Lecture 6 Dynounics
of Gravity - I
Plan : 1 , Complete $T^{\mu}{ }_{v}$ a la Noether
2. Variational derivation of E Egn. from $E-H$ action
3. $T^{\mu \nu}$ as $\delta S_{\text {matter }} / \delta g_{\mu \nu}$
\rightarrow S.N. Gupta n + Weinberg
on graviton comphing to its on " $t^{\mu \nu}$ ".
4 Begin $A D M$

Q:owhy do we strp at small symmetry variation
(2) Are there symmetry variations non-hinear in the fields Ψ_{a}
(1) \rightarrow small suffice for Noether.
(2) \rightarrow don't know.

But Y-M does have "Large gange transf" whose effect is not captured in Noether's tharem.
Jacbiur-Rebbi (1973?) \rightarrow "e-vacua"
\# $\left[\begin{array}{l}\rightarrow \text { Toporogical charges (Non (Nother) } \\ \rightarrow \text { Characterise sotition sonitrons }\end{array}\right.$
θ vererra of $S U(2)_{E}^{\otimes} U(1)_{y}$ eloctroweats
\rightarrow relevance to $B+L$ momber. vislathin; $\widehat{B A U}$

SUSY (?) Secret non-linearify of transt. S in SUSY \rightarrow unse of anxiliasy fields
S.P. Martion "SUSY: A Primer"

Retursing to T_{ν}^{μ} a la Noether

$$
\begin{aligned}
& x^{\mu} \rightarrow \tilde{x}^{\mu}=x^{\mu}+a^{\mu} \longrightarrow n \Delta t \text {. } \\
& \widetilde{\psi}-\psi \equiv \delta \psi(x)=-a^{\mu} \partial_{\mu} \psi(x) \\
& \text { of } x \\
& \delta S=\int_{\Omega} d^{4} x\left\{\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \psi\right)} \delta\left(\partial_{\mu} \psi\right)+\frac{\delta \mathcal{L}}{\delta \psi} \delta \psi\right\} \\
& +\int_{\partial \Omega} \delta\left(d^{4} x\right) \mathcal{L} \\
& =\int_{\partial \Omega} d^{3} \Sigma_{\mu} \frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \psi S\right)} \times \delta \psi+\left\{\begin{array}{l}
E-L \\
\text { eqn }, s
\end{array}\right\} \\
& \begin{aligned}
+\int_{\partial \Omega}^{\prime \prime} \underbrace{\mu} d \Sigma_{\mu}^{\prime \prime} & \mathcal{L} \\
\longrightarrow & d^{4} x \leadsto \underset{\delta x^{\mu}}{a^{\mu}} \times \Sigma_{\mu}
\end{aligned}
\end{aligned}
$$

Subject to $E-L$ egn.s satisfied,

$$
\begin{aligned}
\delta_{a} S=-a^{\nu} \int & d^{3} \Sigma_{\mu} \frac{\delta \mathscr{L}}{\delta\left(\partial_{\mu} \psi\right)} \partial_{\nu} \psi \\
& +a^{\nu} \int d^{3} \sum_{\nu} \mathcal{L} \\
= & a^{\nu} \int d^{3} \sum_{\mu}\left\{\frac{\delta d}{\delta\left(\partial_{\mu} \psi\right)} \partial_{\nu} \psi-\delta_{\nu}^{\mu} \mathscr{L}\right\}
\end{aligned}
$$

Recall $\int_{\partial \Omega} d^{3} \Sigma_{\mu} j^{\mu} \Rightarrow \int_{\Omega} d^{4} x \partial_{\mu} j^{\mu} \Rightarrow Q=\int j d^{3} x$
Thus we have for each V,

$$
\begin{aligned}
\partial_{\mu} T_{\nu}^{\mu} & =0 \\
\text { with } T_{\nu}^{\mu} & =\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \Psi\right]} \partial_{\nu} \psi-\delta_{\nu}^{\mu} \mathcal{L} \\
\text { Note } T_{0}^{0} & =\frac{\delta \mathcal{L}}{\delta(\dot{\psi})} \dot{\psi}-\mathcal{L} \\
& =\pi \dot{\psi}-\mathcal{L} \equiv \mathfrak{J}
\end{aligned}
$$

Thus we have 4 conserved choreges

$$
P_{\nu} \equiv \int_{t=\text { cont }} d^{3} x T_{\nu}^{0}
$$ but we have space components of physical total momentrom of the field

$$
P_{i}=\int T_{i}^{0} d^{3} x \nLeftarrow\left\{\begin{array}{l}
\text { canonical } \\
\text { momentum }
\end{array}\right.
$$

Generalises simple carse of poritrale mechanics - translation insrasiace

$$
\Rightarrow V\left(\vec{x}_{2}^{\prime}\right) \equiv V\left(\vec{x}_{1}-\vec{x}_{2}, \vec{x}_{1}-\vec{x}_{3} \ldots\right)
$$ difference ont

$$
\Rightarrow \vec{\nabla}_{1} V\left(\vec{x}-\vec{x}_{2}\right)=-\vec{\nabla}_{2} V\left(\vec{x}_{1}, \vec{x}_{2}\right) \rightarrow \text { Nontois } \text { third }
$$

since $\cdot \vec{F}_{\text {lot }}=\sum_{i} F_{i j}=0=\frac{d}{d t}\left(\sum_{i} F_{i}\right)^{l}$
as for t-translation
Jacobi inv, $J=\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}-L$
same as T_{0}° same cay Ht°
Einstern-Hilbert action

$$
S=\int d^{4} x \sqrt{-g} R+\frac{1}{16 \pi G}
$$

the only generally corrasiant scalar unto $\partial \partial g$ other than a constant

$$
\begin{aligned}
& \delta S=\int d^{4} x \delta(\sqrt{-g}) R+\int d^{4} x \sqrt{-g} \delta R_{a b} g^{a b} \\
& +\int d^{4} x \sqrt{-g} R_{a b} \delta\left(g^{a b}\right) \\
& \text { Recall } \delta \Gamma_{\nu \rho}^{\mu}=\frac{1}{2} g^{\mu \sigma}\left(\delta g_{\sigma \nu_{j \rho}} \delta g_{\nu \rho_{j \sigma}}+\delta g_{\sigma g_{j \nu}}\right)
\end{aligned}
$$

Thus it can be shown

$$
\delta R_{\mu \nu}=\left(\delta \Gamma_{\mu \sigma}^{\sigma}\right)_{j \nu}-\left(\delta \Gamma_{\mu \nu}^{\sigma}\right)_{j \sigma}
$$

Then r.c.b.s.t.

$$
\begin{aligned}
& g^{\mu \nu} \delta R_{\mu \nu}=\frac{\partial}{\partial x^{\nu}}\left(\sqrt{g} g^{\mu \nu} \delta \Gamma_{\mu \sigma}^{\sigma}\right) \\
& \text { cor. } \\
& \text { divertervested }
\end{aligned}
$$

Than it is a total derivative

$$
\int_{\Omega} d^{4} x\left(g^{\mu \nu} \delta B_{\mu \nu}\right)=\int_{\partial \Omega} d^{3} \Sigma_{\mu} J^{\mu} \rightarrow z e r \infty
$$

for sintable choice $\delta g\}_{\partial \Omega}=0$
Next

$$
\begin{aligned}
& \delta(\sqrt{-g})=\frac{1}{2 \sqrt{-g}} \delta(-\operatorname{detg}) \\
& =\frac{1}{2 \sqrt{-g}}(-g) g^{a b} \delta g_{a b} \\
& =+\frac{1}{2} \sqrt{-g} g^{a b} \delta g_{a b}
\end{aligned}
$$

(lure identity for matrix variation

Note $0=\delta\left(g^{a b} g_{a b}\right)=g^{a b} \delta g_{a b}+\left(\delta g^{a b}\right) g_{a b}$

$$
=-\frac{1}{2} \sqrt{-g} g_{a b} \delta g^{a b}
$$

Thus we recover Einstein's epra-s as $E-L$ equ.s

$$
R_{a b}-\frac{1}{2} g_{a b} R=0
$$

Energy-Momentum Lesusor (corvriant)
Need to compare

$$
R_{a b}-\frac{1}{2} g_{a b} R=8 \pi G T_{a b}
$$

Sinee tolat oretion

$$
S=S_{\text {grau }}+S_{\text {mattor }}
$$

We do have $\frac{1}{16 \pi G}$ on Sgrar.
by convenstion $S \sigma$ that we must have

$$
T_{a b}=\frac{S S_{\text {maltor }}}{\delta g^{a b}}
$$

Note $S_{m a t t e r}\left[\psi_{m}, \nabla_{a} \psi_{m}\right]$

Note:

$$
T_{a b}=\frac{\delta S_{\text {malter }}}{\delta g_{a b}}
$$

(1) is natirially symmetsic
(2) will abso come out satisfying

$$
\nabla_{a} T^{a b}=0 \rightarrow \text { needs proof }
$$

Prored in Straumann.

$$
\text { from } S[\Psi, \nabla \psi]
$$

Properties typically not satrisfied by Noether $\tau^{\mu} \nu$

Quick preview of ADM

$$
\sum(t+\delta t) \quad \begin{aligned}
d x^{i} & \rightarrow N^{i}+d x^{i} \\
d t & =N d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& d s^{2}=-N^{2} d t^{2}+{ }^{(3)} g_{i j}\left(N^{i}+d x^{i}\right)\left(N^{j}+d x^{j}\right)
\end{aligned}
$$

Extrinsic crosualurse
\rightarrow arises dretocov, deriv. restricted to $\sum^{\prime} s$
\rightarrow determines variation of vectors normal to Σ
\rightarrow is eguiar to momentum s canonically conjugate to

