we have

|F(Ik)| =
∑

i∈Ik∩S

|F(i)| ⩽
∑

i∈Ik∩S

|Yk|
(1− θ)i

⩽


|Yk|
b− a

(
ln(θ−1) +

1

m

)
, a > 1;

|Yk|
b− 1

(ln(b)), a = 1,
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from Observations 26 and 30, as well as Lemma 31. For k = 0, we have

|F(I0)| = |F(imin)| ⩽
|Y0|

(1− θ)mb
⩽


|Y0|
b− a

(
ln(θ−1) +

1

m

)
, a > 1;

|Y0|
b− 1

(
1

m

)
, a = 1,

from Observation 30 and Lemma 31. Since

|F| =
∑
k⩾0

|F(Ik)| =
∑
k odd

|F(Ik)|+
∑
k even

|F(Ik)|,

we get the bound

|F| ⩽ 2

(
ln(b)− ln(a) + 1

b− a

)
(n− |C|) (1)

when a > 1 by applying Observation 29.
When a = 1, we need to compare the term 1/m appearing in the bound for F(I0)

with the term ln(b) appearing in the bound for F(Ik) for k even: since 1/m > ln(b) if and
only if m = 1 and b = 2, and this happens if and only if θ = 1/2 and imin = 2, we get

∑
k odd

|F(Ik)| ⩽
ln(b)

b− 1

∑
k odd

|Yk|,
∑
k even

|F(Ik)| ⩽



1

2− 1

∑
k even

|Yk|, θ = 1/2, imin = 2;

ln(b)

b− 1

∑
k even

|Yk|, otherwise.

Thus, by Observation 29,

|F| ⩽


(1 + ln(2))(n− |C|), θ = 1/2 and imin = 2;(
2 ln(b)

b− 1

)
(n− |C|), otherwise.

(2)

The result now follows immediately from (1) and (2).

3.2 Proof of Theorem 4

We begin with an outline of the proof of Theorem 4 before presenting the details. Since
the theorem is easily verified for n = 2, 3, we may assume that n ⩾ 4. It also suffices
to assume that F = F∗ by Proposition 27. First, we show that the upper bound on |F|
holds when S = Snor = {2, 4}. Second, we show that if Snor ⊉ {2, 4}, then F cannot be
an extremal family. Finally, we show that if Snor ⊋ {2, 4}, then we can get a family that is
strictly larger than F by removing all the sets of sizes greater than 4 and adding new sets
of sizes 2 and 4. The uniqueness and stability are then easily verified, thus completing
the proof.
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Proof. Example 1 shows that there exists an r-bisection closed family F such that |F| =
⌊3n

2
⌋ − 2 for any n ⩾ 2, so the bound (∗), which we shall establish below, is in fact tight.

For the rest of the proof, we assume that n ⩾ 4 and that F = F∗.

Claim 32. If S = Snor = {2, 4}, then |F| ⩽ ⌊3n
2
⌋ − 3.

Let Cor(F(2)) = {a1} and Cor(F(4)) = {a1, a2}. By Corollary 20 it follows that
|F(4)| ⩽ ⌊n−2

2
⌋ and |F(2)| ⩽ n− 2 so |F| = |F(2)|+ |F(4)| ⩽ ⌊3n

2
⌋ − 3.

Claim 33. If Snor ⊉ {2, 4}, then F is not an extremal family.

Suppose for the sake of contradiction that F is extremal. Let C := Cor(F(imax)).
If S = {2, 4} but Sexc ̸= ∅, then clearly there cannot be more than n sets in the family

F , contradicting its extremality. So, assume that S ̸= {2, 4}.
Theorem 5 already shows that |F| < ⌊3n

2
⌋ − 3 for a bisection closed family unless

imin = 2. So, suppose that 2 ∈ S.
If 2 ∈ Sexc, then there cannot be any i ∈ S such that i > 4 by Lemma 18. So,

S = {2} = Sexc, but this implies that |F| = 1, contradicting the extremality of F . Hence,
2 ∈ Snor.

Next, if 4 ̸∈ S, then by Lemma 18, A ∩ B = Cor(A) for all A ∈ F(2), B ∈ F(⩾ 6).
If n = 4, then F(⩾ 6) = ∅, so we must have S = {2}. However, this contradicts the
extremality of F , as we have seen earlier, so assume that n ⩾ 6. Let m1 = |Pet(F(2))|
and m2 = |Set(F(⩾ 6))|. Then, m1 + m2 ⩽ n, and |F| ⩽ m1 + ⌊2 ln(2)(m2 − |C|)⌋ ⩽
1 + ⌊2 ln(2)(n− 4)⌋ by (2). This is less than ⌊3n

2
⌋ − 3, which contradicts the extremality

of F . So, 4 ∈ S.
Lastly, if 4 ∈ Sexc, then S ⊂ {2, 4, 6, 8} by Lemma 18. Suppose that F(8) ̸= ∅. Then,

if F(4) = {A}, we must have |A ∩ B| = 1
2
|B| = |A| for any B ∈ F(8). Hence, A ⊂ B for

all B ∈ F(8). So, if 8 ∈ Snor, then A = Cor(B), implying that A = Eexc. This contradicts
that F = F∗, so 8 ̸∈ Snor. But then F(4) and F(8) together contain at most two sets,
and it is easy to see by a similar argument as in the previous case that |F| is strictly less
than ⌊3n

2
⌋ − 3, which contradicts the extremality of F . So, 4 ∈ Snor.

To quickly summarize the above observations, Snor ⊇ {2, 4} for any extremal family
F . We will now show that if Snor ⊋ {2, 4}, then F is not extremal. Assume that F is an
extremal family having the maximum number of sets of size 2.

Claim 34. If there exists a ∈ Pet(F(2)) ∩B for some B ∈ F(⩾ 4), then a ∈ Pet(F(4)).

This follows from Observation 28 and Corollary 20.

Claim 35. |Pet(F(2)) \ Pet(F(4))| ⩽ 1.

Suppose for the sake of contradiction that a1, a2 ∈ Pet(F(2)) \ Pet(F(4)) such that
a1 ̸= a2. Define B′ := Cor(F(4)) ∪ {a1, a2} and F ′ := F ∪ {B′}. By Observation 28,
a1, a2 ̸∈ Set(F ′(⩾ 6)), so F ′ is r-bisection closed. But, |F ′| > |F|, which contradicts the
maximality of F .

Claim 36. For each B ∈ F(4), Pet(B) ∩ Pet(F(2)) = ∅ or Pet(B).
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Let a ∈ Pet(B) ∩ Pet(F(2)), and let b ∈ Pet(B) such that b ̸= a. Suppose for
the sake of contradiction that b ̸∈ Pet(F(2)). If b ̸∈ Pet(A) for any A ∈ F distinct
from B, then we contradict the maximality of F as before by considering the family
F ′ := F ∪ {A′}, where A′ = Cor(F(2)) ∪ {b}. So, b ∈ Pet(F(⩾ 6)) by Corollary 20. Note
that b ̸∈ Pet(F(⩾ 10)) by Observation 28. Also, if b ∈ Pet(F(A)) for some A ∈ F(8),
then we must have B ⊂ A; in particular, a ∈ A, which is not possible by Observation 28.
Hence, b ∈ Pet(A) for some A ∈ F(6), which is also unique by Lemma 13. Now, consider
the family F ′′ := (F \ {A}) ∪ {A′′}, where A′′ := Cor(F(2)) ∪ {b}. Again, the property
of being r-bisection closed is preserved, and |F ′′| = |F|, but |F ′′(2)| > |F(2)|, which is a
contradiction.

We now partition the family F into two disjoint nonempty subfamilies as follows:
let G1 be the subfamily consisting of the sets in F(2) as well as those sets B in F(4)
such that Pet(B) ∩ Pet(F(2)) ̸= ∅, and let G2 be the subfamily of F containing the
remaining sets. Let m1 = |Pet(G1)| and m2 = |Set(G2)|. By Claim 36, Pet(A) ∩ B = ∅
for all A ∈ G1 and B ∈ G2. So, m1 + m2 ⩽ n. Also, imin(G2) ⩾ 4, and |C| ⩾ 3 since
S ⊋ {2, 4}. Observe that |G1| = ⌊3m1

2
⌋ and |G2| ⩽ ⌊2 ln(2)(m2 − 3)⌋ by (2). But then

|F| = |G1|+|G2| ⩽ ⌊3m1

2
⌋+⌊2 ln(2)(m2−3)⌋ < ⌊3n

2
⌋−3 sincem2 ⩾ 6, which contradicts the

extremality of F . This completes the proof of the bound (∗). The tightness, uniqueness,
and stability are now easily verified:

1. As noted before, the family constructed in Example 1 is tight for the upper bound
(∗). Call that family Fmax.

Note that Fmax = Fmax(2) ⊔ Fmax(4), and that Fmax is r-bisection closed for any
r ⩾ 2 because, for any family of subsets of [n] consisting only of sets of sizes 2 and
4, “r-bisection closed” and “intersecting” are equivalent properties. Also note that
Enor = {1, 2} belongs to the family Fmax.

2. The proof of the upper bound (∗) shows that if F is an extremal r-bisection closed
family, then Snor = {2, 4}. Furthermore, Claim 32 shows that for any extremal F we
must have |F∗| = ⌊3n

2
⌋ − 3, and in particular |F∗(2)| = n− 2 and |F∗(4)| = ⌊n−2

2
⌋.

That is, assuming Cor(F∗(2)) = {a1} and Cor(F∗(4)) = {a1, a2}, the sets in F∗(2)
are precisely all those obtained by taking the union of {a1} with singleton sets
{b} such that b ̸= a1, a2, and the sets in F∗(4) are precisely all those obtained by
taking the union of {a1, a2} with two-element sets {b1, b2} that are pairwise disjoint
from each other as well as from {a1, a2}. Since F∗ is an intersecting family, it is
r-bisection closed, too. A moment’s reflection shows that this family F∗ can be
obtained simply by applying an appropriate permutation of [n] to F∗

max.

To complete the analysis, observe that G := F∗ ∪ {Cor(F(4))} is also r-bisection
closed, and the permutation of [n] that mapped F∗ to F∗

max also maps G to Fmax.
Clearly, Enor(G) = Cor(F(4)). To show that G = F , we verify that neither Eexc

nor Eθ can belong to F . Suppose Eexc ∈ F . Then Cor(F(4)) ⊊ Eexc. But, if
{a} ≠ Cor(F(2)), then a ∈ Pet(A) for some A ∈ F(2). In particular, we must

the electronic journal of combinatorics 30 (2023), #P00 14



have A ∩ Eexc = A which forces Eexc ∈ F(4), but this is a contradiction. The same
argument also shows that Eθ ̸∈ F , and this completes the proof of uniqueness of
the extremal family.

3. Theorem 5 and the proof of the upper bound (∗) show that |F| < 2 ln(2)(n− 1)+ 1
for any r-bisection closed family F that is not extremal. Since 3

2
− 2 ln(2) ≈ 0.11,

the claim follows.

4 Concluding remarks

We ignore all floors and ceilings here for simplicity.

• While Theorem 4 considers the maximum size among all possible r-bisection closed
families, it is possible to consider a more constrained problem:

Problem 37. For an integer k ⩾ 2, determine the maximum size of an r-bisection
closed family F with imin(F∗) ⩾ k.

Theorem 5 establishes a linear upper bound, and it is not hard to construct a
heirarchically bisection closed family of size at least (2n − k − 4)

(
1
k
+ 1

k+2
+ 1

k+4

)
when k ⩾ 4. Our methods in this paper suggest that all the possible set sizes must
lie in the range [k, 2k] for an optimal family. There could be more than three distinct
set sizes in an optimal family, though it seems rather unlikely that sets of all possible
sizes in this range can be attained. Settling this question fully may require other
new ideas.

• While Theorem 4 gives a tight result for θ = 1/2, the bound in Theorem 5 in the
general case is far from best possible. Again, one can mimic the construction for

Fmax to get r-closed θ-intersecting families of size (n− 2a)
(

1
b−a

+ 1
2(b−a)

)
if θ = a

b
,

but this is not best possible in general. If θ = 1/b for b odd, then one can get a

heirarchically closed θ-intersecting family F of size (n−3)
(

1
b−1

+ 1
2(b−1)

+ 1
3(b−1)

)
. If

θ = 1/b for b even, then in general one can get a heirarchically closed θ-intersecting

family F of size (n− 4)
(

1
b−1

+ 1
2(b−1)

+ 1
4(b−1)

)
. Similar constructions can be made

in general when a ̸= 1. The methods in this paper suggest that the best bound
ought to be attained when imin(F∗) is as small as possible, i.e. imin(F∗) = b when
θ = a/b in least form, but a complete answer seems beyond the scope of the methods
in this paper.

Problem 38. For a fraction θ = a/b ∈ (0, 1), determine the maximum size of an
r-closed θ-intersecting family F .

• The following general question naturally arises from the above two problems, and
we make the explicit statement for the sake of completeness:
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Problem 39. For a fraction θ = a/b ∈ (0, 1) and an integer k ⩾ b, determine the
maximum size of an r-closed θ-intersecting family F with imin(F∗) = k.

• Another interesting question arises as an artifact of our proof ideas. If F = Fexc

then the proof of Theorem 5 also shows that |F| ⩽
(
1−θ
b

)
n+2. But, it appears that

this bound is far from best possible, and we believe that in this case |F| = O(
√
n).

Since the notion of an exceptional family seems a bit contrived, a more natural
question is the following:

Question 40. Suppose F = {A1, . . . , Am} is an r-closed θ-intersecting family with
|Ai| < |Aj| whenever i < j. Is |F| ⩽ O(

√
n)?

One indication that this bound is the correct order comes from the situation when
|Ai ∩ Aj| = θ|Ai| whenever i < j. This setup is similar to that in Lemma 22, but
under the additional constraint that there is at most one set of any fixed size. Indeed,
in this case, a straightforward inductive argument shows that |

⋃k
i=1Ai| ⩾ k2, and

that gives the bound stated. But in the general case, the methods developed in this
paper seem to fall short of being able to settle this conjecture in the affirmative. The
following weaker version of the above question could prove to be more amenable to
investigation:

Question 41. Suppose F = {A1, . . . , Am} is an r-closed θ-intersecting family with
|Ai| < |Aj| whenever i < j. Is |F| ⩽ o(n)?
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