Addendum to "On hierarchically closed fractional intersecting families" (Electron. J. Comb. 30 (2023), no. 4, #P4.37)

February 14, 2024

Abstract

Theorem 4(2) in [1] says that any hierarchically r-bisection closed family \mathcal{F} over [n] (for $r \geq 3$) that attains equality in the bound

$$\mathcal{F}| \le \lfloor 3n/2 \rfloor - 2 \tag{(*)}$$

is the family \mathcal{F}_{max} of Example 1, up to permutations of [n]. In the proof of Theorem 4(2), we merely wrote that, "The proof of the upper bound (*) shows that if \mathcal{F} is an extremal *r*-bisection closed family, then $S_{nor} = \{2, 4\}$." However, the details require some filling in, which we do so in this addendum.

To show that there is a unique extremal family \mathcal{F} (up to permutations of [n]) that attains the bound (*), we first show that, among the families satisfying $\mathcal{F} = \mathcal{F}^*$, the extremal ones have size $\lfloor 3n/2 \rfloor - 3$. So, assume that $\mathcal{F} = \mathcal{F}^*$ is extremal over [n]. Claims 32–35 hold for any such \mathcal{F} . We recall a couple of these claims here:

Claim 33. $S_{nor} \supseteq \{2, 4\}.$

Claim 34. If there exists $a \in Pet(\mathcal{F}(2)) \cap A$ for some $A \in \mathcal{F}(\geq 4)$, then $A \in \mathcal{F}(4)$ and $a \in Pet(A)$.

An additional hypothesis was introduced in:

Claim 36. Let \mathcal{F} be an extremal family for which $|\mathcal{F}(2)|$ is maximum. Then for each $B \in \mathcal{F}(4)$, $|\mathsf{Pet}(B) \cap \mathsf{Pet}(\mathcal{F}(2))| \in \{0, 2\}$.

Using Claim 36 we showed that if \mathcal{F} is any extremal family for which $|\mathcal{F}(2)|$ is maximum, then $S_{\text{nor}} = \{2, 4\}$. This was used to establish that $|\mathcal{F}^*| \leq \lfloor 3n/2 \rfloor - 3$ for any r-bisection closed family \mathcal{F} over [n], as well as the following (weaker) uniqueness result (cf. [1, Theorem 4(2)]):

Lemma 37. Let \mathcal{F} be an extremal r-bisection closed family over [n] for which $S_{nor} = \{2, 4\}$. Then, there is a permutation σ of [n] such that $\sigma(\mathcal{F}) = \mathcal{F}_{max}$. In particular, if \mathcal{F} is an extremal family for which $|\mathcal{F}(2)|$ is maximum, then $\sigma(\mathcal{F}) = \mathcal{F}_{max}$ for some permutation σ of [n].

Note that $|\mathcal{F}(2)| \leq n-1$ for any \mathcal{F} , and equality holds for the extremal family \mathcal{F}_{\max} . Now, we reformulate Claim 36 to avoid any extra assumptions on the size of $\mathcal{F}(2)$:

Claim 38. Let $B \in \mathcal{F}(4)$ and $Pet(B) = \{a, b\}$. Then:

1. $|\{a, b\} \cap \mathsf{Pet}(\mathcal{F}(2))| \in \{0, 2\}, or$

2. $|\{a,b\} \cap \mathsf{Pet}(\mathcal{F}(2))| = 1$, and if $b \in \mathsf{Pet}(\mathcal{F}(2))$, then there is a unique set $A \in \mathcal{F}(\geq 6)$ such that $a \in A$. Moreover, $A \in \mathcal{F}(6)$.

Proof. Suppose that $b \in \mathsf{Pet}(\mathcal{F}(2))$ and $a \notin \mathsf{Pet}(\mathcal{F}(2))$. If $a \notin B'$ for any $B' \in \mathcal{F}$ distinct from B, then we contradict the extremality of \mathcal{F} as follows: the family $\mathcal{F}' \coloneqq \mathcal{F} \cup \{A'\}$, where $A' \coloneqq \mathsf{Cor}(\mathcal{F}(2)) \cup \{a\}$, is *r*-bisection closed and satisfies $|\mathcal{F}'| > |\mathcal{F}|$.

So, there is a set $A \in \mathcal{F}$ distinct from B for which $a \in A$. In particular, $A \in \mathcal{F}(\geq 6)$. Note that $Cor(B) \cup \{a\} \subseteq A$, so $|A \cap B| \geq 3 > \frac{1}{2}|B|$. Thus, $|A \cap B| = \frac{1}{2}|A|$. So, if $A \in \mathcal{F}(\geq 8)$, then in fact $A \in \mathcal{F}(8)$ and $B \subseteq A$. But this implies that $a \in A$, which contradicts Claim 34. Thus, $A \in \mathcal{F}(6)$.

Lastly, if $\mathcal{F}(6)$ is a singleton, then A is clearly unique, and if there are at least two sets in $\mathcal{F}(6)$, then $a \notin A'$ for any $A' \in \mathcal{F}(6)$ distinct from A because $\mathcal{F}(6)$ is a sunflower and $a \in \mathsf{Pet}(A)$. \Box

Now, in terms of Claim 38 we have (without any change in the proof):

Corollary 39. If Claim 38(1) holds for all $B \in \mathcal{F}(4)$, then $S_{nor} = \{2, 4\}$.

We are now ready to prove:

Proposition 40. There is no extremal family \mathcal{F} over [n] for which $|\mathcal{F}(2)| < n-1$.

Proof. Suppose for the sake of contradiction that \mathcal{F} is an extremal family over [n] for which $|\mathcal{F}(2)| < n-1$. Then, $S_{\text{nor}} \supseteq \{2, 4\}$ by Lemma 37 and Claim 33. Also, Claim 38(2) holds for some $B \in \mathcal{F}(4)$ by Corollary 39 and Lemma 37.

Now, let $\mathcal{F}_0 \coloneqq \mathcal{F}$. For $n \in \mathbb{N}$, if the extremal *r*-bisection closed family \mathcal{F}_n has been defined, and there is a set $B_n \in \mathcal{F}_n(4)$ for which Claim 38(2) holds, then we define \mathcal{F}_{n+1} as follows. Let $\mathsf{Pet}(B_n) = \{a_n, b_n\}$ with $b_n \in \mathsf{Pet}(\mathcal{F}_n(2))$. Let $A_n \in \mathcal{F}_n(6)$ be the unique set in $\mathcal{F}_n(\geq 6)$ such that $a_n \in A_n$. Then, define $\mathcal{F}_{n+1} \coloneqq (\mathcal{F}_n \setminus \{A_n\}) \cup \{A'_n\}$, where $A'_n \coloneqq \mathsf{Cor}(\mathcal{F}_n(2)) \cup \{a_n\}$. Note that \mathcal{F}_{n+1} is also an *r*-bisection closed family that is extremal, since $|\mathcal{F}_n| = |\mathcal{F}_{n+1}|$.

Applying this procedure inductively by starting with $\mathcal{F}_0 \coloneqq \mathcal{F}$, for some $N \in \mathbb{N}$ we get an extremal family $\mathcal{F}' = \mathcal{F}_N$ such that Claim 38(1) holds for all $B' \in \mathcal{F}'(4)$. Hence, by Corollary 39, \mathcal{F}' has only two normal sunflowers, namely $\mathcal{F}'(2)$ and $\mathcal{F}'(4)$. Since the only sets from \mathcal{F} that were thrown out in the construction of \mathcal{F}' were those of size 6, \mathcal{F} has only three normal sunflowers, namely $\mathcal{F}(2)$, $\mathcal{F}(4)$, and $\mathcal{F}(6)$. Now, let $B \in \mathcal{F}(6)$, and let $\mathsf{Pet}(B) = \{a, b, c\}$. Define $\mathcal{G} = (\mathcal{F}^* \setminus \{B\}) \cup \{D_a, D_b, D_c\}$, where $D_i \coloneqq \mathsf{Cor}(\mathcal{F}(2)) \cup \{i\}$, for $i \in \{a, b, c\}$. Then, \mathcal{G} is an *r*-bisection closed family for which $|\mathcal{G}| \geq |\mathcal{F}| + 1$, contradicting the extremality of \mathcal{F} .

This completes the proof of [1, Theorem 4(2)] that the family \mathcal{F}_{max} over [n] of Example 1 is the unique extremal r-bisection closed family (up to permutations of [n]).

References

 N. Balachandran, S. Bhattacharya, K. V. Kher, R. Mathew, B. Sankarnarayanan. On hierarchically closed fractional intersecting families, Electron. J. Comb. 30 (2023), no. 4, #P4.37, doi:10.37236/11651. MR4672585