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Abstract

Using the sunflower method, we show that if θ ∈ (0, 1) ∩ Q and F is a O(n1/3)-bounded
θ-intersecting family over [n], then |F| = O(n), and that if F is o(n1/3)-bounded, then |F| ≤
( 3
2
+ o(1))n. This partially solves a conjecture raised in [5] that any θ-intersecting family over

[n] has size at most linear in n, in the regime where we have no very large sets.
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1 Introduction
Intersecting families of set systems are well-studied in extremal combinatorics, and the most natural
extremal question investigated here has the following template: how large can a family of subsets of
[n] be under the constraint that the sets satisfy some intersection properties? Some of the classical
results of this kind include the de Bruijn–Erdős theorem [3], the Erdős–Ko–Rado theorem [8], the
Ray-Chaudhuri–Wilson inequality [11], the Frankl–Wilson inequality [10], the Alon–Babai–Suzuki
inequality [1] and many more (see Babai–Frankl [2] for more).
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of Atomic Energy (DAE), Govt. of India, and the Industrial Research and Consultancy Centre (IRCC), Indian
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In this note, our interest is in a fractional variant of intersecting families defined by Balachandran–
Mathew–Mishra [5], that goes as follows. Let θ ∈ (0, 1) ∈ Q. A (fractional) θ-intersecting family F
over [n] is a collection of subsets of [n] such that for all A,B ∈ F with A ̸= B, |A∩B| ∈ {θ|A|, θ|B|}.1
In [5], the following upper bound is proved for the size of any θ-intersecting family over [n].

Theorem 1.1 (Balachandran–Mathew–Mishra [5], 2019). Let F be a θ-intersecting family over
[n]. Then, |F| = O(n log n).

On the other hand, the best-known constructions give θ-intersecting families over [n] of size only
linear in n.

Example 1.1. The sunflower family Fs over [n] is defined as follows:

Fs =

{
{12, 13, . . . , 1n, 1234, 1256, . . . , 12(n− 1)n}, n ≡ 0 (mod 2);

{12, 13, . . . , 1n, 1234, 1256, . . . , 12(n− 2)(n− 1)}, n ≡ 1 (mod 2).

This is easily seen to be a 1
2 -intersecting family, also called a bisection closed family. Note that

|Fs| = ⌊3n/2⌋ − 2.

Example 1.2. The Hadamard family FH over [2m] is constructed from an m × m normalized
Hadamard matrix H as follows. View the rows A1, . . . , A3m of the following block matrix as the
{±1}-incidence vectors of subsets of [2m], where J denotes the m×m all-ones matrix:H H

H −H
H −J

 .

Then, FH = {Ai : i ∈ [3m] \ {1,m + 1}}. One can show using the orthogonality of the rows of H
that FH is a bisection closed family over [2m]. Writing 2m = n, we see that |FH | = 3n/2− 2.

It was conjectured in [5] that any θ-intersecting family over [n] is at most linear in size.2

Conjecture 1.2 (Balachandran–Mathew–Mishra [5], 2019). For θ ∈ (0, 1)∩Q, there is a constant
c > 0 such that for any θ-intersecting family F over [n], |F| ≤ cn.

Moreover, the fact that two very different constructions give rise to maximal bisection closed families
over [n] of the same size raises the question whether, for θ = 1/2, we have |F| ≤ ⌊3n/2⌋− 2 for any
bisection closed family F over [n]. In [6], there are constructions of bisection closed families over
[n] for n ≤ 15 which have size greater than ⌊3n/2⌋ − 2, so the constructions in Examples 1.1 and
1.2 are possibly extremal only for large n.

In this note, we make some progress towards resolving the conjecture by proving the following
result. We say that a family of sets is w-bounded, for a positive real w, if every set in the family
has size at most w.

Theorem 1.3. Let θ ∈ (0, 1) ∩ Q and w = O(n1/3) be a positive real. There is a constant C > 0
such that the following holds: for all sufficiently large n, if F is a w-bounded θ-intersecting family
over [n], then |F| ≤ Cn.

1More generally, given a set L of proper fractions, a (fractional) L-intersecting family F over [n] is a collection
of subsets of [n] such that for all A,B ∈ F with A ̸= B, |A ∩B| ∈ {θ|A|, θ|B|} for some θ ∈ L.

2The conjecture is implicit in [5], and explicitly stated for the case when θ = 1/2.
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Under the slightly stronger assumption that the family is o(n1/3)-bounded, we give an explicit
constant that is often tight.

Theorem 1.4. Let a, b ∈ N such that 1 ≤ a < b and gcd(a, b) = 1. Let θ = a/b, and let F be a
o(n1/3)-bounded θ-intersecting family over [n]. Then |F| ≤ (Cθ+o(1))n, where Cθ = 1

b−a

∑⌊b/a⌋
i=1

1
i ,

and this constant is best possible for θ ∈ {1/3} ∪ [1/2, 1).

Our results also have implications in the setting of hierarchically r-closed θ-intersecting families, as
defined in [4]. Given r ≥ 2, we say F is hierarchically r-closed θ-intersecting if, for any 2 ≤ t ≤ r and
any t-subset {A1, . . . At} of F , we have |

⋂t
i=1 Ai| ∈ {θ|Ai| : i ∈ [t]}. From our previous examples,

note that Fs is hierarchically r-closed for all r, while FH is not hierarchically r-closed for any r ≥ 3.
Thus, in this sense, the two families are at opposite ends of a spectrum, despite having the same
size.3

In [4], it was shown that Conjecture 1.2 holds for hierarchically closed fractional intersecting families,
with a sharp bound for θ = 1/2.

Theorem 1.5 (Balachandran–Bhattacharya–Kher–Mathew–Sankarnarayanan [4], 2023). Let r ≥ 3
and θ ∈ (0, 1)∩Q. There is a positive constant cθ ≤ 3/2 such that, if F is a hierarchically r-closed
θ-intersecting family over [n], then |F| ≤ cθn. Moreover, when θ = 1/2, we have |F| ≤ ⌊3n/2⌋ − 2,
and Fs is the unique family (up to permutations of [n]) that attains this bound.

The authors of [4] posed the problem of determining the optimal constant for other values of θ. Our
proofs of Theorems 1.3 and 1.4 follow their framework, but with a couple of new ideas. Essentially,
we replace their main idea of using a dyadic grouping of sunflowers with a double-counting argument
that provides sharper estimates. This allows us to improve the constant cθ in Theorem 1.5 to Cθ

from Theorem 1.4, and the tightness results carry over as well.

2 Main results
For a family F over [n], we denote by F(i) the maximal i-uniform subfamily of F . We say F(i) is a
sunflower if, for all distinct F, F ′ ∈ F(i), we have F ∩F ′ =

⋂
F ′′∈F(i) F

′′. The common intersection
C =

⋂
F ′′∈F(i) F

′′ is called the core, while the (pairwise disjoint) remainders of the sets F \ C are
called petals.

Note that the family Fs is the union of 2- and 4-uniform sunflowers, whose cores are nested. We
generalize this notion of neatly-arranged sunflowers in the following definition.

Definition. Let F be a family over [n], and let i1 < · · · < it be the sizes of sets in F . We say that
F is a bouquet if

1. each F(ij) is a sunflower with at least two petals;

2. Ci1 ⊊ Ci2 ⊊ · · · ⊊ Cit , where Cij denotes the core of F(ij);

3. for any F ∈ F we have F ∩ Cit = C|F |.

Note that the third property implies that in a bouquet, every petal is disjoint from all cores.
3Note that a hierarchically 2-closed family is just a θ-intersecting family as defined in Section 1. So, when we say

that a θ-intersecting family F is hierarchically closed, we mean that it is hierarchically r-closed for some r ≥ 3.
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Our proofs then split into two parts. First, we show that bounded θ-intersecting families contain
large bouquets.

Proposition 2.1. Let F be a w-bounded θ-intersecting family over [n]. Then F contains a bouquet
F∗ with |F \ F∗| ≤ w3.

We then utilize the structure of bouquets to bound their size.

Proposition 2.2. Let a, b ∈ N such that 1 ≤ a < b and gcd(a, b) = 1. Let θ = a/b, and let F∗ be
a θ-intersecting bouquet over [n]. Then |F∗| ≤ Cθn, where Cθ = 1

b−a

∑⌊b/a⌋
i=1

1
i .

We note that the proof of Theorem 1.5 in [4] starts by essentially showing that by removing very few
sets from a hierarchically closed θ-intersecting family, one obtains a bouquet. Thus, Proposition 2.2
improves the constant in Theorem 1.5 as well.

Proof of Proposition 2.1

We will require the following result of Deza [7] that implies that a large uniform θ-intersecting
family must be a sunflower.

Theorem 2.3 (Deza [7], 1974). Let F be a w-bounded family of subsets of [n] such that all pairwise
intersections have the same cardinality. If |F| ≥ w2 − w + 2, then F is a sunflower.

Call a level F(i) small if |F(i)| ≤ w2. We can bound the number of sets in small levels by∑
i : |F(i)|≤w2

|F(i)| = |F(1)|+
∑

i>1 : |F(i)|≤w2

|F(i)| ≤ 1 + (w − 1)w2 < w3.

We remove these sets from F , and shall show that what remains must be a bouquet (after removing
at most one more set, if needed). Let i1 < i2 < · · · < it be the remaining levels.

1. By Thereom 2.3, each F(ij) is a sunflower with at least two sets.

2. Let Cij be the core of F(ij). Since F is θ-intersecting, |Cij | = θij for all 1 ≤ j ≤ t. Now, let
1 ≤ j < j′ ≤ t, and suppose F ′ ∈ F(ij′). Then |F ′ ∩ F | ≥ θij = |Cij | for every F ∈ F(ij),
since F is θ-intersecting. If Cij ⊈ F ′, then F ′ must intersect every petal in F(ij). But then
|F ′| ≥ |F(ij)| > w2, which is not possible since F is w-bounded. Thus, Cij ⊆ F ′ for every
F ′ ∈ F(ij′), which implies that Cij ⊆ Cij′ .

3. Let j < t and F ∈ F(ij). If F ∩ (Cit \ Cij ) ̸= ∅, then for any G ∈ F(it) we have |F ∩ G| >
|Cij | = θij . Thus, necessarily, |F ∩ G| = θit. Again, F is not large enough to meet every
petal of F(it), and so we have Cit ⊆ F . Now, if there was another such set F ′ ∈ F(ij′),
then we have |F ∩ F ′| ≥ |Cit | = θit /∈ {θ|F |, θ|F ′|}, contradicting that F is θ-intersecting.
Hence, there is at most one such set; if so, we remove it, and the remaining family satisfies
F ∩ Cit = C|F |.

Then, having removed at most w3 sets, we are left with a bouquet F∗. □

Proof of Proposition 2.2

Let i1 < · · · < it be the nonempty levels in the bouquet F∗ over [n], and set Y = [n] \ Cit . Note
that for each F ∈ F∗ we have |F ∩ Y | = (1 − θ)|F |. Moreover, for each j, the sets in F∗(ij) are
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pairwise disjoint over Y . Thus, we have

|F∗| =
∑

F∈F∗

1 =
∑

F∈F∗

∑
y∈F∩Y

1

(1− θ)|F |
=

∑
y∈Y

∑
F∈F∗:
y∈F

1

(1− θ)|F |
.

For each y ∈ Y , let Sy = {|F | : F ∈ F∗, y ∈ F}. Then we have

|F∗| = 1

1− θ

∑
y∈Y

∑
s∈Sy

1

s
.

Now observe that if F, F ′ ∈ F∗ and |F | < θ|F ′|, then we must have |F ∩ F ′| = θ|F |. However,
F ∩F ′∩Cit = C|F |, which is of size θ|F |, and so F ∩F ′∩Y = ∅. This means that for every y ∈ Y , we
have maxSy ≤ 1

θ minSy. Moreover, since F∗ is θ-intersecting, b must divide |F | for every F ∈ F∗.
Thus, for every y ∈ Y , we have some my ∈ N such that Sy ⊆ {bmy, b(my + 1), . . . , b⌊my/θ⌋}, and

∑
s∈Sy

1

s
≤

⌊my/θ⌋∑
i=my

1

bi
=

1

b

⌊my/θ⌋∑
i=my

1

i
.

Hence we have

|F∗| = 1

1− θ

∑
y∈Y

∑
s∈Sy

1

s
≤ 1

(1− θ)b

∑
y

⌊my/θ⌋∑
i=my

1

i
.

Now write b = ak + r, where k ∈ N and 0 ≤ r ≤ a− 1. Then,

⌊my/θ⌋ = ⌊bmy/a⌋ = kmy + ⌊rmy/a⌋ ≤ kmy +my − 1 = (k + 1)my − 1.

Thus,

⌊my/θ⌋∑
i=my

1

i
=

k−1∑
j=1

(j+1)my−1∑
i=jmy

1

i
+

kmy+⌊rmy/a⌋∑
i=kmy

1

i

≤
k−1∑
j=1

(j+1)my−1∑
i=jmy

1

jmy
+

(k+1)my−1∑
i=kmy

1

kmy

=

k∑
j=1

1

j

=

⌊b/a⌋∑
j=1

1

j
.

Noting that 1
(1−θ)b = 1

b−a , and that there are at most n choices for y ∈ Y , we obtain the desired
bound. □

This establishes Theorem 1.3. We now prove Theorem 1.4.
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Proof of Theorem 1.4

The upper bound |F| ≤ (Cθ + o(1))n for any o(n1/3)-bounded θ-intersecting family follows from
Propositions 1.3 and 1.4. To show that the constant Cθ cannot be improved for θ ∈ {1/3}∪ [1/2, 1),
consider the following constructions of θ-intersecting o(n1/3)-bounded families over [n].

• For θ = a/b ∈ (1/2, 1), let F be a maximal b-uniform sunflower over [n] with core of size a.
Then F is a

b -intersecting and |F| = ⌊n−a
b−a ⌋ = ⌊Cθn− a

b−a⌋.

• For θ = 1/2, the family Fs has size ⌊3n/2⌋ − 2 over [n], and C1/2 = 3/2.

• For θ = 1/3, assume n ≡ 3 (mod 24) for convenience, and consider the family F = F(3) ∪
F(6) ∪ F(9), where:

– F(3) is a sunflower with core {1} and petals {{2i, 2i+ 1} : 2 ≤ i ≤ (n− 1)/2},

– F(6) is a sunflower with core {1, 2} and petals {{24i+j, 24i+j+6, 24i+j+12, 24i+j+18} :
0 ≤ i ≤ (n− 27)/24, 4 ≤ j ≤ 9}, and

– F(9) is a sunflower with core {1, 2, 3} and petals {{6i− 2, 6i− 1, 6i, . . . , 6i+3} : 1 ≤ i ≤
(n− 3)/6}.

F is then 1
3 -intersecting, and |F | = (n− 3)

(
1
2 + 1

4 + 1
6

)
= 11

12 (n− 3) = C1/3n− 33
12 . □

We remark that these constructions are also hierarchically r-closed for any r ≥ 3, showing these
values of Cθ to be the best possible constant for Theorem 1.5 as well.

3 Concluding remarks
• Our constant Cθ in Theorem 1.4 is strictly smaller than 3/2 when θ ̸= 1/2, and the proof of

Proposition 2.2 shows that even when θ = 1/2, we obtain a smaller constant unless almost
all elements of [n] are contained in sets of size 2. However, the existence of the Hadamard
families FH of Example 1.2 precludes any simple extension of the argument given in this note
to try and establish an upper bound of ( 32 +o(1))n for the size of an arbitrary bisection closed
family, since these are bisection closed families of size 3n/2− 2 that do not contain any sets
of size 2 (in fact, the set sizes in FH are all either n/2 or n/4).

• While Theorem 1.4 establishes the correct constant for certain values of θ, further arguments
can be made to sharpen the constant for other fractions. We briefly illustrate this with the
example of θ = 1/4: any o(n1/3)-bounded 1

4 -intersecting family has size at most ( 7
12 + o(1))n.

For the lower bound, we construct such a family using sets of size 4, 8 and 16. The sunflowers
have nested cores of size 1, 2 and 4 respectively, and for the petals, we divide the remaining
elements into blocks of size 36, arranged in 3 × 12 rectangles. Each row (of size 12) is the
petal of a 16-set, and is partitioned into four petals of size 3 each (for the 4-sets). The 12
columns are paired up to form the petals of the 8-sets, in such a way that they intersect each
small petal at most once. For the upper bound, the double-counting argument shows that in
an extremal family, almost all elements must be contained in sets of size 4 and sets of size 8.
The only other permissible sizes are then 12 and 16, but one can argue (we omit the details)
that the former is not possible. This is then sufficient to establish a constant of 7/12.
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It is however a more difficult task to see what the correct constant is, even for θ = 1/b, for
larger b, and it would be interesting to obtain further results in this direction.

• The best results known so far in the “large” regime are given in [5]: if all the sets in F have
size at least 1

4(1−θ)n−Θ(
√
n), then |F| = O(n).

• The o(n) error in Theorem 1.4 is necessary, because of the existence of bisection closed families
of size greater than 3n/2 for n ≤ 15. These are constructed in [6] using the Fano plane. Define
the family FFano over [8] as follows:

FFano = Fs ∪ {1357, 1368, 1458, 1467}
= {12, 13, 14, 15, 16, 17, 18, 1234, 1256, 1278, 1357, 1368, 1458, 1467}.

It is easy to check that FFano is a bisection closed family of size 14 over [8], and it arises from
the symmetric 2-(7, 4, 2) design. We can similarly modify Fs using the sets 1357, 1368, 1458,
and 1467 to get bisection closed families over [n] of size more than ⌊3n/2⌋ − 2 for n ≤ 15.

• In [6], the authors consider a related problem of finding bounds on the ranks of certain
symmetric matrices. Specifically, large θ-intersecting families induce such matrices of low
rank. There the authors construct low rank matrices using bipartite graphs and ask whether
any of them arise from θ-intersecting families. Theorem 1.3 shows that it is not possible
for bounded bisection closed families to induce such matrices. This explains in a sense why
the Fano construction does not seem to extend beyond small values of n to produce larger
bisection closed families from Fs.
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