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Abstract. Cumulative Games were introduced by Larsson, Meir, and Zick (2020) to bridge some
conceptual and technical gaps between Combinatorial Game Theory (CGT) and Economic Game
Theory. The partizan ruleset Robin Hood is an instance of a Cumulative Game, viz., Wealth
Nim. It is played on multiple heaps, each associated with a pair of cumulations, interpreted here
as wealth. Each player chooses one of the heaps, removes tokens from that heap not exceeding
their own wealth, while simultaneously diminishing the other player’s wealth by the same amount.
In CGT, the temperature of a disjunctive sum game component is an estimate of the urgency of
moving first in that component. It turns out that most of the positions of Robin Hood are
hot. The temperature of Robin Hood on a single large heap shows a dichotomy in behavior
depending on the ratio of the wealths of the players. Interestingly, this bifurcation is related to
Pingala (Fibonacci) sequences and the Golden Ratio ϕ: when the ratio of the wealths lies in the
interval (ϕ−1, ϕ), the temperature increases linearly with the heap size, and otherwise it remains
constant, and the mean values have a reciprocal property. It turns out that despite Robin Hood
displaying high temperatures, playing in the hottest component might be a sub-optimal strategy.

1. Introduction

In the Era of Pingala, two wetland tribes engage in a dispute over land pieces on various islands
for farming, which escalates into a war. Being honorable tribes, their chiefs agreed to certain rules
for fighting: as a preparation, each tribe allocates a number of soldiers to each island, and the tribe
with the smaller number of soldiers gets to start. On day one, this tribe gets to challenge their
opponent on an island of their choice, and by the principle of “first player advantage” they get to
weaken the opponent’s strength on that island. The next day, the other tribe retaliates and attacks
any island of their choice. This continues, and, while fighting, every day some land pieces gets
ruined. The war concludes when only one tribe is left on each island. At that point, they sum up
the total remaining fertile land pieces on their respective conquered islands, and return home to
respective villages to celebrate the end of the war. 1

How can the tribes maximize their gains in terms of conquered land pieces? And, which island
should they target first?
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1This has some resemblance with the classical “Colonel Blotto” war game [2]. The main difference is that they use

simultaneous play, and their game concerns the assignment of the forces to the islands, while in our setting, we will
regard the assignments of soldiers as given, and the main challenge is the sequential selections for ‘the next fight’.
The story is 100% fictional.
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Figure 1. A three days’ war started by the red tribe. The war ended on the 3rd day as
only one tribe is left on each island. Ruined land pieces and beaten soldiers are colored
gray. The colored arrows specify the attacking tribe.

This scenario describes a game of a ruleset dubbed Robin Hood, which is an instance of Wealth
Nim, a Cumulative Game [5]. This is a two-player alternating play combinatorial game [1,7] that
is played on a finite number of heaps of finite sizes. To each heap, each player has an associated
wealth, an integer that we shall refer to as the heap wealth, which determines their strength on that
heap. On their turn, a player

• chooses one of the heaps,
• removes a certain number of tokens from that heap not exceeding their own heap wealth,

and
• reduces the opponent’s wealth on that heap by the same amount.

A player who cannot move loses (normal play). Let N = {1, 2, . . .}, and let N0 = N ∪ {0}. We
denote by (n; a, b) a Robin Hood instance comprising of a single heap of size n ∈ N0, Left’s wealth
equal to a ∈ N0 and Right’s wealth equal to b ∈ N0. In case the player with greater wealth removes
more tokens than the opponent’s wealth, their wealth drops below zero. If so, by convention, we
set the opponent’s wealth to zero, since they cannot play further. In the scenario described above,
each island represents a heap, the number of land pieces represents the heap size and the tribes’
strengths represent the players’ wealths. The blue (resp. red) tribe represents Left (resp. Right)
player.2

Figure 1 illustrates a play on a Robin Hood instance with two heaps of sizes 9 and 4 (land
pieces). Left (blue tribe) has heap wealths of 3 and 2, and Right (red tribe) has heap wealths of 2

2Rumors, from the Sherwood forest, tell that Robin Hood got inspired by folktales about the wetland tribes’
wars, in the spirit: “I take, and you pay!”.



TEMPERATURES OF ROBIN HOOD 3

and 1, respectively. The ‘+’ sign denotes the disjunctive sum, meaning that on their turn, a player
chooses exactly one heap (island) to play on, while the other heap remains the same. The war ends
when only one tribe remains on each island, but Robin Hood continues due to the normal play
convention. It ends when the current player has no token to remove. In this example, after the war,
Left has at most three rounds of play before she runs out of tokens, while Right’s resources can
still be abundant. Thus, Right wins the game. (By looking at the fine details, Left felt somewhat
disappointed as she realized that if she instead would have kept responding in the first component,
then Right would have won by only two tokens.)

By separating an instance of Robin Hood into a war phase, and a conclusion phase, we make a
first observation. After the war phase, for each player there is a total number of remaining tokens
in all heaps, where they still have non-zero heap wealth. This number can be considered as ‘their
number of free moves’, as those tokens can be removed one at a time, without interference from
their opponent.

Intuitively, both players desire to start as they get to diminish the opponent’s strength as early
as possible by as much as possible. Additionally, it turns out that, in the Figure 1 example, playing
in the first component is preferential for either player.

To elucidate: If Right starts in the first component, then as discussed before, Left can respond in
the first component, and Right can win by (5−3) = 2 moves, whereas, if Right starts in the second
component, Left can respond in the first component and gain 7 moves, while Right receives only 2
moves from the second component. Therefore, Right loses by (7 − 2) = 5 moves. Thus, the total
loss for Right by starting in the second component instead of the first one is 2− (−5) = 7 moves.

If Left starts and plays in the first component, she gains 7 land pieces in this component and also
receives 2 land pieces from the second one, leading to a win by 9 moves. However, if Left starts in
the second component, Right can play in the first component on his turn. In the end, Left gains 3
land pieces from the second component, while Right gets 5 land pieces from the first component.
Therefore, Left loses by 2 moves. Thus, the total loss for Left by starting in the second component
instead of the first is 9− (−2) = 11.

This also highlights the urgency to start the game, as a player forfeits (2+ 9) = 11 moves by not
starting. The notion of temperature [1, 7] (here Definition 3.11) is an estimate, which attempts to
capture this sense of urgency. In many cases, a higher temperature indicates greater urgency, while
a lower temperature indicates less urgency. In keeping with this terminology, a game with positive
temperature is called a “hot” game. The computation of the temperature is often facilitated by
considering a pictorial gadget called the thermograph [7] (here Definition 3.12). We will discuss
this in greater detail in Section 3. Another related concept is the mean value of a game. It is an
estimate of how good a game is for the respective player; a larger mean value is usually better for
Left and vice versa.

Based on this intuition our main question is:

What are the temperatures and mean values of Robin Hood?

CGsuite [8] guides us on the temperatures and the mean values of the two Robin Hood games,
(n; 5, 4) and (n; 5, 3), with varying n. For any game G, let t(G) and m(G) denote the temperature
and mean of G, respectively. See Table 1.
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n t(n; 5, 4) m(n; 5, 4) t(n; 5, 3) m(n; 5, 3)

3 0 0 0 0
4 0 0 1/2 1/2
5 1/2 1/2 1 1
6 5/4 3/4 7/4 5/4
7 17/8 7/8 19/8 13/8
8 49/16 15/16 3 2
9 444 1 7/2 5/2
10 555 1 444 3
11 666 1 444 4
12 777 1 444 5
13 888 1 444 6

Table 1. The temperatures and mean values of the games (n; 5, 4) and (n; 5, 3) for a few
initial heap sizes n. We indicate in italicized and bold when patterns emerge.

Consistency can be observed in the values of the temperature and the mean of the two games in
Table 1 for large heap sizes. It also shows a reciprocal behavior between the temperature and the
mean values: The temperature (mean value) of the game (n; 5, 4) increases (stabilizes) as the heap
size grows, whereas, the temperature (mean value) of the game (n; 5, 3) stabilizes (increases) with
increasing heap size.

Next, we observe the temperatures for different wealth pairs in Table 2.

(n; a, b) Property t(n; a, b) Bound
(n; 1,1) Increasing n− 1 1
(n; 1, 2) Stabilizing 1 3
(n; 1, 3) Stabilizing 1 4
(n; 2,3) Increasing n− 3 8
(n; 2, 4) Stabilizing 2 6
(n; 2, 9) Stabilizing 2 11
(n; 3,4) Increasing n− 4 7
(n; 3, 5) Stabilizing 4 10
(n; 3, 6) Stabilizing 3 9
(n; 5,8) Increasing n− 8.5 15
(n; 5, 9) Stabilizing 6 16
(n; 7,11) Increasing n− 11.5 20
(n; 7, 12) Stabilizing 9 15

Table 2. Temperatures of the games (n; a, b) for different pairs (a, b). The second column
specifies the behavior of the temperature with increasing n. The last column is the lower
bound of n for which the property holds.

Table 2 illustrates whether the temperature of (n; a, b) is stabilizing or increasing with n for
different pairs (a, b).
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When one tribe is significantly stronger than the other and the number of land pieces is large, the
stronger tribe has (intuitively speaking) a better chance of securing a huge loot of war, regardless
of the actions of the weaker tribe. As a result, neither tribe has a strong desire to start the war,
irrespective of the number of land pieces. The low desire to start a war shows that the heat in this
situation should not increase with an increase in the number of land pieces. However, when the
players’ wealths are relatively equal, both players benefit from starting the game. This increases
their desire to begin, leading to a rise in temperatures as the heap size increases.

This indicates that the two different patterns of the temperature values is related to the ratio
of players’ wealth. It is clear from Table 2 that whenever the ratio of wealth (larger to smaller) is
bigger than or equal to 5/3, the temperature stabilizes, and it keeps increasing when the ratio is
smaller than or equal to 8/5.

Our main result provides a complete description of the temperatures and mean values of Robin
Hood when played on a single large heap. Let ϕ = 1+

√
5

2 denote the golden ratio.

Theorem 1.1 (Main Theorem). Let G = (n; a, b) be an instance of Robin Hood, where n, a and
b are positive integers. Let (Uk)k≥0 be the unique sequence of positive integers such that

(1) U0 ≥ U1,
(2) Uk+2 = Uk+1 + Uk for all k ≥ 0, and
(3) for some q ≥ 0, Uq = min {a, b} and Uq+1 = max {a, b}.

If n ≥ a+ b, then G is a hot game and for all sufficiently large n, the temperature of the game G,
denoted by t(G), is

t(G) =



b− U0 if a
b < ϕ−1;

n− a+ U0−b
2 if ϕ−1 < a

b < 1;

n− a if a
b = 1;

n− b+ U0−a
2 if 1 < a

b < ϕ;

a− U0 if ϕ < a
b ,

and the mean value of the game G, denoted by m(G), is

m(G) =



− (n− (a+ b) + U0) if a
b < ϕ−1;

U0−b
2 if ϕ−1 < a

b < 1;

0 if a
b = 1;

a−U0

2 if 1 < a
b < ϕ;

n− (a+ b) + U0 if ϕ < a
b .

The notions of ‘urgency’ and temperature are not always the same in the sense that playing
on the hottest component is not always an optimal strategy. Here, by optimal strategy, we mean
the alternating play strategy that maximizes the earning of the players and minimizes the loss in
terms of ‘number of moves’. A playing strategy that implies ‘playing in the hottest component in
a disjunctive sum of games is an optimal strategy for either player’ is known as Hotstrat [7]. 3 If a

3Hotstrat also specifies the move to be made in the hottest component [7].
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ruleset satisfies hotstrat, then knowing the temperature and the thermograph of a game reveals all
the facets of the game. Many Robin Hood positions satisfy hotstrat, for instance the position in
Figure 1. However, Robin Hood is even more interesting, as the following theorem shows.

Theorem 1.2 (No Hotstrat). There exists a Robin Hood disjunctive sum game, with components
of distinct temperatures, such that the unique winning move is in the coolest component.

The rest of the paper is organized as follows.

• In Section 2 we mention two papers that inspired this work.
• In Section 3 we review the notion of temperature and mean value using Left and Right

stops, along with thermographs.
• In Section 4 we present some overarching facts about Robin Hood, and we provide an

example where hotstrat fails, therby establishing Theorem 1.2.
• In Section 5, we see the connection between Pingala sequences and Robin hood.
• Section 6 collects some relevant facts about Pingala sequences and its generalizations.
• In Section 7, we study a simpler game that we dub Little John.
• In Section 8 we show that for large heaps, the Left and Right stops for Robin Hood and

Little John are the same, and we also study the thermographs of Little John.
• In Section 9, we prove the main result, Theorem 1.1, by first justifying that the thermo-

graphs of Little John and Robin Hood are the same for large heap sizes.

2. Literature review

Our ruleset has an, at first surprising but after a while fairly obvious, resemblance to the impartial
ruleset Euclid, which is played on two non-empty heaps of pebbles. A player must remove a
multiple of the size of the smaller heap from the larger heap. A position is represented by a pair
of positive integers (x, y), where say x ≤ y. Note that if x = y, then the position is terminal.
Example: (2, 7) → (2, 3) → (1, 2) → (1, 1). Since we put the requirement that (both) heaps remain
non-empty, no further move is possible. Note that the losing moves are forced.

Optimal play reduces to minimizing the relative distance of the heaps.

Theorem 2.1 ([3]). A player wins Euclid if and only if they can remove a multiple of the smaller
heap such that the ratio of the heap sizes (x, y), satisfies 1 ≤ y/x < ϕ.

In Robin Hood, the player with lesser wealth cannot remove a non-trivial multiple of their own
wealth. Similarly, in Euclid, for positions (x, y) where y/x < ϕ, players are restricted from remov-
ing non-trivial multiples. Consequently, the removal recurrences are identical in both scenarios.

Cumulative Games were defined in a broad sense in the preprint [5]. The purpose of that mono-
graph is to explore an intersection of classical game theory with combinatorial game theory. The
ruleset Wealth Nim a.k.a. Wealth Pebbles is introduced as an example where player cumula-
tions are part of the rules of how to move, but do not contribute to the payoffs that the players gain
when the game ends. Since the purpose of [5] is to provide a broad framework for further study,
no efforts were made to solve proposed individual games and rulesets. The current paper is among
the first ones to do so.
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3. Preliminaries

In order to establish the foundation for proving our main results regarding temperatures and
mean values, we revisit the concept of a ‘thermograph’. Understanding thermographs requires
familiarity with several key terminologies from CGT. We will not discuss standard CGT concepts,
such as game comparison and canonical forms, as they are less critical in this context, and are
well-covered in the existing literature (e.g., [1, 7]). We begin by defining the pivotal concept of a
Number game.

3.1. Numbers, mean values and stops. Intuitively, a game is called a ‘Number’ if each player
prefers that the other player starts. Recall that a sub-position of a game can be the game itself or
any option of the game or any option of options, etc.

Definition 3.1 (Numbers). A short game x is a Number if, in the canonical form of x, every
sub-position y satisfies yL < yR for all yL and yR.4

As usual, ∅ denotes the empty set (of options). Every game is associated with a Number game
in the following sense.

Definition 3.2 (Mean Value). Consider a short game G. Its mean value m(G) is the Number such
that, for any positive dyadic ϵ, for all sufficiently large n, n ·m(G)− ϵ ≤ n ·G ≤ n ·m(G) + ϵ.

In [7, Theorem 3.23] it is proved that every game has a mean value.

The most basic Number games are as follows: For all k ∈ Z>0, we define the integer games k
and −k recursively as:

• k = {k − 1 | ∅};
• −k = {∅ | −k + 1},

where 0 = {∅ | ∅}.

For all odd k ∈ Z and n ∈ N, we define the dyadic rational games recursively as:
k

2n
=

{[
k − 1

2n

]
|
[
k + 1

2n

]}
,

where the brackets denote the reduction of the fraction such that the numerator is odd, unless 0.
For example, with k = 1 and n = 3, the game 1/8 = {0 | 1/4}.

By [7, Proposition 3.5], integer and dyadic rational games follow the standard arithmetic prop-
erties. For instance, the disjunctive sum of the games 1 and 1

2 equals the game 1 + 1
2 = 3

2 .

The games 0 and 1 are vacuously Numbers and similarly, all integers are also Numbers. Moreover,
1
2 = {0 | 1} is a Number, since 0 < 1. The game {∗ | ∗} is also a Number since its canonical form
is 0, which is a Number.

Henceforth, we shall call all integers and dyadic rationals simply as dyadics. Let the set of dyadics
be D =

{
k
2n : k ∈ Z, n ∈ N0

}
, where, with some abuse of notation, the cases for n = 0 correspond

4The definition of a Number in [7] does not hold for {∗ | ∗} and many other literal form games that equal some
canonical form Number.



TEMPERATURES OF ROBIN HOOD 8

to the integers. Since our definition of “Number” is not the same as in most textbooks, we include
a proof of the consistency of terminology.

Theorem 3.3. The set of dyadics has a bijective relation with the set of canonical form Numbers.

Proof. All integers are vacuously Numbers, and they are in canonical form. Next, we show that
every non-integer dyadic k

2n is a canonical form Number. First note that k−1
2n < k+1

2n , and so it is a
Number. Moreover, this game cannot be reduced (indeed, domination does not apply, and it does
not reverse out).

Now, we will show that any literal form Number x equals a dyadic. Let y be the canonical form
of x. By induction, every yL and yR is dyadic. Now, by domination, y will have only one left and
one right option, (say) yL and yR. By the simplicity theorem, y is the simplest dyadic between yL

and yR. □

A Number game can also be interpreted as the number of ‘free moves’ available for Left (if
positive) or Right (if negative). This raises the question of the maximum number of free moves a
player is guaranteed in alternating play of a game. In CGT, the maximum number of free moves
Left is guaranteed in alternating play, when starting a game, is called the Left stop of the game
(this may be negative, if so, it is the minimum guaranteed loss for Left). Similarly, the negative of
the maximum number of free moves Right is guaranteed when starting the game is called the Right
stop of the game (this may be positive).

Definition 3.4 (Stops). For a game G, the Left stop ℓ(G) and the Right stop r(G) are defined as:

ℓ(G) =

{
x if G equals a dyadic x;

maxGL

(
r(GL)

)
otherwise;

r(G) =

{
x if G equals a dyadic x;

minGR

(
ℓ(GR)

)
otherwise.

The stops of a game G is the ordered pair s(G) = (ℓ(G), r(G)).

Remark 3.4.1. If the Left and Right stops of a game G are not the same, then G does not equal a
dyadic.

We shall recall a few results about the stops from [7] that will be of use to us later.

Proposition 3.5 ([7, Proposition 3.17]). Let G be a game and let x be a number. Then,

(1) ℓ(−G) = −r(G) and r(−G) = −ℓ(G);
(2) if G ≥ x, then ℓ(G) ≥ r(G) ≥ x. Likewise if G ≤ x then, r(G) ≤ ℓ(G) ≤ x.

Proposition 3.6 ([7, Proposition 3.18]). Let G be a short game and let x be any dyadic. Then,

(1) ℓ(G) ≥ r(G);
(2) ℓ(G+ x) = ℓ(G) + x and r(G+ x) = r(G) + x.

When we analyze games in terms of the stops, we momentarily stop thinking about winning,
while rather emphasizing the stops. Sometimes we abuse language and instead of “stops”, we say
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scores (the loot of war). This terminology would be consistent with Milnor’s positional games [6],
where his ‘scoring functions’ correspond to normal play stops.5

In a disjunctive sum of games, if the first player can guarantee a higher total score by playing on
a particular component, in comparison to the other components, then that component is considered
‘urgent’. For example, in the sum {4 | −5} + {1 | −2} the game {4 | −5} is urgent compared to
{1 | −2}.

3.2. Penalized positions and temperature. To numerically estimate this notion of urgency, we
recursively apply equal penalties to both players. The minimum penalty at which the Left and
Right stops of a game become equal (i.e., the game is no longer urgent) provides an estimate of the
urgency. Note that this estimate does not depend on any other components. Let D+ denote the
set of non-negative dyadics.

Definition 3.7 (Penalized Position). Let G be a short game in canonical form and let p ∈ D+.
Then, G penalized by p, denoted by Gp, is recursively defined as

• Gp =
{
GL

p − p | GR
p + p

}
for all 0 ≤ p ≤ t where t is the minimum p for which the Left

and Right stops of Gp are equal to a dyadic, say x,
• Gp = x for all p > t.

Here GL
p denotes the set of games of the form GL

p, and similarly for Right.

Example 3.8. Let G = {9 | 7}. Then, Gp = {9− p | 7 + p}, for all p ≤ 1. At p = 1, Gp becomes
{8 | 8}, and hence, for all p > 1, Gp = 8. In summary,

Gp =

{
{9− p | 7 + p} if p ≤ 1;

8 if 1 < p.

Observation 3.9. Although the concept of “cooling by t” defined in [7] is similar but not identical
to “penalized by p”, the stops of “G penalized by p” and “G cooled by t” remain the same for all
p = t ≥ 0.

Using Observation 3.9, we can use the results on the stops of ‘G cooled by t’ for that of ‘Gp

penalized by p’.

Proposition 3.10 ([7, Theorem 5.11(b)]). For any game G, for all p ∈ D+, ℓ(G) ≥ ℓ(Gp) ≥
r(Gp) ≥ r(G).

The middle inequality follows by Proposition 3.6 and the main idea behind the proof of the other
two inequalities is that a penalty reduces the benefit for both players.

The minimum penalty, for which the penalized game remains no longer urgent, is the temperature
of the original game.

Definition 3.11 (Temperature). The temperature of a dyadic G = k/2n is t(G) = −1/2n, where
k ∈ Z and n ∈ N ∪ {0} and if n > 0, k is an odd integer. The temperature t(G) of a non-dyadic G
is the smallest p ∈ D+ such that ℓ(Gp) = r(Gp).

5It turns out that the normal play reduced canonical forms [4] correspond to Milnor’s positional games [6].
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When the game G is unambiguous from the context, we sometimes simply write t = t(G) and
m = m(G), and similarly ℓ = ℓ(G) and r = r(G). In Example 3.8, t(G) = 1.

Combinatorial games are divided into three categories depending on the temperature:

• Hot : A game G is hot, if t(G) > 0;
• Tepid : A game G is tepid, if t(G) = 0;
• Cold : A game G is cold, if t(G) < 0.

3.3. Thermographs and their walls. One of the issues with the definition of temperature is that
it is somewhat unwieldy from a computational point of view. A more intuitive and appealing way
of understanding (and computing) the temperature of a game comes from a more pictorial device,
the thermograph.

Definition 3.12 (Thermograph). Let G be a short game. Then, the thermograph of G, Therm(G),
is a plot of the Left and Right stops of Gp (on the X-axis) with respect to p (on the Y -axis).

For a given (hot) game G, ℓ(Gp) and r(Gp) are bounded functions on the penalty p. Sometimes
we think of them as the walls of Therm(G).

Definition 3.13 (Walls). The sets

LW(G) =
{
(ℓ(Gp), p) : p ∈ D+

}
and

RW(G) =
{
(r(Gp), p) : p ∈ D+

}
are called the large left and large right walls of Therm(G), respectively. The sets

lw(G) =
{
(ℓ(Gp), p) : p ∈ D+, p ≤ t

}
and

rw(G) =
{
(r(Gp), p) : p ∈ D+, p ≤ t

}
are called the small left and small right walls of Therm(G), respectively. A wall is either a small or
a large wall.

At times, we may refer to the ‘walls of the game’ rather than explicitly stating the ‘walls of the
thermograph of the game.’ However, in both cases, we are referring to the same concept.

The large left (right) wall can be seen as an extension of the small left (right) wall, continuing
indefinitely. In Figure 2, we depict a thermograph where ABCD∞ and ED∞ is the large left and
large right wall of the thermograph, respectively, while ABCD and ED is the small left and small
right wall, respectively.

The temperature is the y−coordinate of the point where the small left and right walls merge.
In Figure 2, the y−coordinate of D is the temperature. Moreover, in [7, Theorem 5.17], there is
a proof that the x−coordinate of the same point equals the mean value of the game. Thus, given
a game, the thermograph gives us a computational means to find both the temperature and the
mean value of the game. While computing the walls of a game G, in general, the large walls of the
options need to be considered.
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p = 0
A

B
C

D

E

∞

0

Figure 2. The thermograph of G =
{
6,
{
10 | {5 | 3}

}
| −5

}
.

3.4. An example of a wall computation. For any game G, the left and right walls of Therm(G)
correspond to the graphs of ℓ(Gp) and r(Gp) as a function of p, respectively.

In the case where ℓ(G) = r(G), we have Gp = G when p = 0, and Gp = ℓ(G) for p > 0.
Consequently, ℓ(Gp) = ℓ(G) = r(G) = r(Gp) for all p ≥ 0, which implies that Therm(G) is a
vertical line at ℓ(G).

Now, consider the case when ℓ(G) > r(G). By Definition 3.11, the smallest p for which ℓ(Gp) =
r(Gp) is t(G), denoted by t in short. For all p ≤ t, we have

ℓ(Gp) = max
GL

r
(
GL

p − p
)

= max
GL

r
(
GL

p

)
− p (1)

r(Gp) = min
GR

ℓ
(
GR

p + p
)

= max
GR

ℓ
(
GR

p

)
+ p (2)

Equations (1) and (2) follow using Proposition 3.6. Geometrically, r
(
GL

p

)
represents the large

right wall of Therm(GL
p), denoted as RW(GL

p). Moreover, the function ‘max’ in Equation (1)
corresponds to the function ‘leftmost’ in a geometric sense, as the orientation of the number line is
reversed. Consequently, maxGL r

(
GL

p

)
represents the leftmost RW(GL

p). This leftmost RW(GL
p)

may be a combination of right walls from different options, as the right walls of GL
p’s could intersect.

The term −p in Equation (1) indicates a 45◦ rightward tilt of the wall maxGL r
(
GL

p

)
. We also

refer to this transformation as a right tilt.

Similarly, the right wall of G below p = t is the left-tilted rightmost large left wall of right options.
This aligns with Equation (2) as the left tilt captures the +p shift, the rightmost aspect corresponds
to the min, and the large left wall of right options corresponds to ℓ

(
GR

p

)
.

The two tilted walls meet when ℓ(Gp) = r(Gp), and which occurs at p = t. In other words, the
value of p at which the two walls intersect is the temperature of G. Furthermore, Gp = ℓ(Gt) for
all p > t. Consequently, the thermograph above this point is simply a vertical line at ℓ(Gt).
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For instance, consider the game H = {{2 | 0}, {3 | −3}, 1/2 | −4}. The thermographs of the left
options of H are shown in Figure 3a. The solid edges in Figure 3b represents the leftmost RW(HL

p).
Note that it is a combination of the right walls of different options. The 45◦ rightward tilt of this
wall is depicted by the solid edges in Figure 3c. Similarly, the rightmost LW(HR

p) is represented
by purple dashed edge in Figure 4 and the Therm(H) is given by solid edges in the same figure.

0

(a) Thermographs of Left options of
H. The thermographs of {3 | −3},
{2 | 0} and 1/2 are represented in red,
blue and green, respectively.

0

(b) Leftmost large right wall of ther-
mographs of Left options H (solid
line).

0

(c) Tilted leftmost large right wall of
thermographs of Left options H (solid
line).

Figure 3. Thermographs corresponding to H = {{2 | 0}, {3 | −3}, 1/2 | −4}.

(−1.5, 2.5)

0 -41
2

Figure 4. Thermograph of H = {{2 | 0}, {3 | −3}, 1/2 | −4}.

3.5. Masts and tents. Sometimes, we view a thermograph as the two functions that define it,
but other times, it is convenient to view it as a vertical structure. In this spirit, we define some
particularly simple structures. In our proofs to come, we will assume such structures of the options
by induction, and prove that they survive in the induction step.

Let A ⊂ D × D. If, for all (x, y) ∈ A, y = kx + c, for some constant c, then we say that A has
slope k.

Definition 3.14 (Masts and Tents). Consider a (hot or tepid) game G. Then:

• G ∈ Mast, if LW(G) = RW(G);
• G ∈ DT (double tent), if lw(G) has slope −1 and rw(G) has slope +1;
• G ∈ LT (left single tent), if lw(G) has slope −1 and rw(G) has slope 0;
• G ∈ RT (right single tent), if lw(G) has slope 0 and rw(G) has slope +1.

The terms double tent, left single tent, and right single tent refer to the shapes of a game’s
thermograph. These thermograph shapes can be seen in Figure 5. The three categories—double
tent, left single tent, and right single tent—are collectively referred to as tents.
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ℓ = r0

(a) A Mast.

ℓ 0

p = t

r

(b) A Double Tent.

ℓ 0

p = t

r

(c) A Left Single Tent.

ℓ

p = t

0 r

(d) A Right Single Tent.

Figure 5. Mast and Tents.

In more detail we get the following (by keeping track of the constant c in the definition of slope).

Observation 3.15. We have:

• G ∈ DT , if, for all p ≤ t(G), ℓ(Gp) = t− p+m and r(Gp) = p− t+m;
• G ∈ LT , if, for all p ≤ t(G), ℓ(Gp) = t− p+m and r(Gp) = m;
• G ∈ RT , if, for all p ≤ t(G), ℓ(Gp) = m and r(Gp) = p− t+m,

where, as usual t = t(G) and m = m(G).

The following lemma helps in determining the temperatures and mean values of games with tent-
shaped thermographs. Let us reformulate the case of p = 0, how it applies to the proof of our main
theorem.

Lemma 3.16 (Temperature and Mean of Tents). Let G be a game. Then,

(1) if G ∈ DT , t = (ℓ− r)/2 and m = (ℓ+ r)/2;
(2) if G ∈ LT , t = ℓ− r and m = r;
(3) if G ∈ RT , t = ℓ− r and m = ℓ,

where, as usual t = t(G), m = m(G), ℓ = ℓ(G) and r = r(G).

Proof. Apply Observation 3.15 with p = 0. □

In this spirit of preparing for the main proofs to come, let us present a general lemma concerning
the simplest of thermographs.

Lemma 3.17. Consider a game G and let H denote the Left(Right) option of G with the largest(smallest)
Left(Right) stop. If H ∈ Mast, then LW(G)(RW(G)) does not depend on any other Left(Right) op-
tion than H.

Proof. It suffices to prove that the leftmost large right wall of Left options of G is LW(H). Recall
that for a game G, Gp denotes the game G penalized by p. We get, for all p ≥ 0 and all GL ∈ GL,

r(Hp) = r(H) = ℓ(H) (3)

≥ ℓ(GL) (4)

≥ ℓ(GL
p) (By Prop 3.10)

≥ r(GL
p) (By Prop 3.6)
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Equation (3) follows by Definition 3.12 as H ∈ Mast. Equation (4) follows as H is the option with
the largest Left stop. A similar proof works for the Right options. □

4. Sherwood Organization

Let us formalize the ruleset Robin Hood. We denote by [a] the set {1, 2, . . . , a}.

Definition 4.1 (Robin Hood). Let n, a, b ∈ N0. A single-heap Robin Hood game (n; a, b), where
n is the heap size, a and b are the wealths of Left and Right players, respectively, has the following
options:

(1) the Left options are (n− i; a, b− i) where i ∈ [min {n, a}];
(2) the Right options are (n− j; a− j, b) where j ∈ [min {n, b}].

By convention, non-positive wealth is deemed to be 0 because a player with 0 or negative wealth
cannot make a move. Recall that this game can also be played on multiple heaps. A Robin Hood
game on multiple heaps is same as the disjunctive sum of single heap Robin Hood games.

To understand a multiple heap game, it suffices to know the game values of single heap games.
For this reason, from now onward in this paper, we will only consider the single heap games.
However, the game values (a.k.a. canonical forms) often quickly become intractable. Let us give
some intuition “why?”.

The canonical form of the game (4; 2, 2) is G = ±(2, {2 | ±1}). Suppose that we play the sum
(4; 2, 2) + (3; 1, 2) = G + {±1 | −2}. Left loses if she plays to 2 + {±1 | −2}, but she wins if she
plays to {±1 | −2} + {2 | ±1}. In a sense, the most likely ‘best’ move can fail depending on the
surrounding context. The standard abstract way to explain this type of situation is that, indeed
the game 2 is incomparable with the game {2 | ±1}, and neither option reverses out (which has
to be checked). Similar arguments show that generic games of the form (n; b, b) have b canonical
options for each player (all options are sensible depending on situation). Thus, the complexity of
canonical form games quickly becomes intractable. However, there are some very obvious options
that never come into play.

Proposition 4.2. Consider the Robin Hood game (n; a, b), with n > b. If a > b, then the Left
options (n− i; a, 0), b < i ≤ min {n, a}, are dominated by the Left option (n− b; a, 0).

Proof. For i > b, (n− i; a, 0) = n− i < n− b = (n− b; a, 0). □

Thus, from now onward, we only consider the non-dominated options (with i ≤ min {a, b}).

Proposition 4.3. Consider n, a, b ∈ N0 and let G = (n; a, b). Then

(1) −n ≤ G ≤ n;
(2) −n ≤ ℓ(G) ≤ n and −n ≤ r(G) ≤ n;
(3) −G = (n; b, a).

Proof. Left can win n− (n; a, b) and (n; a, b)+n playing second, by playing on the number in every
turn. The 2nd item follows using the 1st item along with Proposition 3.5. At last, the negative of
a game is swapping the rules of the players. □
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Theorem 4.4 (Robin Hood Positions). Let G = (n; a, b) be a Robin Hood position. We have the
following facts:

(1) G = 0 if a = b = 0;
(2) G = n if a > 0 and b = 0 and G = −n if a = 0 and b > 0;
(3) G = ∗n if n ≤ min {a, b};
(4) G is hot, otherwise;
(5) ℓ(G) = maxGL r(GL) and r(G) = minGR ℓ(GR), if n > max {a, b}.

Proof. Starting with the first item, neither player has moves, and the result is trivial.

Regarding the second item, it suffices to check that (n; a, 0) − n is a P-position. If Left starts
and moves to (n− j; a, 0)− n, Right wins by responding with (n− j; a, 0)− (n− 1). This happens
because, by induction, (n − j; a, 0) = (n − j) ≤ (n − 1). Similarly, if Right starts and moves to
(n; a, 0) − (n − 1), Left wins by responding with (n − 1; a, 0) − (n − 1). By the same argument,
(n, 0, b) = −n.

In the third item, the Left options are (n−j; a, b−j) where 0 < j ≤ n. Since n−j ≤ min {a, b− j},
by induction, the Left options are 0, ∗, ∗2, . . . , ∗(n− 1). By the same argument, the Right options
are also the same. Hence, the game G is {0, ∗, . . . , ∗(n− 1) | 0, ∗, . . . , ∗(n− 1)}, which is ∗n.

For the fourth item, suppose without loss of generality that a ≥ b. Then n > b. Thus, ℓ(G) ≥
r(n− b; a, 0) = n− b > 0.

On the other hand r(G) ≤ ℓ(n− b; a− b, b). If a = b, then ℓ(n− b; a− b, b) = −(n− b) < 0, and
otherwise, since the heap size n− b will decrease further in computing max{r(n− b− i; a− b, b− i)},
r(G) < n− b.

Therefore, r(G) ≤ ℓ(n− b; a− b, b) < n− b < ℓ(G) and consequently, G is hot.

The last item is a consequence of item 4. □

As promised in the introduction, let us prove that Robin Hood does not belong to hotstrat.

Proof of Theorem 1.2. Let G1 = (11; 1, 1) and G2 = (12; 2, 1) be two Robin Hood games. Thus,
G1 = {10 | −10} and G2 = {11 | {10 | −10}}. Hence t(G1) = 10 and t(G2) = 1.

Let G = G1 + G2. If Right starts the game G by playing in the hottest component, G1, to
(10; 0, 1) +G2, then Left can respond by playing in G2 to (10; 0, 1) + (11; 2, 0). This game is Left
winning (by one land piece). Whereas, if Right starts the game by playing in the cooler component,
G2, to the game (11; 1, 1) + (11; 1, 1), Right wins by henceforth mimicking Left’s moves. □

5. Robin Hood meets Little John

By Theorem 4.4, we know that the Robin Hood positions with sufficiently large heap sizes are
hot; both players benefit from starting the game. Is the advantage the same regardless of the initial
move each player makes, or is there a specific move that offers the greatest benefit? Since reduced
wealth is disadvantageous for a player, the move that maximizes the reduction of the opponent’s
wealth is likely to yield the highest advantage.
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Definition 5.1 (Little John Move). Consider a Robin Hood game (n; a, b), where n > 0. For
a > 0, if b > 0, Left’s Little John option is (n−min {n, a, b} ; a, b−min {n, a, b}), and if b = 0, it
is (n− 1; a, 0). Right’s Little John option is analogously defined.

Definition 5.2 (Little John Path). A Little John path is a sequence of alternating play Little John
moves.

After a Little John path, there will usually be a number of free Little John moves for either player,
depending on the size of n. In Figure 6, we illustrate the Little John path on (n; a, b) if a/b = 1.4. If

(n; a, b)

(n− b; a,0)

a > b

= n− b

(a) The Little John Path when Left starts.

(n; a, b)

(n− b; a− b, b)

b < a

(n− a; a− b, 2b− a)

a− b < b

(n− 2a+ b; 0, 2b− a)

a− b < 2b− a

= 2a− b− n

(b) The Little John Path when Right starts.

Figure 6. The Little John Paths of (n; a, b), for a/b = 1.4 and sufficiently large n.

Left and Right have wealths of 27 and 17 respectively, the sequence of pairs (Left’s wealth, Right’s
wealth) along the Little John path when Right starts the game is (27, 17), (10, 17), (10, 7), (3, 7),
(3, 4), (0, 4). Observe that the wealths of Left and Right changes alternatively until one of the
players’ wealth reaches 0. Thus, we can simplify and reduce this sequence to 27, 17, 10, 7, 3, 4, 0,
where the first value belongs to Left, the second to Right, the third to Left, and so on. If we omit
the 0th term from the reversed sequence of players’ wealth on the Little John path, the resulting
sequence (4, 3, 7, 10, 17, 27) follows the pattern where each term is the sum of the two preceding
terms. The next section explores the properties of such sequences.

6. Pingala sequences and their properties

The previous section points at classical number sequences.

Definition 6.1 (Pingala Sequence). The Pingala Sequence (Pk)k≥0 is given by P0 = 0, P1 = 1
and, for all k ≥ 0, Pk+2 = Pk+1 + Pk.6

6This is commonly known as the Fibonacci sequence. We attribute the sequence instead to Acharya Pingala,
an ancient (3rd–2nd century BCE) Indian mathematician and poet who used this sequence in poetry long before
Fibonacci lived.



TEMPERATURES OF ROBIN HOOD 17

The wealths of the players may not lie in this sequence, so we define a modified version of it.

Definition 6.2 (Modified Pingala Sequence). A sequence (Uk)k≥0 is a Modified Pingala Sequence
(MP-sequence) if U0 and U1 are positive integers such that U0 ≥ U1, and Uk+2 = Uk+1 +Uk for all
k ≥ 0.

Remark 6.2.1. The Pingala sequence includes 0 as its 0th term. However, as noted earlier, the
reversed sequence of players’ wealth follows the Pingala sequence pattern only when 0 is excluded.
The condition U0, U1 ∈ Z>0 in the definition of the Modified Pingala sequence ensures that 0 and
any negative numbers are omitted from the sequence.

Next, we see some sequences derived from the Pingala sequence and their properties.

Definition 6.3 (Ratio Sequences). The ratio sequences (Ok)k≥0 and (Ek)k≥0 are given by, for all
k ≥ 0, Ok = P2k+2/P2k+1 and Ek = P2k+3/P2k+2.

We refer to (Ok)k≥0 and (Ek)k≥0 as the Odd and Even Ratio sequences, respectively.

It is well known that Even and Odd ratio sequences are strictly decreasing and increasing, re-
spectively, and both converge to the golden ratio.

The following proposition is a routine.

Proposition 6.4. Consider two positive integers a and b such that a ≥ b. Then,

(1) there exists a unique MP-sequence (Uk)k≥0, such that Uµ = b and Uµ+1 = a, for some
µ ≥ 0;

(2) there exists a unique MP-sequence (Vk)k≥0, such that Vν = a and Vν+1 = b, for some ν ≥ 0.

Proof. The proof follows simply by generating the sequence by using the MP-sequence rules that
every term is sum of the last two terms and the starting term in the sequence is greater than equal
to the next term. □

As an illustrative example, consider a = 31 and b = 20. Then (Uk) = (7, 2, 9, 11, 20, 31, 51, 82, . . . ),
with µ = 4, and (Vk) = (31, 20, 51, 71, 122, . . . ), with ν = 0.

Let us list a few elementary properties of MP-sequences.

Observation 6.5. If (Uk)k≥0 is a MP-sequence, then the following hold:

(1) U1 ≤ U0 < U2 < U3 < · · · < Un < . . . ;
(2) Uk ∈ Z>0 for all k ≥ 0.

The next proposition determines the µ and ν from Proposition 6.4, given a and b. First, we relate
the ratio of consecutive terms of a MP-sequence with those of the Pingala sequence.

Lemma 6.6. Let (Uk)k≥0 be an MP-sequence. Then, for all k ≥ 1, for all i such that 0 ≤ 2i ≤ k−1,

(1) Uk−2i/Uk−2i−1 ≤ Oj ⇔ Uk+1/Uk ≥ Ej+i, and
(2) Uk−2i+1/Uk−2i ≤ Oj ⇔ Uk+1/Uk ≤ Oj+i.



TEMPERATURES OF ROBIN HOOD 18

Proof. Let k be fixed. We will prove both statements together by induction on i.
Base Case: Let i = 0.

(1) Then the following statements are equivalent.

Uk

Uk−1
≤ Oj

(
=

P2j+2

P2j+1

)
(5)

Uk+1 − Uk

Uk
≥ P2j+1

P2j+2
(6)

Uk+1

Uk
≥ P2j+3

P2j+2
(= Ej+0). (7)

Equation (6) follows by inverting the Equation (5).

(2) For i = 0, both sides are the same.

Suppose that the statement is true for i and let 2(i+ 1) ≤ k − 1. Then, for part (1), the following
statements are equivalent by induction on i.

Uk−2(i+1)

Uk−2(i+1)−1
≤ P2j+2

P2j+1
(8)

Uk−2i−1 − Uk−2i−2

Uk−2i−2
≥ P2j+1

P2j+2
(9)

Uk−2i−1

Uk−2i−2
≥ P2j+3

P2j+2
(10)

Uk−2i

Uk−2i−1
≤

P2(j+1)+2

P2(j+1)+1
= Oj+1 (11)

Uk+1

Uk
≥ Ej+1+i. (by induction)

Equation (9) follows by inverting Equation (8) and Equation (11) follows by inverting Equation (10)
and adding 1. This completes the induction. We skip the proof of part (2) as it is similar to part
(1). □

Proposition 6.7. Let a, b > 0 be integers and let (Uk)k≥0 be the unique MP-sequence such that
Uµ = b, Uµ+1 = a for some µ ≥ 0. Then µ is determined as follows:

(1) If a
b < ϕ, then µ = 2µ̂, where µ̂ = min{k ≥ 0 : a

b ≤ Ok};
(2) If a

b > ϕ, then µ = 2µ̃+ 1, where µ̃ = min{k ≥ 0 : a
b ≥ Ek}.

Proof. The indexes µ̂ and µ̃ always exist because the sequences (Ok)k≥0 and (Ek)k≥0 are increasing
and decreasing, respectively and both converge to ϕ.

(1) The following inequalities are equivalent:
a

b
≤ Oµ̂ (12)
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Uµ+1

Uµ
≤ Oµ̂

Uµ−2µ̂+1

Uµ−2µ̂
≤ O0 (= 1) (13)

Uµ−2µ̂+1 ≤ Uµ−2µ̂ (14)
µ− 2µ̂ = 0 (Obs 6.5(1))

Equation (12) follows by the definition of µ̂ and Equation (13) follows by Proposition 6.6(2) for
i = µ̂ and j = 0.

(2) The following inequalities are equivalent:
a

b
≥ Eµ̃ (15)

Uµ+1

Uµ
≥ Eµ̃

Uµ−2µ̃

Uµ−2µ̃−1
≤ O0(= 1) (16)

Uµ−2µ̃ ≤ Uµ−2µ̃−1

µ− 2µ̃− 1 = 0 (Obs 6.5(1))

Equation (15) follows by the definition of µ̃ and Equation (16) follows by Proposition 6.6(1) for
i = µ̃ and j = 0.

This completes the proofs of both statements. □

We now introduce the Pingala sequence with alternating signs, which will be used to establish a
relation between two MP-sequences and hence two games.

Definition 6.8. The alternating pingala sequence
(
P̄k

)
k≥0

is given by P̄k = (−1)k+1Pk.

Proposition 6.9. The following equalities hold.

(1) P̄k+2 = P̄k − P̄k+1 for all k ≥ 0;

(2)
∑k

i=1 Pi = Pk+2 − 1 for all k ≥ 1;

(3)
∑k

i=1 P̄i = 1 + (−1)k−1Pk−1 for all k ≥ 1;

(4) For any MP-sequence (Uk)k≥0,
∑k

i=1 Ui = Uk+2 − U1 − U0 for all k ≥ 1.

Proof. The proofs of all the statements follow by standard induction arguments. □

Later we will consider two Robin Hood games for which the wealth of one of the players differ
by one, while the other player’s wealth remains the same. To compare them, we here give a relation
between the MP-sequences generated by their respective pair of wealths.

Proposition 6.10. Let (Un)n≥0 and (Vn)n≥0 be two MP-sequences. Suppose there exist constants
α and β such that:

(1) Vα = Uβ and Vα+1 = Uβ+1 + 1. Then, for all 0 ≤ k ≤ min {α, β}, Vα−k = Uβ−k + P̄k;
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(2) Vα = Uβ + 1 and Vα+1 = Uβ+1. Then, for all 0 ≤ k ≤ min {α, β}, Vα−k = Uβ−k + P̄k+1.

Proof. We only prove part 1, as the proof of part 2 is similar. We induct on k. For k = 0, the
statement follows by the assumption, and for k = 1 (assume min {α, β} ≥ 1), we have

Vα−1 = Vα+1 − Vα

= Uβ+1 + 1− Uβ

= Uβ−1 + P̄1,

where the first and last equalities follow by Definition 6.2.

Suppose the statement holds for all k ≤ n where n satisfies 1 ≤ n + 1 ≤ min {α, β}. Then, by
the induction hypothesis Vα−(n−1) = Uβ−(n−1) + P̄n−1 and Vα−n = Uβ−n + P̄n, and hence,

Vα−(n+1) = Vα−(n−1) − Vα−n

= Uβ−(n−1) − Uβ−n + P̄n−1 − P̄n

= Uβ−(n+1) + P̄n+1,

where the first and last equalities follow by Definition 6.2. □

7. Little John’s Ruleset

Intuitively, in Robin Hood, players gain by minimizing opponent’s wealth because it reduces
the opponent’s wealth reducing power. So, we digress along the Little John path to understand the
stops and we do so by playing a variation of Robin Hood with exclusively Little John moves.

Definition 7.1 (Little John). Let (n; a, b)∗ denotes a position of the ruleset Little John on a
heap of size n.

(1) if n = 0 or a = 0 = b, neither player has any option, and otherwise:
(2) if a, b > 0, the only Left option is (n−γ; a, b−γ)∗ and the only Right option is (n−γ; a−γ, b)∗

where γ = min {n, a, b};
(3) if a > 0 = b, the only Left option is (n − 1; a, 0)∗ and Right has no option. Similarly, if

b > 0 = a, the only Right option is (n− 1; 0, b)∗ and Left has no option.

The next propositions and lemma allow us to compute the stops of Little John. For simplicity
of notations, we remove the extra set of bracket from ℓ((n; a, b)∗) and write ℓ(n; a, b)∗ and follow
similar notion for Right stop.

Proposition 7.2. Consider n, a, b ∈ N0 and let G = (n; a, b)∗. Then

(1) −n ≤ G ≤ n;
(2) −n ≤ ℓ(G) ≤ n and −n ≤ r(G) ≤ n.

Proof. The proof is same as that of Proposition 4.3. □

Lemma 7.3. Consider n, a, b ∈ N0 such that n > min {a, b} and a ≥ b > 0. Then

(1) (n; a, b)∗ is hot;
(2) ℓ(n; a, b)∗ = r(n− b; a, 0)∗ and r(n; a, b)∗ = ℓ(n− b; a− b, b)∗.
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Proof. The proof is similar to that of Theorem 4.4. □

The Left and Right stops of a game G are the same as the game value if and only if G is a
Number. Since Numbers are cold, and Lemma 7.3 establishes that Little John positions with
large n and positive wealths are hot, these positions cannot be Numbers. Consequently, the Left
and Right stops of such Little John positions differ from their game value. The next lemma
compute these stops.

Lemma 7.4 (Little John Stops). Consider n, a, b ∈ N0 and suppose n ≥ a+ b.

(1) If a = b = 0, then r(n; a, b)∗ = 0.
(2) If b > 0 = a, then r(n; a, b)∗ = −n and if a > 0 = b, then r(n; a, b)∗ = n.
(3) If b ≥ a > 0, then r(n; a, b)∗ = −(n− a).
(4) If a > b > 0, let (Ui)i≥0 denote the unique MP-sequence such that Uµ = b and Uµ+1 = a.

(a) If a
b < ϕ, then r(n; a, b)∗ = a+ b− n− U0.

(b) If a
b > ϕ, then r(n; a, b)∗ = n− (a+ b) + U0.

Proof. To calculate r(n; a, b)∗, we observe the following:

(1) For all n ≥ 0, r(n; 0, 0)∗ = 0 as (n; 0, 0)∗ = 0.

(2) If b > 0 = a, then it follows easily that r(n; 0, b)∗ = r(−n) = −n for all n ≥ 0. Similarly, if
a > 0 = b, then we have r(n; a, 0)∗ = r(n) = n for all n ≥ 0.

(3) if 0 < a
b ≤ 1, then r(n; a, b)∗ = ℓ(n − a; 0, b)∗ = −(n − a). The first equality holds for all

n ≥ a+ b, by Lemma 7.3. The second equality holds as (n−a; 0, b)∗ = −(n−a) by Theorem 4.4(2).

(4) (a) Case 1 < a
b < ϕ. Recall Lemma 6.7 which says µ = 2µ̂ where µ̂ = min

{
k ≥ 0 : a

b ≤ Ok

}
.

Then, for all n ≥ a+ b,

r(n; a, b)∗ = r(n; U2µ̂+1, U2µ̂)
∗

= ℓ(n− U2µ̂; U2µ̂−1, U2µ̂)
∗ (17)

= r(n−

 2µ̂∑
i=2µ̂−1

Ui

 ; U2µ̂−1, U2µ̂−2)
∗ . . . (18)

= r(n−

(
2µ̂∑
i=1

Ui

)
; U1, U0)

∗ (19)

= ℓ(n−

(
2µ̂∑
i=1

Ui

)
− U1; 0, U0)

∗ (20)

= −(n−

(
µ∑

i=1

Ui

)
− U1) (21)

= −(n− Uµ+2 + U0) (22)
= −(n− (a+ b) + U0).
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Equation (17) follows using Observation 6.5(1), Lemma 7.3(2), and the fact that, at each step,
the heap size is at least the sum of the players’ wealths, as n ≥ a+b, and both decrease equally in
each iteration. By repeating this process, we get Equations (18), (19) and (20). Equation (21)
holds using item (2) of this proof and Proposition 3.5(1). Equation (22) is obtained using
Proposition 6.9(4) as a

b > 1 =⇒ µ > 0. The final equality holds as Uµ+1 = a and Uµ = b.

(b) Case a
b > ϕ. From Lemma 6.7, we have µ = 2µ̃ + 1 where µ̃ = min

{
k ≥ 0 : a

b ≥ Ek

}
. Then,

for all n ≥ a+ b,

r(n; a, b)∗ = r(n; U2µ̃+2, U2µ̃+1)
∗

= ℓ(n− U2µ̃+1; U2µ̃, U2µ̃+1)
∗ (23)

= r(n−

2µ̃+1∑
i=2µ̃

Ui

 ; U2µ̃, U2µ̃−1)
∗ . . . (24)

= ℓ(n−

(
2µ̃+1∑
i=1

Ui

)
; U0, U1)

∗ (25)

= r(n−

(
2µ̃+1∑
i=1

Ui

)
− U1; U0, 0)

∗ (26)

= (n−

(
µ∑

i=1

Ui

)
− U1) (27)

= n− Uµ+2 + U0 (28)
= n− (a+ b) + U0.

Equation (23) follows using Observation 6.5(1) and Lemma 7.3(2) and the fact that, at each
step, the heap size is at least the sum of the players’ wealths, as n ≥ a+ b, and both decrease
equally in each iteration. By repeating this process, we get Equations (24), (25) and (26).
Equation (27) holds using item (2) of this proof and Equation (28) follows using Proposi-
tion 6.9(4). The last equality holds as Uµ+1 = a and Uµ = b.

This concludes the proof. □

Having more wealth does not hurt a Little John player. The next theorem compares players’
benefit if wealth of one of the player is increased. This is stop monotonicity with respect to wealth.
(Later, in Lemma 8.3, we will encounter also stop monotonicity with respect to Robin Hood option
played.)

Theorem 7.5 (Little John Stop Monotonicity). Consider n, a, b ∈ N ∪ {0}. Then, for all n ≥
a+ b+ 1,

(1) r(n; a, b)∗ ≤ r(n; a+ 1, b)∗;
(2) r(n; a, b+ 1)∗ ≤ r(n; a, b)∗;
(3) ℓ(n; a, b)∗ ≤ ℓ(n; a+ 1, b)∗;
(4) ℓ(n; a, b+ 1)∗ ≤ ℓ(n; a, b)∗.



TEMPERATURES OF ROBIN HOOD 23

Proof. We prove the first item and the other are similar.

Let (Ui)i≥0 be the unique MP-sequence such that for some µ ≥ 0, Uµ = min {a, b} and Uµ+1 =
max {a, b}. The uniqueness follows by Proposition 6.4.

Similarly, let (Vi)i≥0 be the unique MP-sequence such that for some ν ≥ 0, Vν = min {a+ 1, b}
and Vν+1 = max {a+ 1, b}. We define

RU := r(n; a, b)∗, RV := r(n; a+ 1, b)∗

We need to prove RU ≤ RV . There are 5 cases based on the relative values of a and b with
respect to the golden ratio. We will use the Stop Values Lemma 7.4 several times here.

(a) If a = b = 0, then, by Lemma 7.4(1, 2), RU = 0 ≤ n = RV for all n ≥ 0.

(b) If a > 0 = b, then, by Lemma 7.4(2), RU = n = RV for all n ≥ 0.

(c) If b > 0 = a, then, RU = −n ≤ RV for all n ≥ 0, where the first equality holds using
Lemma 7.4(2) and second inequality holds using Proposition 7.2(2).

(d) Case ϕ < a
b . By Lemma 7.4, we have,

RU = n− (a+ b) + U0, (29)
RV = n− (a+ 1 + b) + V0, (30)

for all n ≥ a + b + 1. Now, to compare RU and RV , we compare U0 and V0. Recall that Vν+1 =
a + 1 = Uµ+1 + 1 and Vν = b = Uµ, as a

b > ϕ. Thus, by Proposition 6.10, we have, for all
0 ≤ k ≤ min {µ, ν},

Vν−k = Uµ−k + P̄k. (31)
Now, by Lemma 6.7, µ = 2µ̃+ 1 and ν = 2ν̃ + 1 where

µ̃ = min
{
i ≥ 0 :

a

b
≥ Ei

}
and ν̃ = min

{
i ≥ 0 :

a+ 1

b
≥ Ei

}
.

Recall that the sequence (Ei)i≥0, where Ei = P2i+3/P2i+2, is decreasing. Therefore, ν̃ ≤ µ̃ and
hence, ν ≤ µ. Now,

RV −RU = V0 − 1− U0 (by Eq (29)-(30))

= Uµ−ν + P̄ν − 1− U0 (by Eq (31))

= U2(µ̃−ν̃) + P̄2ν̃+1 − 1− U0 (ν = 2ν̃ + 1, µ = 2µ̃+ 1)
≥ U0 + P2ν̃+1 − 1− U0 (32)
≥ 0. (P2ν̃+1 ≥ 1)

Equation (32) follows using the following facts:

• if µ̃ = ν̃, then U2(µ̃−ν̃) = U0;
• if µ̃ > ν̃, then by Observation 6.5, U2(µ̃−ν̃) ≥ U2 > U0;

• P̄2ν̃+1 = P2ν̃+1 by Definition 6.8.

(e) Case a
b < ϕ < a+1

b . By Lemma 7.4, we have,

RU =

{
a− n if a ≤ b ;

a+ b− n− U0 if a > b ,



TEMPERATURES OF ROBIN HOOD 24

RV = n− (a+ 1 + b) + V0,

for all n ≥ a+ b+ 1. Hence RU < 0 < RV .

(f) Case a+1
b < ϕ. By Lemma 7.4, we have,

RU =

{
a− n if a ≤ b ;

a+ b− n− U0 if a > b ,
(33)

RV =

{
a+ 1− n if a+ 1 ≤ b ;

a+ 1 + b− n− V0 if a+ 1 > b ,
(34)

for all n ≥ a+ b+ 1. The following subcases arise depending on the relative values of a and b.

(i) If a+ 1 ≤ b, then RU = a− n < a+ 1− n = RV .

(ii) If a = b (≥ 1), then Vν+1 = a + 1 and Vν = b and consequently, Vν−1 = 1. In the case
where b = 1, we have Vν−1 ≥ Vν , and by Observation 6.5, it follows that ν = 1. Otherwise,
Vν−2 = b−1 ≥ 1 = Vν−1 and which implies ν = 2. In both cases, we have V0 ≤ b and therefore,

RV = a+ b+ 1− n− V0

≥ a− n+ b+ 1− b

≥ a− n = RU .

(iii) If a > b, then we must compare U0 and V0 in order to compare RU and RV . We know
Vν+1 = a+1 = Uµ+1+1 and Vν = b = Uµ. Thus, by Proposition 6.10, for all 0 ≤ k ≤ min {ν, µ}
we have,

Vν−k = Uµ−k + P̄k. (35)

Now, by Lemma 6.7, ν = 2ν̂ and µ = 2µ̂ where,

µ̂ = min
{
i ≥ 0 :

a

b
≤ Oi

}
, ν̂ = min

{
i ≥ 0 :

a+ 1

b
≤ Oi

}
.

Recall that the sequence (Oi)i≥0, where Oi = P2i+2/P2i+1, is increasing. Therefore, µ̂ ≤ ν̂
and consequently, µ ≤ ν. Thus, we have,

RU −RV = V0 − 1− U0 (by Eq (33)-(34))

= V0 − 1−
(
Vν−µ − P̄µ

)
(by Eq (35))

= V0 − V2(ν̂−µ̂) + P̄2µ̂ − 1 (µ = 2µ̂, ν = 2ν̂)
≤ V0 − V0 − P2µ̂ − 1 (36)
< 0. (P2µ̂ ≥ 0)

Equation (36) follows using the following facts:

• if ν̂ = µ̂, then V2(ν̂−µ̂) = V0;
• if ν̂ > µ̂, then by Observation 6.5(1), V2(ν̂−µ̂) ≥ V2 > V0;

• P̄2µ̂ = −P2µ̂ by Definition 6.8.

This concludes the proof. □

Let us restate this result as we often will use it.
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Corollary 7.6. Consider n, a, b ∈ N. Then, for all n ≥ a+ b, r(n; a, b)∗ ≤ r(n; a+ 1, b− 1)∗.

Proof. By Theorem 7.5, we have r(n; a, b)∗ ≤ r(n; a+ 1, b)∗ ≤ r(n; a+ 1, b− 1)∗. □

We understand the stops of Little John. Next, we will show that the stops of Little John
and Robin Hood are the same.

8. Little John guides Robin Hood

For large heap sizes, Robin Hood resembles Little John. Robin Hood is wise when he listens
to Little John.

Theorem 8.1 (Wise Robin Hood). Consider n, a, b ∈ N0. Then, for all n ≥ a + b, the stops of
(n; a, b) are the same as the stops of (n; a, b)∗.

Proof. We prove the statement only for the Right stops, as, for any game G, ℓ(G) = −R(−G).

We prove this using induction. Before initiating the induction steps, we first verify the statement
for the cases where at least one of a or b is zero. Suppose n ≥ 0.

(1) If a = 0 = b, then (n; a, b) = 0 = (n; a, b)∗;
(2) If a > 0 = b, then (n; a, b) = n = (n; a, b)∗;
(3) If b > 0 = a, then (n; a, b) = −n = (n; a, b)∗.

In all these cases, the stops of both games are equal as their game values are equal. Since the choice
of n was arbitrary, the statement holds true for all n ≥ 0 in all these cases.

We now proceed to the induction on a + b. The base case of induction, a + b = 1, is already
proven.

Suppose n ≥ a + b. To proceed, we consider three cases based on the relative values of a and
b. Note that the scenarios where a = 0, or b = 0, or both a = b = 0 have already been resolved.
Therefore, we now focus solely on cases where a, b > 0.

(1) If a ≤ b, then, r(n; a, b)∗ = −(n − a) by Lemma 7.4. Next, we compute r(n; a, b) to verify
equivalence. By Theorem 4.4(5) and Proposition 4.2,

r(n; a, b) = min
i∈[a]

ℓ(n− i; a− i, b)

We know, by Lemma 7.4(2) and Proposition 3.5(1), ℓ(n − a; 0, b) = −(n − a). Moreover, for all
1 ≤ i ≤ a− 1, we have,

ℓ(n− i; a− i, b) = ℓ(n− i; a− i, b)∗ (by induction)
= r(n− a; a− i, b− (a− i))∗

≥ −(n− a) (by Prop 7.2(2))

Hence, mini∈[a] ℓ(n− i; a− i, b) = −(n− a). This completes the proof of this case.
(2) If b ≤ a

2 , then

r(n; a, b) = min
i∈[b]

ℓ(n− i; a− i, b) (by Thm 4.4(5))
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= min
i∈[b]

ℓ(n− i; a− i, b)∗ (by induction)

= min
i∈[b]

−r(n− i; b, a− i)∗ (by Prop 3.5(1))

= min
i∈[b]

(n− i− b) (37)

= n− 2b.

Equation (39) follows using Lemma 7.4(3) as a− i ≥ b for all i ∈ [b] and n ≥ a+ b.
Now, we compute r(n; a, b)∗.

r(n; a, b)∗ = ℓ(n− b; a− b, b)∗ (by Lem 7.3(2))
= −r(n− b; b, a− b)∗ (by Prop 3.5(1))
= n− 2b. (38)

Equation (40) holds using Lemma 7.4(3) as a− b ≥ b and n ≥ a+ b. This concludes the proof for
this case.
(3) If a

2 < b < a, then,

r(n; a, b) = min
i∈[b]

ℓ(n− i; a− i, b)

= min
i∈[b]

−r(n− i; b, a− i)∗ (by induction and Prop 3.5(1))

Now, we divide the range of i in two parts, in one, a − i ≥ b and in the other, a − i < b. So, we
define A := {i ∈ [b] : a− i ≥ b} and B := [b] \A. Note that B cannot be empty by the assumption.
Thus, A = {1, . . . , a− b} and B = {a− b+ 1, . . . , b}. Then,

r(n; a, b) = min

{
min
i∈A

(−r(n− i; b, a− i)∗) , min
i∈B

(−r(n− i; b, a− i)∗)

}
= min

{
min
i∈A

(n− i− b), min
i∈B

(
−ℓ (n− a; b− (a− i), a− i)

∗)}
= min

{
n− (a− b)− b, min

i∈B
r (n− a; a− i, b− (a− i))

∗
}

(by definition of A)

= min
{
n− a, r (n− a; a− b, b− (a− b))

∗} (by Cor 7.6)

= r (n− a; a− b, b− (a− b))
∗ (by Prop 7.2(2))

= ℓ(n− b; a− b, b)∗ (39)
= r(n; a, b)∗. (40)

Equation (39) holds because, for a−b < b, we have ℓ(n−b; a−b, b)∗ = r(n−a; a−b, b− (a−b))∗ by
Lemma 7.3(2). Similarly, Equation (40) holds since, for b < a, we have r(n; a, b)∗ = ℓ(n−b; a−b, b)∗.

Since, the choice of n was arbitrary from the set {a+ b, a+ b+ 1, . . . }, all these cases hold for all
n ≥ a+ b. This completes the proof. □

The next results focus on the geometric aspects of Therm(n; a, b)∗. As we indicated in the
Introduction, the typical behavior will depend of the ‘wealth ratio’ a/b. By convention we choose
a ≥ b. Therefore the Left option will be (trivial) a Number, and all efforts will concern the Right
options. Let the wealth ratio of a Right option be wb := (a− b)/b.
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Theorem 8.2 (Little John Thermographs). For fixed integers a, b > 0, let G = (n; a, b)∗. Then,
for n sufficiently large,

(1) G ∈ LT , if a
b > ϕ;

(2) G ∈ RT , if a
b < ϕ−1;

(3) G ∈ DT , otherwise.

Proof. We induct on a + b. Without loss of generality, consider a ≥ b, as the thermograph of
(n; a, b)∗ is the mirror image of thermograph of (n; b, a)∗.

Base case 1: If a+ b = 2, then a/b = 1 and G = (n; 1, 1)∗ = {n− 1 | 1− n}. Hence, G ∈ DT for
all n ≥ 2, as in Figure 7a.

n− 1 1− n0

(a) The thermograph of (n; 1, 1)∗.

n− 2n− 1

1

0

(b) The thermograph of (n; 2, 1)∗.

Figure 7. Thermographs of (n; a, b)∗ for small a and b.

Base case 2: If a+ b = 3, then a/b = 2 and G = (n; 2, 1)∗ = {n− 1 | {n− 2 | 2− n}}. Thus, for
all n ≥ 3, G ∈ LT , as in Figure 7b.

Since a ≥ b, for all n ≥ b, the Left option of G = (n; a, b)∗ is the Number n − b, and thus its
thermograph is a mast at n− b. Therefore, the contribution of Therm(GL) to Therm(G) is a small
left wall of slope −1.

Next we analyze the contributions of the Right option for all sufficiently large n. This will require
an induction argument, and we have analyzed the base cases above. Suppose that, for sufficiently
large n, the statement holds for the thermographs of the options of G = (n; a, b)∗. To prove that
the statement holds for the thermograph of G, we take different cases based on the ratio of the
players’ wealths.

(1) a/b > ϕ: In this case GR = (n − b; a − b, b)∗. We must prove that, for sufficiently large n,
G ∈ LT . The thermograph of GR depends on the wealth ratio wb = (a − b)/b. Since a/b > ϕ,
then (a− b)/b > ϕ−1. Hence, by induction, GR ∈ DT ∪LT . Thus, lw(GR) has slope −1. In either
case, since we must prove that RW(G) is a vertical line, we must verify that the contribution to
Therm(G) from Therm(GL) meets the contribution from small left wall of Therm(GR).

(1A) wb > ϕ: In this case, GR ∈ LT (see Figure 8a). The small left wall of Therm(GR) ends
at the temperature t(GR) = ℓ(GR) − r(GR). Recall that the contribution from Therm(GL) to
Therm(G) is a small left wall with slope −1. It intersects the left tilted lw(GR) if and only if

ℓ(G)− r(G) =

ℓ(G)− ℓ(GR) ≤ ℓ(GR)− r(GR), (41)
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ℓ(G) ℓ(GR) r(GR) 0

(a) The wealth ratio of GR is a−b
b

> ϕ.

ℓ(G) ℓ(GR) r(GR)0

(b) The wealth ratio of GR is ϕ−1 < a−b
b

< ϕ.

Figure 8. Thermographs of G = (n; a, b)∗ and its options when a
b
> ϕ. In each figure,

the Red dashed line represents Therm(GL), blue dashed lines represent Therm(GR), black
dotted line indicates the temperature of GR and Therm(G) is given by solid purple lines.

where the first equality holds since there is only one Right option. For the second inequality, we
need to find r(GR) and ℓ(GR). For this purpose, let (Ui)i≥0 be an MP-sequence with Uµ+1 = a− b
and Uµ = b for some µ ≥ 0. Then, by Lemma 7.4, we have ℓ(G) = n − b, ℓ(GR) = n − 2b, and
r(GR) = n− b− (a− b+ b) + U0 which implies

ℓ(G)− ℓ(GR) = b and ℓ(GR)− r(GR) = a− b− U0.

Hence, by (41), it suffices to prove that U0 ≤ a−2b. Note that a−2b > 0 and therefore Uµ−1 = a−2b
and µ ≥ 1. Thus, the problem reduced to show that U0 ≤ Uµ−1, for all µ ≥ 1.

If µ ≥ 3 or µ = 1, then, by Observation 6.5(1), U0 ≤ Uµ−1. If µ = 2, then U0 = 3b − a and
Uµ−1 = U1 = a − 2b. Now, by applying Observation 6.5(1), we get 3b − a ≥ a − 2b. This implies
wb ≤ 1.5, which is a contradiction to our assumption.

(1B) wb < ϕ: In this case, GR ∈ DT (see Figure 8b). Thus, lw(GR) ends at the temperature
t(GR) = 1

2

(
ℓ(GR)− r(GR)

)
. Recall that the contribution from Therm(GL) to Therm(G) is a small

left wall of slope −1, and it meets the left rotated lw(GR) if and only if

ℓ(G)− ℓ(GR) ≤ 1

2

(
ℓ(GR)− r(GR)

)
. (42)

By Lemma 7.4, ℓ(GR) − r(GR) = 2n + c and ℓ(G) − ℓ(GR) = d for some constants c and d, with
respect to n. Hence, for all sufficiently large n, ℓ(G)− ℓ(GR) ≤ 1

2

(
ℓ(GR)− r(GR)

)
.

(2) 1 < a/b < ϕ: In this case, we must prove that, for all sufficiently large n, G ∈ DT . Here
G = {n − b | (n − b; a − b, b)∗}, and thus, by a−b

b < ϕ−1, by induction, for n sufficiently large,
GR ∈ RT (see Figure 9a). Hence, the contribution to Therm(G) from Therm(GR) is a small right
wall with slope +1 and the contribution from Therm(GL) is a small left wall with slope −1. Hence,
for all sufficiently large n, G ∈ DT (as in Figure 9a). In this case, the lower bound for n is a + b,
by using Lemma 7.4.
(3) a/b = 1: If n > a = b, obviously G ∈ DT .

Thus Little John’s tent structures have been established. □

The term “orthodox option” is often used in the context of thermograph plots. Such options
contribute to the thermograph. The key to the Robin Hood thermographs depends on its orthodox
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ℓ(G) ℓ(GR) r(GR)0

(a) The wealth ratio is 1 < a
b
< ϕ.

ℓ(G) ℓ(GR)0

(b) The wealth ratio is a
b
= 1.

Figure 9. Thermographs of G when a
b
< ϕ. In each figure, the Red dashed line represents

Therm(GL), blue dashed lines represent Therm(GR), and Therm(G) is given by purple
solid lines.

link with Little John. Later in Theorem 9.2 we will exploit further the stop monotonicity of
Robin Hood options.

Lemma 8.3 (Options Stop Monotonicity). Let n, a, b > 0 be integers and consider the Robin
Hood game (n; a, b), with Left and Right options Li = (n − i; a, b − i) and Ri = (n − i; a − i, b),
respectively, where i ∈ [b]. For all sufficiently large heap sizes n,

(1) ℓ(L1) = ℓ(L2) = · · · = ℓ(Lb) = n− b;
(2) r(L1) ≤ r(L2) ≤ · · · ≤ r(Lb) = n− b;
(3) ℓ(R1) ≥ ℓ(R2) ≥ · · · ≥ ℓ(Rb);
(4) r(R1) ≥ r(R2) ≥ · · · ≥ r(Rb).

Proof. Without loss of generality, consider a ≥ b. Now, we compare the stops of the Left options
of G using Little John Stop Monotonicity, Theorem 7.5 and Corollary 7.6. We use the following
results several times in the proof:

• By Theorem 8.1, the stops of Robin Hood and Little John are the same;
• Lemma 7.4 gives the exact stop values.

For any fixed i ∈ [b], we have:

ℓ(Li) = ℓ(n− i; a, b− i)∗

= r(n− b; a, 0)∗ (43)
= n− b (44)

r(Li) = r(n− i; a, b− i)∗

=

{
n− b if i = b;

ℓ(n− b; a− b+ i, b− i)∗ otherwise.
(45)

We have used that b− i < a for all i ∈ [b]. Therefore, by Corollary 7.6,

r(L1) ≤ r(L2) ≤ · · · ≤ r(Lb−1). (46)

And, by Proposition 7.2,
r(Lb−1) ≤ n− b. (47)
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Thus, equations (44)-(47) together prove items (1) and (2).

For item (3), we compare the Left stops of the Right options. By Theorem 8.1, for all i ∈ [b], we
have

ℓ(Ri) = ℓ(n− i; a− i, b)∗ (48)

=

{
n− b− i, if a− i ≥ b;

r(n− a; a− i, b− a+ i)∗, otherwise.
(49)

In Equation (49), the behavior of ℓ(Ri) changes when i increases such that a− i < b. So, we define
α as the minimum natural number i such that a − i < b, i.e., α := min {i ∈ N : a− i < b}. Note
that α = a− b+1. Put differently, α is the fewest tokens Right needs to remove in (n; a, b) to make
Left’s wealth less than Right’s wealth. But, if α > b, then Right cannot do this. Therefore, let us
first assume α ≤ b. Now, we rewrite Equation (49) as:

ℓ(Ri) =

{
n− b− i, if i < α;

r(n− a; a− i, b− a+ i)∗, if i ≥ α.
(50)

Then, by Corollary 7.6, we have

ℓ(Rα) ≥ ℓ(Rα+1) ≥ · · · ≥ ℓ(Rb). (51)

Now, we compare ℓ(Rα−1) with ℓ(Rα),

ℓ(Rα−1) = n− b− α+ 1 (by Eq (50))
= n− a

≥ r(n− a; a− α, b− a+ α)∗ (by Prop 7.2)
= ℓ(Rα) (52)

Equations (50)-(52) prove item (3) when α ≤ b. If α > b, then the proof of item 3 is complete
because ℓ(Ri) = n− b− i for all i ∈ [b].

For item (4), we compare the Right stops of the Right options of (n; a, b).

r(Ri) = r(n− i; a− i, b)∗ (53)

=

{
ℓ(n− i− b; a− i− b, b)∗, if a− i > b;

−(n− a), otherwise.
(54)

=


n− i− 2b, if a− i ≥ 2b;

r(n− a; a− i− b, 2b− a+ i)∗, if b < a− i < 2b;

−(n− a), if a− i ≤ b.

(55)

Define β := min {i ∈ N : a− i < 2b} and γ := min {i ∈ N : a− i ≤ b}. Note that β = a− 2b+1 and
γ = a− b. If γ ≤ b, then we rewrite Equation (55) as:

r(Ri) =


n− i− 2b, if i < β;

r(n− a; a− i− b, 2b− a+ i)∗, if β ≤ i < γ;

−(n− a), if γ ≤ i ≤ b.

(56)

Thus, we have

r(R1) ≥ r(R2) ≥ · · · ≥ r(Rβ−1), (57)
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r(Rβ) ≥ r(Rβ+1) ≥ · · · ≥ r(Rγ−1), (58)
r(Rγ) ≥ r(Rγ+1) ≥ · · · ≥ r(Rb), (59)

where Equation (58) follows by Corollary 7.6. Now, by Proposition 4.3,

r(Rβ−1) = (n− a) ≥ r(Rβ), (60)
r(Rγ−1) ≥ −(n− a) = r(Rγ). (61)

Equations (57)-(61) complete the proof when γ ≤ b. If γ > b and β ≤ b, then Equations (57),(58)
and (60) complete the proof. The proof of case when β > b follows by Equation (57). □

9. A solution for the Pingala Era wetland tribes

The toolbox is now complete, and we arrive at the main theorem, in terms of thermographs. At
last, in this section, we revisit Theorem 1.1 by including a short proof, interpreting Robin Hood’s
thermographs in terms of mean values and temperatures. To simplify reading the proof we locally
abbreviate some of our standard notation.

Notation. Consider a Robin Hood game G = (n; a, b). For i ∈ [b], let Li = (n−i; a, b−i) represent
the Left options and let Ri = (n− i; a− i, b) represent the Right options. The reason for the super-
and sub-scripts is the following short hand notation for the stops of these options:

• Let ri and ri denote the Right stops of Li and Ri, respectively, and let ℓi and ℓi denote the
Left stops of Li and Ri, respectively;

• Let RWi and RWi denote the large right walls of Li and Ri, respectively, and let LWi and
LWi denote the large left walls of Li and Ri, respectively;

• Similarly, let rwi, rwi, lwi and lwi denote the small walls.

This use of sub- and super-scripts can be generalized to any function on Ri and Li respectively; for
example m(Rb) = mb and m(La) = ma, etc. Moreover, when the options are penalized by p, we
write ri(p) and ℓi(p) for the Right and Left stops of Li penalized by p, respectively, and ri(p) and
ℓi(p) for the Right and Left stops of Ri penalized by p, respectively. Aligning with these notations,
denote a typical GR ∈ DT by Rδ, with Left and Right stops ℓδ and rδ, respectively, and denote
a typical GL ∈ DT by Lδ, with Left and Right stops ℓδ and rδ, respectively. Similarly, denote
GR ∈ ST by Rσ, with stops ℓσ and rσ, and denote GL ∈ ST by Lσ, with stops ℓσ and rσ.

We make use of a partial order of large left and right walls.

Definition 9.1 (Wall Partial Order). Let f, g : D+ → D, and let F = {(f(y), y) | y ∈ D+} and
G = {(g(y), y) : y ∈ D+}. Then F ≥ G if, for all y ∈ D+, f(y) ≥ g(y).

Thus, for example LWi ≥ LWj if, for all p ∈ D+, ℓi(p) ≥ ℓj(p). We will see that Little John
and Robin Hood have the same mean values and temperatures for large heaps, and the reason for
that is that they have the same thermographs.

Theorem 9.2 (Robin Hood Thermographs). Let a, b ≥ 0 be integers. Then, for any sufficiently
large heap size n, Therm(n; a, b) = Therm(n; a, b)∗.
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Proof. Let G = (n; a, b) and let H = (n, a, b)∗. Our goal is to demonstrate that, for n sufficiently
large, the thermographs of H and G are identical. Thus, it suffices to show that, for large n, the
thermograph of G solely depends on the Little John options.

We induct on a + b. Without loss of generality, consider a ≥ b, as Therm(n; a, b) is the mirror
image of Therm(n, b, a).

If a = b = 0, then G = 0 = H and if a > b = 0, then G = n = H. Thus, the result holds in these
cases, so suppose both a and b are non-zero.

If a+ b = 2, then (n; 1, 1) = {(n− 1) | −(n− 1)} = (n; 1, 1)∗. Hence, the thermographs of G and
H are the same.

Now, suppose that the statement holds for the options of G, for all sufficiently large heap sizes
n.

We begin by examining the Left options of G and their corresponding thermographs. By Option
Stop Monotonicity, Lemma 8.3, we have

ℓ1 = ℓ2 = · · · = ℓb = n− b = rb ≥ rb−1 ≥ · · · ≥ r1. (62)

This implies that Lb is the option with the Largest Left stop and the thermograph of Lb is a mast
at n − b. Hence, by Lemma 3.17, the left wall of Therm(G) does not depend on any Left option
other than Lb, which is the Little John option.

For the rest of the proof, we demonstrate that, for large n, RW(G) does not depend on any Right
option other than the Little John Right option Rb. That is, we prove that, for large n, for all i,
LWb ≤ LWi. By induction, the thermographs of the Right options are the same as those of the
corresponding Little John thermographs, and consequently they depend on the option’s wealth
ratio wi = a−i

b , for i ∈ [b]. Recalling Theorem 8.2, we have Ri ∈ RT if wi < ϕ−1, Ri ∈ DT if
ϕ−1 < wi < ϕ, and Ri ∈ LT , otherwise.

We take different cases based on G’s wealth ratio a
b .

(1) a
b
> ϕ : As i ∈ [b], the wealth ratios, wi =

a−i
b , of the Right options fall within the interval

(ϕ−1, a
b ). Hence, by induction, their thermographs are either DT or LT . When the ratio wi drops

(as i increases) below ϕ, the Right options’ thermographs change from LT to DT . Therefore, we
define α as the smallest Right removal (i) for which Ri ∈ DT , i.e.,

α = min {i ≥ 1 : wi < ϕ} .

By this definition, if α > b, then the thermographs of all Right options are left single tents.
Otherwise, at least one of the thermographs is a double tent. So, we take sub-cases based on α.

Recall, by Lemma 8.3,

ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓb, and (63)
r1 ≥ r2 ≥ · · · ≥ rb. (64)

(1A) α > b : Let Rσ ∈ LT be any Right option other than Rb ∈ LT . We must prove that
LWb ≤ LWσ. Clearly ℓb ≤ ℓσ, by the monotonicity property in Equation (63), so LWb ̸> LWσ.

Assume, for a contradiction, that LWb ̸≤ LWσ. Since ℓb ≤ ℓσ, this assumption implies that LWσ

crosses LWb at some point, that is, there is a penalty p such that ℓb(p) > ℓσ(p). The only way this
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can occur is if lwσ intersects LWb above tb (see Figure 10c). In this case, since both Rb, Rσ ∈ LT ,
we must have RWσ < RWb. This would imply rσ < rb, which contradicts the monotonicity property
in Equation (64). Hence, we are left with the situations in Figures 10a and 10b that both confirm
that LWb ≤ LWσ.

Rσ Rb

(a) The case LWσ ≥ LWb when
tb ≥ tσ .

Rσ Rb

(b) The case LWσ ≥ LWb when
tb < tσ .

RσRb

(c) The case LWσ ̸≥ LWb is im-
possible, by monotonicity (64).

Figure 10. Thermographs of Right options of G in case (1A) when both Rb, Rδ ∈ LT .

(1B) α ≤ b : If α ≤ i ≤ b, then by induction and definition of α, Ri ∈ DT . Otherwise, if i < α,
then Ri ∈ LT . Therefore, in this case, we must compare Rb ∈ DT with both Rσ ∈ LT and
Rδ ∈ DT .

We start with Rb ∈ DT and Rσ ∈ LT .

Claim: If Rb ∈ DT and Rσ ∈ LT , then, for sufficiently large heap sizes, mb ≤ mσ.
Proof of Claim. By Lemma 7.4 and Theroem 8.1, we have

ℓb = n+ c1, (65)
rb = −n+ c2, (66)
rσ = n+ c3, (67)

where c1, c2 and c3 are constants with respect to n. Since Rb ∈ DT , Equations (65)-(66) and
Lemma 3.16 together imply mb = (ℓb + rb) /2 = (c1 + c2) /2. Similarly, Equation (67) imply
mσ = rσ = n+ c3 as Rσ ∈ LT . Therefore, since we are taking n to be large, we have

mb ≤ mσ. (68)

Since both small left walls, lwb and lwσ, have slope −1, and ℓb ≤ ℓσ as well as mb ≤ mσ, the proof
of LWb ≤ LWσ follows similarly to Case (1A). Therefore, we omit the details. This argument does
not depend on other properties of the thermographs, such as the relation between temperatures;
see Figure 11.

We omit the analysis of Rb ∈ DT and Rδ ∈ DT , as it parallels that of Rb ∈ LT with Rσ ∈ LT
in Case (1A), with the only distinction being the argument that m(Rb) ≤ m(Rδ) due to the shape
of the thermographs and the monotonicity of the stops. This completes the proof in this case.

(2) 1 < a/b < ϕ : In this case, the wealth ratios wi = (a − i)/b for the Right options fall within
the interval (0, ϕ). By the induction hypothesis, Ri ∈ DT ∪ RT . Define β as the smallest right
removal index for which Ri ∈ RT , i.e.,

β = min
{
i ≥ 1 : wi < ϕ−1

}
.
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p = tσ

Rσ Rb

p = tb

(a) LWb and LWσ , when tb ≥ tσ .

Rσ Rb

p = tb

p = tσ

(b) LW(Rb) and LW(Rσ), when t(Rb) < t(Rσ).

Figure 11. Thermographs of Right options of G, in case (1B).

Observe that β ≤ b, since (a − b)/b = a/b − 1 < ϕ−1. Consequently, Rδ ∈ DT for δ < β, while
Rσ ∈ RT , if σ ≥ β. Hence, we must compare the large left wall of Rb ∈ RT with those of both
Rδ ∈ DT and Rσ ∈ RT .

We begin by verifying that LWb ≤ LWδ, for large n.

RδRb

(a) The case mb > mδ does not appear for large n.

Rδ Rb

(b) The case mb ≤ mδ appears for large n.

Figure 12. Thermographs of the Right options Rb and Rδ of G in case (2).

Similar to the claim in case (1B), for large n, we get mb ≤ mδ. We indicate with a red arrow in
Figure 12a that Therm(Rb) shifts to the right with increasing n, which instead creates a situation
as in (b). Indeed, since Rb ∈ RT , LWb is a vertical line, and thus LWδ ≥ LWb by stop monotonicity
and mb ≤ mδ (see Figure 12b).

Next we compare Rb ∈ RT with Rσ ∈ RT . In this case, the Left walls of both Rb and Rσ are
vertical lines determined by their Left stops, i.e., for all p ≥ 0, ℓb(p) = ℓb and ℓσ(p) = ℓσ. By
Lemma 8.3, we have ℓb ≤ ℓσ. Hence, LWb ≤ LWσ.

(3) a/b = 1: In this case, Rb = (n−a; 0, b) = −(n−a). Thus, Rb ∈ Mast. Now, by Lemma 8.3, Rb

is the Right option of G with the smallest Right stop and hence, by applying Lemma 3.17, RW(G)
does not depend on any other Right option than Rb.

Thus the Robin Hood thermographs are the same as those of Little John. □

Remark 9.2.1. The claim in Case (1B) in the proof of Theorem 9.2, might not hold for smaller
heap sizes, and we explain what can happen in terms of thermographs in Figure 13b; our “tent
structures” may not survive for small heap sizes.
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Rσ
Rb

(a) Thermographs of Rb and Rσ if mb < mσ .

Rσ
Rb

(b) A more complex right wall of G.

Figure 13. Thermographs of Right options, as in case (1B), for smaller heap sizes.

We can now compute the temperatures and mean values of Robin Hood as stated in the main
theorem from the Introduction, Theorem 1.1.

Theorem 1.1 (Main Theorem) For fixed positive integers a and b, let Gn = (n; a, b) be instances
of Robin Hood. Let (Ui)i≥0 be the unique sequence of positive integers such that

(1) U0 ≥ U1,
(2) Uk+2 = Uk+1 + Uk for all k ≥ 0, and
(3) for some µ ≥ 0, Uµ = min {a, b} and Uµ+1 = max {a, b}.

For all sufficiently large heap sizes n, the temperature of Gn is

t(Gn) =



b− U0 if a
b < ϕ−1,

n− a+ U0−b
2 if ϕ−1 < a

b < 1,

n− a if a
b = 1,

n− b+ U0−a
2 if 1 < a

b < ϕ,

a− U0 if ϕ < a
b ,

and the mean value is

m(Gn) =



a+ b− n− U0 if a
b < ϕ−1,

U0−b
2 if ϕ−1 < a

b < 1,

0 if a
b = 1,

a−U0

2 if 1 < a
b < ϕ,

n− (a+ b) + U0 if ϕ < a
b .

Proof. Let G∗
n represent the Little John game associated with Gn, i.e., G∗

n = (n; a, b)∗. According
to Theorem 9.2, for sufficiently large n, Therm(Gn) equals Therm(G∗

n), implying:

t(Gn) = t(G∗
n) and m(Gn) = m(G∗

n).

Thus, the problem reduces to determining the temperature and mean value of G∗
n. As shown in

Theorem 8.2, Therm(G∗
n) depends on the wealth ratio a/b for sufficiently large n. Therefore, we
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consider different cases based on the wealth ratio a/b and take n to be large enough that both
Theorems 8.2 and 9.2 are applicable.

(1) a/b < ϕ−1 : In this case, by Theorem 8.2, G∗
n ∈ RT , and by Lemma 7.4, the stops are

s(G∗
n) = (a+ b− n− U0, a− n). Hence, we get:

m(G∗
n) = a+ b− n− U0 and t(G∗

n) = b− U0,

as per Lemma 3.16. A similar argument applies if a/b > ϕ.
(2) ϕ−1 < a/b < 1 : In this case, by Theorem 8.2, G∗

n ∈ DT , and by Lemma 7.4, the stops
are s(G∗

n) = (n− (a+ b) + U0, a− n). Therefore, we have:

m(G∗
n) =

U0 − b

2
and t(G∗

n) = n− a+
U0 − b

2

as shown in Lemma 3.16. A symmetric argument holds if 1 < a/b < ϕ.
(3) a/b = 1 : In this case, by Theorem 8.2, G∗

n ∈ DT , and by Lemma 7.4, the stops are
s(G∗

n) = (n− a, a− n). The desired result follows by applying Lemma 3.16.

This concludes the proof. □

Open problems

(1) Solve the ‘middle region’ of Robin Hood, in terms of thermographs, whenever 0 <
min{a, b} < n ≤ a+ b.

(2) Find explicit bounds on “sufficiently large” heap sizes for the main theorem to apply.
(3) Study the Canonical Forms of Robin Hood, and in cases where this is hard, study instead

the so-called Reduced Canonical Form [7].
(4) Study more instances of Wealth Nim.
(5) Study the outcomes of a ruleset where there is only one global pair of wealths for the

entire compound, governing how many tokens may be removed from any single heap. The
reduction of the opponent’s wealth would be the same as here. For example if the wealth
pair is (a, b) = (2, 3) and there are two heaps of sizes one and two, then, if Left starts,
she can win if she removes one token from the second heap and reduce Right’s wealth by
one rupee. However, if she plays the Little John move and reduces Right’s wealth by two
rupees, and removes the second heap, then she loses. In this perspective, Robin Hood is a
local variation, where each heap has an individual wealth pair. Compare with two papers
on local vs. global Fibonacci Nim [9, 10].

(6) Given a number of heaps, and a global wealth for each player, solve the simultaneous play
‘optimal’ assignments of wealth per heap, in the sense of Colonel Blotto [2]. In cases where
hotstrat applies, the main results of this paper should guide such assignments, and otherwise
one would need better understanding of (reduced) canonical forms.
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