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Abstract—In this paper, we introduce a variation of the group
testing problem where each test is specified by an ordered subset
of items and returns the first defective item in the specified order
or returns null if there are no defectives. We refer to this as
cascaded group testing and the goal is to identify a small set of K
defective items amongst a collection of size N , using as few tests
as possible for perfect recovery. For the adaptive testing regime,
we show that a simple scheme can find all defective items in at
most K tests, which is optimal. For the non-adaptive setting, we
first come up with a necessary and sufficient condition for any
collection of tests to be feasible for recovering all the defectives.
Using this, we show that any feasible non-adaptive strategy
requires at least Ω(K2) tests. In terms of achievability, it is easy
to show the existence of a feasible collection of O(K2 log(N/K))
tests. We show via carefully constructed explicit designs that
one can do significantly better for constant K. While the cases
K = 1, 2 are straightforward, the case K = 3 is already
non-trivial and we come up with an iterative design that is
asymptotically optimal and requires Θ(log logN) tests. Note that
this is in contrast to standard binary group testing, where at least
Ω(logN) tests are required. For constant K ≥ 3, our iterative
design requires only poly(log logN) tests.

I. INTRODUCTION

The problem of group testing was originally formulated
in [1], with the motivation being an efficient screening of
syphilis-infected soldiers during World War II. A mathematical
model for the problem entails identifying a subset of K
defective items from a population of size N , using as few
pooled tests as possible. In standard group testing, each
pooled test specifies a subset of the items and produces a
binary outcome: ‘negative’ if all the items selected in the
test are non-defective, and ‘positive’ otherwise. While the
original motivation for group testing was medical testing, it
has since found application across a wide variety of scenarios
including wireless communications [2]–[4], DNA sequencing
[5], neighbor discovery [6], [7] and network tomography [8],
[9]. There is a lot of literature related to the group testing
problem and we are only able to discuss a small sample of
it below; we refer the interested reader to [5], [10]–[12] for
a more comprehensive coverage of the problem as well as
known technical results.

Group testing strategies can be divided into two categories:
adaptive and non-adaptive. The former refers to a setting
where the configuration of i-th pooled test can be decided
based on the outcomes of the previous i−1 tests. On the other
hand, non-adaptive group testing requires all the tests to be

specified beforehand so that they can be potentially conducted
in parallel. Since the introduction of the group testing problem,
there has been a lot of work on characterizing the optimal
number of tests required for identifying K defectives out of
N items. A simple counting argument shows that any feasible
strategy with T tests should satisfy 2T ≥

(
N
K

)
, and thus

T ≥ log2
(
N
K

)
provides a lower bound. There exist adaptive

group testing strategies whose performance is very close to this
bound; for example, a generalized binary splitting algorithm
in [13] is guaranteed to require at most log2

(
N
K

)
+ K tests.

Similarly, both lower bounds and efficient strategies have been
proposed for the non-adaptive setting as well. For example,
[14], [15] showed that any non-adaptive group testing strategy
requires at least min{N,Ω

(
K2 logK N

)
} tests. On the other

hand, explicit testing strategies based on coding-theoretic ideas
were proposed in [16] and later in [17], which require at most
O
(
K2 log2K N

)
and O

(
K2 logN

)
tests respectively.

Several variants of the binary ‘OR’ pooled test in standard
group testing, as described above, have been studied in the
literature. These include threshold testing [18], [19] where
the outcome is positive only if the number of defective
items included in the test is larger than a specified threshold;
quantitative testing [20] which has a non-binary outcome
like the number of defective items included in the test; and
concomitant testing [21] where a test outcome is positive only
if it includes at least one item from each of a pre-defined
collection of subsets.

In this work, we study another testing model with non-
binary output, which we call cascade testing. Each test is
specified by an ordered subset of items S = (i1, i2, ..., ir), and
returns the position of the first defective item in S according
to the specified order. Note that this test provides more
information than the standard binary ‘OR’ test. As motivation
for this model, consider a network tomography application
where the goal is to identify the congested links using probes.
Each probe traverses through a chosen path in the network
and either goes through completely, in which case none of the
links on the path are congested; or it returns the identity of
the first congested link along the path1. Another application
would be a movie recommendation system which sequentially
presents options from different genres to a user, till he/she

1For example, Simple Mail Transfer Protocol (SMTP) can provide such
information while selecting efficient paths for email delivery



picks one; and then uses this feedback to learn the subset of
genres that the user likes. Such a feedback model has also
recently received significant attention in the Online Learning
community under the moniker ‘cascading bandits’ [22]–[24],
with applications in opportunistic spectrum access, network
routing, recommendation systems, and dynamic treatment al-
location.

The focus of this work is on characterizing the minimum
number of tests required to identify K defectives amongst N
items, under the cascade testing model. For the adaptive testing
regime, we demonstrate a simple scheme that enables us to find
all defective items in at most K tests, which is optimal. For
the non-adaptive setting, we first come up with a necessary
and sufficient condition for any collection of tests (design)
to be feasible for recovering all the defectives. Using this
equivalence, we show that any feasible non-adaptive strategy
requires at least Ω(K2) tests. In terms of achievability, it
is easy to show that a collection of O(K2 logN) randomly
constructed tests is feasible. We show via carefully constructed
explicit designs that one can do significantly better. We provide
two simple schemes for K = 1, 2 which only require one and
two tests respectively irrespective of the number of items N .
Note that this is in contrast to standard binary group testing,
where at least Ω(logN) tests are required. The case of K ≥ 3
is much more challenging and here we come up with an
iterative design that requires order-wise (log logN)aK tests
for a fixed K, where aK is a parameter that depends on K.

The rest of the paper is organized as follows. We provide the
problem formulation for cascaded group testing in Section II.
The adaptive and non-adaptive settings are considered in Sec-
tions III and IV respectively. Bounds on the optimal number
of tests needed for non-adaptive group testing are presented in
Section V. Finally, some explicit constructions are provided in
Section VI and a short discussion is presented in Section VII.

II. PROBLEM FORMULATION

We have a set of N items, denoted by V = {v1, ..., vN},
out of which an unknown subset K are defective. We assume
|K| ≤ K for some known 0 < K ≤ N and aim to recover K
through ‘tests’. In standard binary group testing [1], each test
is specified by a subset S of items and returns 1 if S contains
a defective item, i.e., S ∩ K ̸= ∅, and returns 0 otherwise.
On the other hand, in this work, we consider an alternate
testing model we call cascaded testing where a test t is
associated with an ordered subset of items (vi1 , vi2 , ..., vi|t|),
where |t| denotes the number of items involved in the test.
The test returns the first defective item in this sequence.
In other words, the result of the test is y = vir where2

r =min{j ∈ [|t|] : vij ∈ K}, assuming there is some defective
item in the test. If there are no defective items involved, the
test returns3 y = 0. Note that a cascaded test provides at least
as much information as a standard binary group test.

The main focus of this work is to characterize the minimum
number of tests required in the adaptive and non-adaptive

2For n ∈ N, [n] := {1, 2, .., n}.
3We impose the constraint 0 /∈ V for consistency.

settings under cascaded testing. This involves deriving lower
bounds as well as designing achievability schemes.

We introduce some notation for convenience. We say x ∈ t
(resp. x /∈ t) to mean x is an item involved in (resp. not in)
the test t. For x, y ∈ t, we say x <t y if x appears before
y in t, and x ≤t y if x appears before y or x = y. For any
set U , let t ∩ U (= U ∩ t) denote the ordered set intersection
of t and U , with the same order of items as in t. Similarly,
t\U := t ∩ U c. We will sometimes denote the result of the
test as y = min(t∩K), where the min(.) of an ordered set is
the item that appears first in the order. The min(.) is taken as
0 for the empty set.

Example II.1. For N = 6,K = 2, consider the test t =
(v3, v5, v2, v1). If K = {v2, v5}, the result will be y = min(t∩
K) = min((v5, v2)) = v5.

III. ADAPTIVE SETTING

In the adaptive setting, we are allowed to design tests
sequentially using the results of previous tests to design the
next test. In this setting, we can recover the defective set K
using at most K tests via the following simple procedure.

Initialise K̂ ← ∅, i← 1 and run the following loop:
1) Run a test which includes the items in V \K̂ in an

arbitrary order.
2) If the test returns 0 (meaning it found no defectives),

terminate the procedure and return K̂.
3) If the test returns v, then update K̂ ← K̂ ∪ {v}.
4) Update i ← i + 1. If i > K, terminate the procedure

and return K̂.
The above procedure finds a new defective item in each test

(except perhaps the last one if |K| < K), and thus finds all
defective items in at most K tests. This is also the minimum
number of tests needed (in the worst case of |K| = K) to
find all defectives, as each test enables us to find at most a
single defective item. Thus, the above simple procedure is in
fact optimal.

IV. NON-ADAPTIVE SETTING

In the non-adaptive setting, we must fix all the tests be-
forehand. For a given a collection of tests T = {t1, t2, ..., tT }
and a (unknown) defective set K, the outputs of the tests are
given by yi = min(ti ∩ K) for i = 1, 2, .., T , which we will
collectively represent by the output vector y := [y1, y2, ..., yT ].
Let X := {S ⊂ V : |S| ≤ K} denote the collection of
possible defective sets K and Y := (V ∪ {0})T denote the
set of possible output vectors y. Finally, let ΩT : X → Y
represent the function that maps every possible defective set
to its output vector.

For given N,K, we will say that a collection of tests T is a
feasible testing design if any set of at most K defectives can
be identified using the test outputs. Next, we will identify a
necessary and sufficient condition for a collection of tests to
be feasible. This can be thought of as an analogue of the test
matrix disjunctness property that plays the same role under
standard binary group testing [12, Chapter 1].



Theorem 1. Given N,K, a testing design T is feasible if and
only if it satisfies the following condition:
For all subsets K ⊂ V with |K| = K, and for every v ∈ K,
there exists t ∈ T such that:

v = min(t ∩ K). (1)

Proof Sketch. In words, the above condition requires that for
any possible collection of defectives K and any item v ∈ K,
there is at least one test t where v appears before every other
item in K and hence v can be identified as defective by t.
Formally, the proof follows by noting that T is a feasible
testing design if and only if the map ΩT is a one-to-one
function, and then proving the necessity and sufficiency of (1)
for this. The detailed proof can be found in Appendix A. ■

A. Reconstruction Algorithm

Given the output of a feasible test design satisfying (1),
one needs a reconstruction algorithm to estimate the set of
defectives. The following claim suggests one such strategy.

Claim 1. For a feasible testing design T = {t1, ..., tT }
and a (unknown) set of defectives K with |K| ≤ K, let
y = [y1, y2, ...yT ] = ΩT (K) be the output vector. Then
K = {yi : i ∈ [T ], yi ̸= 0}.

Proof. Follows directly from Theorem 1, which guarantees
that each defective v ∈ K is detected by at least one test, i.e.,
∃i ∈ [T ] : yi = v. ■

The above claim provides a natural and simple recon-
struction algorithm for cascaded testing. This reconstruction
is analogous to the ‘smallest satisfying set’ reconstruction
algorithm, which is popular for standard binary group testing
[12, Chapter 2].

V. OPTIMAL TESTING DESIGN

Definition 1 (Optimal testing design). For given N,K, a
testing design T ∗ is said to be optimal if T ∗ is feasible and
for every feasible design T , |T | ≥ |T ∗| holds. Define:

T (N,K) := min{|T | : T is feasible}

By definition, the size of any optimal design is T (N,K).
In the rest of the paper, we derive bounds on the quantity
T (N,K).

To assist with this, we now introduce some notation to write
the condition in Theorem 1 more compactly. Let T be a testing
design as before. Given any S ⊂ V with S ̸= ∅ and some
v ∈ S, define:

fT (S, v) := |{t ∈ T : v = min(t ∩ S)}|. (2)

This function counts the number of tests in which v appears
first among the items in S. Using this we can write the
condition in Theorem 1 as follows:

∀K ⊂ [N ] s.t. |K| = K,∀v ∈ K : fT (K, v) ≥ 1. (3)

We note the following useful property of fT for any non-empty
S ⊂ V : ∑

v∈S

fT (S, v) ≤ |T |. (4)

This follows from the observation that the sets {t ∈ T : v =
min(t ∩ S)} are pairwise disjoint for v ∈ S.

We will begin by proving a lower bound on T (N,K),
for which we first consider testing designs with a particular
‘systematic’ form.

A. Systematic Form

Definition 2 (Systematic form). A testing design T =
{t1, ..., tT } is said to be in systematic form if ∀j ∈ [T ], tj ̸= ∅
and min(tj) /∈ tk ∀k ∈ [T ]\{j}.

In words, for a testing design in systematic form, the item
appearing first in a test is excluded in other tests. Next,
we show that to characterize the minimum number of tests
required, one can restrict attention to such testing designs.

Theorem 2. Given any feasible testing design T1, we can
construct a feasible testing design T2 in systematic form
satisfying |T2| ≤ |T1|.

The proof of the above result can be found in Appendix B.
We present an example to illustrate this result.

Example V.1. For N = 4,K = 3, consider the feasible
design T1 = {(v1, v2, v3, v4), (v3, v2, v4, v1), (v4, v2, v3, v1)}.
This can be reduced to the systematic form design T2 =
{(v1, v2), (v3, v2), (v4, v2)}, which is also feasible.

The corollary below immediately follows from Theorem 2.

Corollary 1. For given N,K, let GN,K be the set of feasible
testing designs in systematic form. Then

T (N,K) = min{|T | : T ∈ GN,K}.

We now present an equivalent condition for the feasibility
of systematic form designs.

Theorem 3. Let T be a testing design in systematic form and
let L := {min(t) : t ∈ T }. Then T is a feasible testing design
if and only if the following holds

∀S ⊂ V \L s.t. 1 ≤ |S| ≤ K,

∀v ∈ S : fT (S, v) ≥ K + 1− |S| (5)

Proof sketch: Since T is in systematic form, the first item
in each test is distinct, meaning L has exactly |T | items. To
prove the forward implication, we first assume T is feasible.
If (5) doesn’t hold, then there is some set S ⊂ V \L with size
between 1 and K−1, and an element v that appears first in S
in at most K − |S| tests. Then we can pick a collection S1 of
at most K − |S| ‘blocker items’ from L, each appearing first
in a test where v appears first in S. The feasibility condition
then fails for the set S ∪ S1 where v does not appear first in
any test. This proves the forward implication by contradiction.
For the converse, we assume (5) holds. Then we can show that



the feasibility condition in Theorem 1 holds. For a chosen K,
we consider the set of elements S1 of K that are not in L and
the set of elements S2 of K that are in L. Each element of S2

appears first in some test by the definition of L. By (5), for
any element v of S1, there are K + 1− |S1| = |S2|+ 1 tests
where v appears first is S1. In at least one of these tests, v
must appear first in S1 ∪S2, since each item in S2 appears in
only one test. Thus, the feasibility condition is met for every
element in K.

Proof. Observe that the min(·) of distinct tests are distinct in
a systematic form design. Define P := V \L for convenience.
We first prove the forward implication. Suppose T is feasible
and (5) doesn’t hold. Then ∃S ⊂ P with 1 ≤ |S| ≤ K and
v ∈ S such that fT (S, v) ≤ K − |S|.
Let I := {t ∈ T : v = min(t ∩ S)} and note that |I| =
fT (S, v). Consider S1 := {min(t) : t ∈ I} ⊂ L, with |S1| =
|I| ≤ K − |S|. Also, note that S1 ∩ S = ∅ since S1 ⊂ L and
S ⊂ P .

Now consider a set of items S2 ⊃ S1 satisfying S2∩S = ∅
and |S2| = K − |S|. Let K := S ∪ S2 ⇒ |K| = K. Then
∀ t ∈ I, min(t) ∈ S1 ⊂ K ⇒ min(t ∩ K) = min(t) ̸= v. By
definition of I, ∀t ∈ T \I, min(t∩K) ≤t min(t∩S) <t v ⇒
v ̸= min(t ∩ K). Thus ∀t ∈ T , v ̸= min(t ∩ K). By Theorem
1, this contradicts our assumption that T is feasible.
Next, we prove the converse. Suppose (5) is satisfied. We will
check the feasibility of T using Theorem 1. Consider arbitrary
K ⊂ V with |K| = K. Let S1 = P ∩ K and S2 = L ∩ K.
Note that S1 ∩ S2 = ∅ and S1 ∪ S2 = K.
For each v ∈ S2 ⊂ L, ∃t ∈ T , v = min(t) by the definition
of L. If S1 = ∅, S2 = K and we are done.
Suppose S1 ̸= ∅. For v ∈ S1 ⊂ P , we know fT (S1, v) ≥ K+
1−|S1| = |S2|+1. Let J := {t ∈ T : v = min(t∩S1)} and let
S3 := {min(t) : t ∈ J } ⊂ L. Then |S3| = |J | = fT (S1, v) ≥
|S2| + 1 ⇒ S3\S2 ̸= ∅. Consider some u ∈ S3\S2 and let
tu ∈ J be the test satisfying u = min(tu). Since T is in
systematic form, ∀w ∈ S2 : w /∈ tu. So min(tu ∩ K) =
min(tu ∩ K\S2) = min(tu ∩ S1) = v.
Thus the condition in Theorem 1 holds. ■

B. Lower Bound

With Theorem 3, we are now in a position to prove the
following lower bound on the number of tests required by any
scheme under cascaded testing.

Theorem 4. For given N,K, consider α, β ∈ N with α+β =
K + 1. Then N ≥ α(β + 1)− 1 ⇒ T (N,K) ≥ αβ.

Proof. By Corollary 1, we have T (N,K) =min{|T | : T ∈
GN,K}. Consider any T ∈ GN,K . Let T := |T | and L :=
{min(t) : t ∈ T }. Suppose N ≥ α(β + 1)− 1.
Case 1: If N −T ≥ α⇒ |V | − |L| ≥ α. Thus we can choose
S ⊂ V \L such that |S| = α. Since 1 ≤ |S| ≤ K, we can
apply Theorem 3 to obtain fT (S, v) ≥ K+1−α = β ∀v ∈ S.
Using (4), we get:

T ≥
∑
v∈S

fT (S, v) ≥ |S|β = αβ

Case 2: If N − T ≤ α − 1, we have T ≥ N + 1 − α ≥
α(β + 1)− α = αβ.

⇒ |T | ≥ αβ ∀T ∈ GN,K ⇒ T (N,K) ≥ αβ. ■

Choosing α = ⌊K+1
2 ⌋, β = ⌈K+1

2 ⌉ in Theorem 4, we get
the following Ω(K2) lower bound on T (N,K).

Corollary 2. Suppose N ≥ ⌊K+1
2 ⌋(⌈

K+1
2 ⌉+ 1)− 1, then:

T (N,K) ≥
⌊
K + 1

2

⌋⌈
K + 1

2

⌉
.

VI. FEASIBLE TESTING DESIGNS

In this section, we will present upper bounds on the optimal
number of tests T (N,K). Firstly, note that since the cascaded
testing model provides at least as much information as the
standard binary group testing model, any achievable strategy
for the latter is also a feasible one for the former. Thus, an
upper bound of O(K2 min{log2K N, logN}) on T (N,K) fol-
lows from [16], [17] which provided explicit constructions for
the binary group testing model. Additionally, an upper bound
of O(K2 log(N/K)) can be established via a randomized
construction, and is included in Appendix C.

Next, for any constant K and arbitrary N , we present
carefully designed explicit testing designs which use order-
wise fewer tests than the upped bounds discussed above. We
will first consider K = 1, 2, 3 and then describe the general
construction. While K = 1, 2 are straightforward, the case
of K ≥ 3 is much more challenging. For simplicity, we will
henceforth consider the set of items V = {1, 2, ..., N} w.l.o.g.

A. K = 1

We can meet the condition in Theorem 1 by using a single
test with all items included, i.e., t1 = (1, 2, ..., N). It is easy
to see that this test will recover any one defective item.

B. K = 2

We can meet the condition in Theorem 1 by using two tests:

t1 = (1, 2, ..., N), t2 = (N,N − 1, ..., 1)

For any set {i, j} ⊂ V with i < j, we have i <t1 j and
j <t2 i. Again, it is easy to see that the two tests will identify
any pair of defective items.

The above constructions are also optimal as they achieve the
obvious lower bound of K tests. Thus for K = 1, 2 we have
T (N,K) independent of the total number of items N . Note
that this is in contrast to standard nonadaptive binary group
testing where for K = O(1), Ω (logN) tests are necessary.
This demonstrates the possible reduction in optimal testing
design size that the more informative cascaded testing model
might allow for.



C. K = 3

For K = 3, we provide a recursive construction. Suppose
we have a feasible testing design T1 for n items. Additionally,
assume that each test in T1 is a permutation of all n items.
We will provide a procedure to construct a feasible design T2
for n2 items, with |T2| ≤ |T1|+ 4.
Procedure A: Let N = n2 and let V = {1, ..., N} be the set
of N items. Partition V into disjoint sets A1, A2, .., An where
Ai = {(i− 1)n+ 1, (i− 1)n+ 2, ..., in}.

Next, we introduce some notation which will help us
describe the construction. Given permutations s1, s2 of n
items each, we define the permutation s3 = s1 ◦ s2 of
N = n2 items as follows: for each i, arrange the n items
of Ai according to s2 and call the resulting permutation
hi. Next arrange the permutations h1, h2, ..., hn according to
the order in s1 to obtain the overall permutation s3 on N
items. As an example, consider n = 3, N = n2 = 9,
and Ai = {3i − 2, 3i − 1, 3i} for i = 1, 2, 3. If s1 =
(2, 3, 1), s2 = (1, 3, 2), then hi = (3i − 2, 3i, 3i − 1) and
s1 ◦ s2 = (h2, h3, h1) = (4, 6, 5, 7, 9, 8, 1, 3, 2).

Now suppose T1 = {t1, ..., t|T1|}. Consider the following
set of permutations of N items:

F := {ti ◦ ti : i ∈ [|T1|]}.

Now, consider two additional permutations of n items given
by g1 = (1, 2, ..., n) and g2 = (n, n− 1, ..., 1). Let

H := {gi ◦ gj : i, j ∈ [2]}.

Note that |F| = T , |H| = 4. Finally, the overall testing design
for N = n2 items is given by T2 := F ∪H, and thus |T2| ≤
|T1|+ 4.

Example VI.1. For n = 3 items {1, 2, 3}, consider the (trivial)
feasible testing design T1 = {(1, 2, 3), (2, 1, 3), (3, 2, 1)} =
{t1, t2, t3} with T = 3 tests. For N = n2 = 9 items {1, ..., 9},
we use procedure A to devise a feasible testing design T2. Set
A1 = {1, 2, 3}, A2 = {4, 5, 6} and A3 = {7, 8, 9}. Then we
can construct F containing the following permutations:

t1 ◦ t1=(1, 2, 3, 4, 5, 6, 7, 8, 9), t2 ◦ t2=(5, 4, 6, 2, 1, 3, 8, 7, 9),

t3 ◦ t3 = (9, 8, 7, 6, 5, 4, 3, 2, 1).

We can also construct H using g1 = (1, 2, 3), g2 = (3, 2, 1)
as follows

g1 ◦ g1=(1, 2, 3, 4, 5, 6, 7, 8, 9), g1 ◦ g2=(3, 2, 1, 6, 5, 4, 9, 8, 7)

g2 ◦ g1=(7, 8, 9, 4, 5, 6, 1, 2, 3), g2 ◦ g2=(9, 8, 7, 6, 5, 4, 3, 2, 1)

This gives T2 = F ∪H as:

T2 = {(1, 2, 3, 4, 5, 6, 7, 8, 9), (9, 8, 7, 6, 5, 4, 3, 2, 1),
(3, 2, 1, 6, 5, 4, 9, 8, 7), (7, 8, 9, 4, 5, 6, 1, 2, 3)

(5, 4, 6, 2, 1, 3, 8, 7, 9)}

It can be verified that T2 above satisfies the condition in
Theorem 1, and is thus a feasible design for N = 9,K = 3.

Claim 3 in the next subsection proves that this is true for any
testing design matrix constructed using Procedure A.

Since we are guaranteed feasibility of the constructed testing
design, we can now recursively apply Procedure A starting
with T1 = {(1, 2, 3), (2, 1, 3), (3, 2, 1)}, n = 3, to get designs
for any number of items. Moreover, Procedure A gives us the
following guarantee ∀n ≥ 3:

T (n2, 3) ≤ T (n, 3) + 4. (6)

This recursion implies that T (N, 3) = O(log logN), which is
a significant improvement over standard group testing where
at least Ω(logN) tests will be required. The following result
shows that this construction is asymptotically optimal.

Claim 2. T (N, 3) = Ω(log logN).

Proof. The proof uses the Erdős-Szekeres theorem, which
states that for any real sequence of length n2 + 1 there
is a monotone subsequence of length n + 1. Consider a
permutation t = (u1, u2, ..., un2+1) of items {1, . . . , n2 + 1}.
By the Erdős-Szekeres theorem, there exist i1 < i2 < ... < il
with l ≥ n+1, such that the sequence of items ui1 , ui2 , ..., uil

is monotone. In other words, we can find n + 1 items that
are arranged either in an increasing or decreasing order in t.

Let T = {t1, t2, ..., tT } be an optimal design for K = 3
and N = 22

r

+ 1 for arbitrary integer r ≥ 0. W.l.o.g. we can
assume each ti is a permutation on [N ].
Suppose T ≤ r. By the Erdős-Szekeres theorem, there exists a
subset of n1 = 22

(r−1)

+1 items whose relative ordering in t1 is
monotone. Now consider the permutation t2 restricted to these
items. Again, by E-S, there exists a monotone subsequence of
this set of items of size n2 = 22

(r−2)

+ 1. Proceeding induc-
tively, we thus get a subset A of size nT = 22

(r−T )

+ 1 ≥ 3,
such that each ti when restricted to A has the items appear
in increasing order or decreasing order. But since nT ≥ 3,
the feasibility condition in Theorem 1 is not satisfied and we
have a contradiction. Thus, our assumption that T ≤ r must
be incorrect and T > r = log2 log2(N − 1).
For arbitrary N ≥ 3, let r1 := ⌊log2 log2(N − 1)⌋, and
N1 = 22

r1
+1 ≤ N . Then, T (N, 3) ≥ T (N1, 3) > r1, that is,

T (N, 3) > ⌊log2 log2(N − 1)⌋.

This proves that T (N, 3) = Ω(log logN). ■

D. K ≥ 3

We now consider a generalisation of Procedure A to any
K ≥ 3. Suppose we have a feasible testing design T1 for
parameters n,K and another feasible design G1 for parameters
n, (K − 1). Additionally, assume all tests in these designs
are permutations of all n items. We will provide a procedure
to construct a feasible design T2 for N = n2 items, with
|T2| ≤ |T1|+ |G1|2.
Generalized Procedure A: Let N = n2 and let V =
{1, ..., N} be the set of N items. Partition V into disjoint sets



A1, A2, .., An where Ai = {(i− 1)n+1, (i− 1)n+2, ..., in}.
Now construct F ,H as follows:

F := {t ◦ t : t ∈ T1}, H = {g ◦ g′ : g, g′ ∈ G1}.

Note that |F| = |T1|, |H| = |G1|2. Finally, the overall testing
design for N = n2 items is given by T2 := F ∪ H, and thus
|T2| ≤ |T1|+ |G1|2.

Note that for K = 3, we can use G1 = {(1, 2, ..., n), (n, n−
1, ..., 1)} which is feasible for parameters n, (K−1) = 2. This
reduces the procedure to Procedure A for K = 3.

The following claim establishes the feasibility of the design
obtained from the generalized Procedure A.

Claim 3. The testing design T2 obtained from the generalized
Procedure A is feasible for parameters N,K.

Proof Sketch. We check that T2 satisfies the condition for
feasibility in Theorem 1 for parameters N,K. We do this by
considering 3 cases for K ⊂ V :

1) When all items of K fall into a single partition Ai, the
feasibility of T1 enables us to find a permutation in F
for each v ∈ K, where v is the first defective.

2) When all items of K fall into K separate partitions, the
idea above still applies and can be used to find suitable
permutations in F .

3) When neither of the above cases happens, there will be
L ≤ K − 1 partitions into which items of K fall, and
each partition has at most K − 1 items. Then for each
v ∈ K, the feasibility of G1 for n,K − 1 allows us to
find a permutation in H, in which v is the first defective.

The detailed proof can be found in Appendix D. ■

Given feasible designs for parameters N,K−1 for arbitrary
N , one can use this procedure to recursively construct feasible
designs for N,K for arbitrary N . Since we have feasible
designs for K = 2, we can recursively obtain feasible designs
for arbitrary K. This procedure also guarantees that ∀n ≥ K:

T (n2,K) ≤ T (n,K) + T (n,K − 1)2. (7)

This allows us to prove the following result:

Claim 4. For a fixed K ≥ 3, we have T (N,K) =
O((log logN)aK ), where aK = 2(K−2) − 1.

The proof can be found in Appendix E. This result implies
that T (N,K) grows at most as a polynomial in log logN for
a fixed K. This is a significant improvement over standard
group testing, where the size of designs is Ω(logN).

VII. DISCUSSION

While we were able to present bounds on the optimal
size T (N,K) for cascaded group testing, several pertinent
questions remain open. Firstly, our lower bound of Ω(K2)
from Corollary 2 does not have any dependence on the total
number of items N , as opposed to the general upper bounds we
have for K ≥ 3. Deriving a stronger lower bound to close this
gap, starting with the specific case of K = 3, is an immediate
direction that we are pursuing. Secondly, while we were able

to demonstrate explicit (near)-optimal constructions for fixed
values of K, the general case is open. This will also help
provide a characterization of the advantage that the additional
information in a cascaded test provides over a standard binary
OR test. Beyond the zero-error noiseless setting studied here,
considering recovery with small error probability and various
forms of noise in the test output are interesting directions to
pursue.
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APPENDIX A
PROOF OF THEOREM 1

Proof. It is easy to see that T is a feasible testing design if
and only if ΩT is a one-to-one function. We will now argue
that (1) is necessary and sufficient for ΩT to be one-to-one.

First, we prove the forward implication. Suppose ΩT is one-
one, but condition (1) does not hold. Then ∃K ⊂ V with
|K| = K and ∃v ∈ K, such that ∀t ∈ T one of the following
holds: a) v /∈ t, or b) v ∈ t and ∃x ∈ K∩ t satisfying x <t v.
In case a), we have min(t ∩ K) =min(t ∩ K\{v}).
In case b), we must have min(t ∩ K\{v}) ≤t x <t v. Thus,
min(t ∩ K\{v}) =min(t ∩ K), since the first item of a test is
not changed upon adding an item after it.
Thus ∀t ∈ T , min(t ∩ K) = min(t ∩ K\{v}) ⇒ ΩT (K) =
ΩT (K\{v}). This is a contradiction since ΩT was assumed
to be one-one.

Next, we prove the converse, i.e., condition (1) implies ΩT
is one-one. Consider any S1, S2 ∈ X with S1 ̸= S2. Assume
w.l.o.g. that S1\S2 ̸= ∅. So ∃x1 ∈ S1 such that x1 /∈ S2.
Consider some K ⊃ S1 with |K| = K. By (1), we have that
∃t ∈ T such that x1 ∈ t and x1 <t x ∀ x ∈ K ∩ t ⇒
min(t ∩ S1) = x1. Also, min(t ∩ S2) ̸= x1 since x1 /∈ S2.
Thus, min(t ∩ S1) ̸= min(t ∩ S2)

⇒ ΩT (S1) ̸= ΩT (S2).

Since the above argument holds for any distinct S1, S2 ∈ X ,
we have that (1) implies ΩT is one-one. ■

APPENDIX B
PROOF OF THEOREM 2

Before we prove Theorem 2, we prove an intermediate
result.

Lemma 1. Suppose we have a feasible testing design T =
{t1, ..., tT }. Given l ∈ [T ] s.t. tl ̸= ∅, define t̂i = ti\{min(tl)}
for i ∈ [T ]\{l} and t̂l = tl. Then the design T̂ = {t̂1, ..., t̂T }
is feasible.

Proof. Let u :=min(tl). We check if T̂ satisfies (3) for cases
when u ∈ K and when u /∈ K.
If u /∈ K, then min(t ∩ K) = min(t ∩ K\{u}) ∀t ∈ T , which
implies that ∀v ∈ K, fT̂ (K, v) = fT (K, v) ≥ 1.
If u ∈ K, consider v ∈ K. If v = u, we have fT̂ (K, v) ≥ 1
since u = min(t̂l ∩ K). If v ̸= u, consider j ∈ [T ] such that
v = min(tj ∩ K). Then j ̸= l and we have min(t̂j ∩ K) =
min(tj ∩ K\{u}) = v ⇒ fT̂ (K, v) ≥ 1.
This covers all cases and thus T̂ is feasible. ■

With this lemma, we are ready for the proof of Theorem 2.

Proof of Theorem 2. : First, we make a simple observation:
Removing an empty test from a feasible design does not
change its feasibility.
Applying this idea, we first remove any empty test from T1
to obtain the feasible design {h1, h2, ..., hT }. Now we apply
a procedure to construct a systematic form design.
Initialise E ← ∅, i← 1 and run the following loop:

1) If hi = ∅: Update E ← E ∪ {i}. Update i ← i+ 1 and
start the loop again.

2) ∀j ∈ [T ]\{i}, update hj ← hj\{min(hi)}.
3) Update i← i+ 1. If i > T , terminate the procedure.

After the procedure ends, set T2 = {hj : j ∈ [T ]\E}.
The design {h1, ..., hT } obtained after each step of the above
procedure is feasible by application of Lemma 1. During the
ith loop iteration, whenever hi ̸= ∅, the update in step 2
results in min(hi) /∈ hj ∀j ∈ [T ]\{i}. Since each iteration
can only result in the removal of items from tests, min(hi)
stays excluded from all other tests till the end. Thus in
a later iteration i′, min(hi) is not removed from hi, since
min(hi′) ̸= min(hi). This guarantees that after the procedure
terminates, all empty tests are marked in E , and the remaining
tests lead to a systematic form design. ■

APPENDIX C
RANDOMIZED CONSTRUCTION

We now present an upper bound on T (N,K), which is
based on a randomized construction.

Claim 5. ∀N,K with K ≥ 2,

T (N,K) ≤
⌊
log K

K−1

(
K

(
N

K

))⌋
+1 ≤

⌈
K log

(
K

(
N

K

))⌉
Proof. We use a probabilistic argument to prove this result for
any given N,K. Choose tests t1, t2, ..., tT independently and
uniformly at random from the set of permutations of V . We
look at the probability of the event E that T = {t1, ..., tT } is
not feasible. Using (3) we obtain

E =
⋃

v∈K⊂V,
|K|=K

{fT (K, v) = 0}. (8)

From (2), we have that for any K, v in the union,

{fT (K, v) = 0} =
⋂

j∈[T ]

Ac
j , Aj = {v ≤tj x, ∀x ∈ K}.

Since each test tj is chosen uniformly at random, any element
of K is equally likely to appear first among elements of K.
Thus, Pr[Aj ] = 1/K. From the independence of tj’s, we have

Pr[fT (K, v) = 0] =

(
1− 1

K

)T

Applying the union bound to (8) gives

Pr[E] ≤ K

(
N

K

)(
1− 1

K

)T

If T > log K
K−1

(
K
(
N
K

))
, we obtain P [E] < 1. Thus,

there must exist some feasible testing design of size T =⌊
log K

K−1

(
K
(
N
K

))⌋
+ 1, which can be easily upper bounded

by
⌈
K log

(
K
(
N
K

))⌉
. ■



APPENDIX D
PROOF OF CLAIM 3

Proof. We verify that T2 satisfies the condition in Theorem 1
for parameters N,K. Consider some K ⊂ V , with |K| = K.
Then, we have the following cases:

1) Case 1: ∃i ∈ [n] : K ⊂ Ai, i.e., all K items are in
the same partition. By feasibility of T1, for any v ∈ K,
∃t ∈ T1 : v = min(hi ∩K), where hi is the items of Ai

arranged according to t. Let f := t ◦ t ∈ T2. We have
hi = (t ◦ t) ∩Ai = f ∩Ai, which gives:

⇒ v = min(f ∩Ai ∩ K) = min(f ∩ K).
2) Case 2: |K ∩ Ai| ≤ 1 ∀i ∈ [n]. This means there

are distinct i1, i2, ..., iK ∈ [n], and v1, v2, ..., vK ∈ V
satisfying vj ∈ Aij∀j ∈ [K] and K = {v1, v2, ..., vK}.
Let I = {i1, i2, ..., iK}. Since T1 is feasible, ∀j ∈ [K],
∃t ∈ T1 : ij = min(t∩I). For k ∈ [n], let hk denote the
items of Ak arranged according to t. Let f = t◦ t ∈ T2.
Since K ⊂ ∪i∈IAi, we have

min(f ∩ K) = min(f ∩ (∪i∈IAi) ∩ K)
= min(hij ∩ K) = vj

The second line above follows from the fact that ij
appears before other elements of I in t, which means
hij appears before hi in f for all other i ∈ I. This
combined with the fact that hij includes all elements of
Aij implies hij ∩ K = {vj}, giving us the result.

3) Case 3: |K∩Ai| < K ∀i ∈ [n] and ∃i ∈ [n] : |K∩Ai| >
1. This means there are distinct Ai1 , Ai2 , ..., AiL with
1 < L ≤ K− 1, such that 0 < |K∩Aik | ≤ K− 1 ∀k ∈
[L] and K ⊂ ∪k∈[L]Aik . For a given v ∈ K, let Aij

be the partition that contains v. Let Kj = K ∩ Aij ,
I = {ik : k ∈ [L]}. Note that 0 < |Kj | ≤ K − 1. By
feasibility of G1 for parameters n,K − 1, ∃g, g′ ∈ G1 :
ij = min(g ∩ I) and v = min(hij ∩ Kj), where hij

denotes the items of Aij arranged according to g′. Let
f = g◦g′ ∈ T2. Then, by the same reasoning as in Case
2, we have

min(f ∩ K) = min(f ∩ (∪i∈IAi) ∩ K)
= min(hij ∩ K) = v

In all cases, the condition in Theorem 1 holds, which proves
the feasibility of T2. ■

APPENDIX E
PROOF OF CLAIM 4

Proof. We prove this by induction on K. First, we show that
the claim holds for K = 3. Firstly, a3 = 21 − 1 = 1. Using
equation (6) and the fact that T (3, 3) = 3, we get for r ∈ N
that T (32

r

, 3) ≤ 4r + 3.
For arbitrary N ≥ 3, let r := ⌈log2 log3(N)⌉, then 32

r ≥ N .
By monotone property of T (N,K), we have:

T (N, 3) ≤ T (32
r

, 3) ≤ 4r + 3 = O(log logN)

Thus, the claim holds for K = 3.

Now, suppose the claim holds for some K ≥ 3. We will
show that it also holds for K+1. By assumption, there exists
N1 ∈ N, C1 ∈ R, s.t., ∀N ≥ N1:

T (N,K) ≤ f(N) := C1(log logN)aK

We assume N1 ≥ K+1 (w.l.o.g.). For arbitrary r > 0 consider
N = N2r

1 . Applying equation (7) repeatedly, we have:

T (N,K + 1) ≤ T (N1,K + 1) +

r−1∑
l=0

T (N2l

1 ,K)2

≤ N1 + rT (N,K)2 ≤ N1 + rf(N)2

We have used the fact that T (N,K) ≤ N and that T (N,K)
is monotone in its parameters. Now r = log2 logN1

(N) ≤
C2 log logN for a constant C2 > 0 (assuming N sufficiently
large). Thus, we have

T (N,K + 1) ≤ N1 + C1C2(log logN)2aK+1

= N1 + C1C2(log logN)2
K−1−1 ≤ C3(log logN)aK+1 ,

for some C3 > 0, assuming N ≥ N2 for a suitable N2 ∈ N.
For arbitrary N ≥ N2, let r′ := ⌈log2 logN1

(N)⌉, then N2 ≥
N ′ := N2r

′

1 ≥ N . By monotone property of T (N,K), we
have ∀N ≥ N2:

T (N,K + 1) ≤ T (N ′,K + 1) ≤ C3(log logN
′)aK+1

≤ C3(log log(N
2))aK+1 = O((log logN)aK+1)

This completes the proof via induction. ■


