Addendum to "On hierarchically closed fractional intersecting families" (Electron. J. Comb. 30 (2023), no. 4, \#P4.37)

February 14, 2024

Abstract

Theorem $4(2)$ in [1] says that any hierarchically r-bisection closed family \mathcal{F} over [n] (for $r \geq 3$) that attains equality in the bound $$
\begin{equation*} |\mathcal{F}| \leq\lfloor 3 n / 2\rfloor-2 \tag{*} \end{equation*}
$$ is the family $\mathcal{F}_{\text {max }}$ of Example 1, up to permutations of $[n]$. In the proof of Theorem 4(2), we merely wrote that, "The proof of the upper bound $(*)$ shows that if \mathcal{F} is an extremal r-bisection closed family, then $S_{\text {nor }}=\{2,4\}$." However, the details require some filling in, which we do so in this addendum.

To show that there is a unique extremal family \mathcal{F} (up to permutations of $[n]$) that attains the bound $(*)$, we first show that, among the families satisfying $\mathcal{F}=\mathcal{F}^{*}$, the extremal ones have size $\lfloor 3 n / 2\rfloor-3$. So, assume that $\mathcal{F}=\mathcal{F}^{*}$ is extremal over $[n]$. Claims $32-35$ hold for any such \mathcal{F}. We recall a couple of these claims here:

Claim 33. $S_{\text {nor }} \supseteq\{2,4\}$.
Claim 34. If there exists $a \in \operatorname{Pet}(\mathcal{F}(2)) \cap A$ for some $A \in \mathcal{F}(\geq 4)$, then $A \in \mathcal{F}(4)$ and $a \in \operatorname{Pet}(A)$.
An additional hypothesis was introduced in:
Claim 36. Let \mathcal{F} be an extremal family for which $|\mathcal{F}(2)|$ is maximum. Then for each $B \in \mathcal{F}(4)$, $|\operatorname{Pet}(B) \cap \operatorname{Pet}(\mathcal{F}(2))| \in\{0,2\}$.
Using Claim 36 we showed that if \mathcal{F} is any extremal family for which $|\mathcal{F}(2)|$ is maximum, then $S_{\text {nor }}=\{2,4\}$. This was used to establish that $\left|\mathcal{F}^{*}\right| \leq\lfloor 3 n / 2\rfloor-3$ for any r-bisection closed family \mathcal{F} over [n], as well as the following (weaker) uniqueness result (cf. [1, Theorem 4(2)]):
Lemma 37. Let \mathcal{F} be an extremal r-bisection closed family over $[n]$ for which $S_{\text {nor }}=\{2,4\}$. Then, there is a permutation σ of $[n]$ such that $\sigma(\mathcal{F})=\mathcal{F}_{\max }$. In particular, if \mathcal{F} is an extremal family for which $|\mathcal{F}(2)|$ is maximum, then $\sigma(\mathcal{F})=\mathcal{F}_{\max }$ for some permutation σ of $[n]$.
Note that $|\mathcal{F}(2)| \leq n-1$ for any \mathcal{F}, and equality holds for the extremal family $\mathcal{F}_{\max }$. Now, we reformulate Claim 36 to avoid any extra assumptions on the size of $\mathcal{F}(2)$:

Claim 38. Let $B \in \mathcal{F}(4)$ and $\operatorname{Pet}(B)=\{a, b\}$. Then:

1. $|\{a, b\} \cap \operatorname{Pet}(\mathcal{F}(2))| \in\{0,2\}$, or
2. $|\{a, b\} \cap \operatorname{Pet}(\mathcal{F}(2))|=1$, and if $b \in \operatorname{Pet}(\mathcal{F}(2))$, then there is a unique set $A \in \mathcal{F}(\geq 6)$ such that $a \in A$. Moreover, $A \in \mathcal{F}(6)$.

Proof. Suppose that $b \in \operatorname{Pet}(\mathcal{F}(2))$ and $a \notin \operatorname{Pet}(\mathcal{F}(2))$. If $a \notin B^{\prime}$ for any $B^{\prime} \in \mathcal{F}$ distinct from B, then we contradict the extremality of \mathcal{F} as follows: the family $\mathcal{F}^{\prime}:=\mathcal{F} \cup\left\{A^{\prime}\right\}$, where $A^{\prime}:=\operatorname{Cor}(\mathcal{F}(2)) \cup\{a\}$, is r-bisection closed and satisfies $\left|\mathcal{F}^{\prime}\right|>|\mathcal{F}|$.

So, there is a set $A \in \mathcal{F}$ distinct from B for which $a \in A$. In particular, $A \in \mathcal{F}(\geq 6)$. Note that $\operatorname{Cor}(B) \cup\{a\} \subseteq A$, so $|A \cap B| \geq 3>\frac{1}{2}|B|$. Thus, $|A \cap B|=\frac{1}{2}|A|$. So, if $A \in \mathcal{F}(\geq 8)$, then in fact $A \in \mathcal{F}(8)$ and $B \subseteq A$. But this implies that $a \in A$, which contradicts Claim 34. Thus, $A \in \mathcal{F}(6)$.
Lastly, if $\mathcal{F}(6)$ is a singleton, then A is clearly unique, and if there are at least two sets in $\mathcal{F}(6)$, then $a \notin A^{\prime}$ for any $A^{\prime} \in \mathcal{F}(6)$ distinct from A because $\mathcal{F}(6)$ is a sunflower and $a \in \operatorname{Pet}(A)$.

Now, in terms of Claim 38 we have (without any change in the proof):
Corollary 39. If Claim 38(1) holds for all $B \in \mathcal{F}(4)$, then $S_{\text {nor }}=\{2,4\}$.
We are now ready to prove:
Proposition 40. There is no extremal family \mathcal{F} over $[n]$ for which $|\mathcal{F}(2)|<n-1$.
Proof. Suppose for the sake of contradiction that \mathcal{F} is an extremal family over [n] for which $|\mathcal{F}(2)|<n-1$. Then, $S_{\text {nor }} \supsetneq\{2,4\}$ by Lemma 37 and Claim 33. Also, Claim 38(2) holds for some $B \in \mathcal{F}(4)$ by Corollary 39 and Lemma 37.
Now, let $\mathcal{F}_{0}:=\mathcal{F}$. For $n \in \mathbb{N}$, if the extremal r-bisection closed family \mathcal{F}_{n} has been defined, and there is a set $B_{n} \in \mathcal{F}_{n}(4)$ for which Claim 38(2) holds, then we define \mathcal{F}_{n+1} as follows. Let $\operatorname{Pet}\left(B_{n}\right)=\left\{a_{n}, b_{n}\right\}$ with $b_{n} \in \operatorname{Pet}\left(\mathcal{F}_{n}(2)\right)$. Let $A_{n} \in \mathcal{F}_{n}(6)$ be the unique set in $\mathcal{F}_{n}(\geq 6)$ such that $a_{n} \in A_{n}$. Then, define $\mathcal{F}_{n+1}:=\left(\mathcal{F}_{n} \backslash\left\{A_{n}\right\}\right) \cup\left\{A_{n}^{\prime}\right\}$, where $A_{n}^{\prime}:=\operatorname{Cor}\left(\mathcal{F}_{n}(2)\right) \cup\left\{a_{n}\right\}$. Note that \mathcal{F}_{n+1} is also an r-bisection closed family that is extremal, since $\left|\mathcal{F}_{n}\right|=\left|\mathcal{F}_{n+1}\right|$.

Applying this procedure inductively by starting with $\mathcal{F}_{0}:=\mathcal{F}$, for some $N \in \mathbb{N}$ we get an extremal family $\mathcal{F}^{\prime}=\mathcal{F}_{N}$ such that Claim $38(1)$ holds for all $B^{\prime} \in \mathcal{F}^{\prime}(4)$. Hence, by Corollary $39, \mathcal{F}^{\prime}$ has only two normal sunflowers, namely $\mathcal{F}^{\prime}(2)$ and $\mathcal{F}^{\prime}(4)$. Since the only sets from \mathcal{F} that were thrown out in the construction of \mathcal{F}^{\prime} were those of size $6, \mathcal{F}$ has only three normal sunflowers, namely $\mathcal{F}(2), \mathcal{F}(4)$, and $\mathcal{F}(6)$. Now, let $B \in \mathcal{F}(6)$, and let $\operatorname{Pet}(B)=\{a, b, c\}$. Define $\mathcal{G}=\left(\mathcal{F}^{*} \backslash\{B\}\right) \cup\left\{D_{a}, D_{b}, D_{c}\right\}$, where $D_{i}:=\operatorname{Cor}(\mathcal{F}(2)) \cup\{i\}$, for $i \in\{a, b, c\}$. Then, \mathcal{G} is an r-bisection closed family for which $|\mathcal{G}| \geq|\mathcal{F}|+1$, contradicting the extremality of \mathcal{F}.

This completes the proof of [1, Theorem $4(2)]$ that the family $\mathcal{F}_{\max }$ over $[n]$ of Example 1 is the unique extremal r-bisection closed family (up to permutations of $[n]$).

References

[1] N. Balachandran, S. Bhattacharya, K. V. Kher, R. Mathew, B. Sankarnarayanan. On hierarchically closed fractional intersecting families, Electron. J. Comb. 30 (2023), no. 4, \#P4.37, doi:10.37236/11651. MR4672585

