EQUIVALENCE TESTING OF PRINCIPAL MINORS

Abhranil Chatterjee, Sumanta Ghosh, Rohit Gurjar, Roshan Raj

CSE Department, IIT Bombay

PRINCIPAL MINOR EQUIVALENCE TESTING

- Given an $n \times n$ matrix A and $S, T \subseteq [n]$, let A[S,T] be the submatrix of A with rows indexed by S and columns indexed by T. Let A[S] = A[S,S].
- \succ Principal minor corresponding to set *S* ⊆ [*n*] is det(*A*[*S*]).
- ▶ Question (PMET): Given $A, B \in \mathbb{F}^{n \times n}$, check whether all principal minors of A and B are same. If yes then we say $A \equiv B$.
- ≻Example:

$$A = \begin{pmatrix} 2 & 1 & 2 \\ 3 & -1 & 1 \\ -2 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1/2 & -2 \\ 6 & -1 & -2 \\ 2 & -1/2 & 0 \end{pmatrix}.$$

 $\succ \{1\} \rightarrow 2; \{2\} \rightarrow -1; \{3\} \rightarrow 0; \{1,2\} \rightarrow -5; \{1,3\} \rightarrow -4; \{2,3\} \rightarrow 1; \{1,2,3\} \rightarrow -2.$

DETERMINANTAL POINT PROCESS

A Determinantal Point Process (DPP) on [n] is a random subset $Y \subseteq [n]$ such that there exists a matrix A that satisfies $\mathbb{P}[S \subseteq Y] = \det(A[S]) \quad \forall S \subseteq [n].$

 \succ Such a matrix A is called a kernel of the DPP.

>DPPs have applications in

Recommender systems

Image search and segmentation

> Audio signal Processing

Equivalence testing of Principal Minors \Rightarrow Testing whether two matrices are kernels of a same DPP.

POLYNOMIAL IDENTITY TESTING

 \geq PIT: Input is a polynomial from a class of polynomials, the goal is to check whether it is 0.

 \geq In Blackbox setting, the input polynomial is given as an oracle.

> In Whitebox setting, the polynomial access is given via

> Algebraic circuits

- > Algebraic branching programs
- ➢ Symbolic matrices etc.

Symbolic Determinant: Determinant of a matrix with linear forms $A = \sum_{i=1}^{m} y_i A_i$

- [PIT Lemma]: At a random point, a non-zero polynomial evaluates to non-zero with high probability.
- **Big open question**: Deterministic algorithm for PIT?

 \succ Known for some restricted classes of polynomials.

SYMBOLIC DETERMINANT WITH RANK ONE CONSTRAINT

$$\blacktriangleright \text{DET1}_{n,m} = \{ \det(\sum_{i=1}^{m} y_i A_i) \mid A_i \in \mathbb{F}^{n \times n}, \operatorname{rank}(A_i) = 1 \}.$$

>DET1: m = poly(n).

> Polynomial Identity Testing for this class captures

- ➢ Bipartite Perfect Matching
- Linear Matroid Intersection
- ➢ Full Matrix Rank Completion.

White box PIT [Lovász 89], Blackbox PIT [Gurjar-Thierauf 18]

EXAMPLE: BIPARTITE PERFECT MATCHING

		a	b	С
$A_G =$	Ι	0	x_{1b}	<i>x</i> _{1<i>c</i>}
	2	0	<i>x</i> _{2<i>b</i>}	<i>x</i> _{2<i>c</i>}
	3	<i>x</i> _{3a}	0	<i>x</i> _{3c}

 $\det(A_G) = x_{1b} x_{2c} x_{3a} + x_{1c} x_{2b} x_{3a}$

A_G = ∑_{i=1}^m x_iA_i, where A_i has single non-zero entry 1.
 In det(A_G), each monomial correspond to a perfect matching.
 → det(A_G) ≠ 0 ⇔ G has a perfect matching.

PIT FOR SUM OF TWO DET1

Given $A = \sum_{i=1}^{m} y_i A_i$, $B = \sum_{i=1}^{m} y_i B_i$ such that $rank(A_i) = rank(B_i) = 1$, Check whether det(A) + det(B) = 0 or det(A) = det(B).

Example: Check if two bipartite graphs G_1 , G_2 have same set of perfect matchings. Check whether $det(A_{G_1}) = det(A_{G_2})$.

≻ Theorem: Let $P = \det(\sum_{i=1}^{m} y_i A_i)$ such that $A_i = u_i \cdot v_i^T$. Let $U, V \in \mathbb{F}^{n \times m}$ with ith column as u_i and v_i respectively. Then for |T| = n and $y_T = \prod_{e \in T} y_i$

 \succ Coeff $(y_T) = det(U_T)det(V_T)$ where $U_T = U[[n], T], V_B = V[[n], T]$

 $\succ \text{Given } (U_1, V_1), (U_2, V_2), \text{ check } \det(U_{1,T}) \det(V_{1,T}) = \det(U_{2,T}) \det(V_{2,T}) \forall T.$

 \geq Example: Check whether two pairs of binary matroids have same common bases.

PIT FOR SUM OF TWO DET1

PRINCIPAL MINOR PRESERVING OPERATIONS

Transpose: $A \equiv A^T$.

➢ Diagonally Equal (DE) : D → A diagonal matrix with non-zero entries. $A \equiv DAD^{-1}.$

For any $\sigma: [n] \to [n], \prod_{i=1}^n A[i, \sigma(i)] = \prod_{i=1}^n \frac{D[i]}{D[\sigma(i)]} A[i, \sigma(i)].$

➤ Example: A =
$$\begin{pmatrix} 2 & 1 & 2 \\ 3 & -1 & 1 \\ -2 & 1 & 0 \end{pmatrix}$$
, B = $\begin{pmatrix} 2 & 1/2 & -2 \\ 6 & -1 & -2 \\ 2 & -1/2 & 0 \end{pmatrix}$
B = DAD^{-1} where D = diag $\{1, \frac{1}{2}, -1\}$.

 \geq Question: Are these two operations sufficient to describe any B with $B \equiv A$?

 \succ True for a certain class of irreducible matrices.

IRREDUCIBLE MATRICES

A matrix A is called reducible if \exists permutation matrix P such that PAP is block upper triangular.

 \succ A matrix that is not reducible is called irreducible matrix.

$$\succ \text{Example: A} = \begin{pmatrix} 1 & 3 & 2 & 4 \\ 0 & 2 & 0 & -2 \\ 1 & 5 & -1 & 6 \\ 0 & 1 & 0 & -1 \end{pmatrix}, \text{Exchange 2 \& 3} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 5 & 6 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

For a block upper triangular matrix A with blocks $(T_1, T_2, ..., T_k)$, $det(A) = \prod_{i=1}^k det(A[T_1])$.

 $\succ A[T_i]$ is irreducible.

 $\succ A \equiv B \Leftrightarrow A[\{1,3\}] \equiv B[\{1,3\}] \& A[\{2,4\}] \equiv B[\{2,4\}].$

 \geq PMET for Irreducible matrices \Rightarrow PMET for general matrices [Hartfiel-Leowy, 84].

PMET FOR IRREDUCIBLE MATRICES WITH CONSTRAINTS

Cut: For *n* × *n* matrix *A*, *S* ⊂ [*n*] with 2 ≤ |*S*| ≤ *n* − 2 is a cut if rank(*A*[*S*, *S^c*]) ≤ 1 and rank(*A*[*S^c*, *S*]) ≤ 1.
Example: $\begin{pmatrix}
1 & 2 & 1 & 2 \\
1 & -1 & 2 & 4 \\
1 & -1 & 2 & -2 \\
-1 & 1 & 1 & -1
\end{pmatrix}$ For an irreducible symmetric matrix *A*, $A \equiv B \Leftrightarrow B = DAD^{-1} \text{ or } B = DA^T D^{-1}. \text{ [Engel-Schneider, 80]}$

For an irreducible matrix A with no cuts, $A \equiv B \Leftrightarrow B = DAD^{-1} \text{ or } B = DA^T D^{-1}$. [Hartfiel-Leowy, 84]

>Not sufficient for irreducible matrices with cuts. [Ahmadieh, 23]

DETERMINANT OF MATRIX WITH A CUT

 \succ Let A be an irreducible matrix with cut S,

$$A = \begin{array}{cc} S & S^{c} \\ M & p.q^{T} \\ S^{c} \begin{pmatrix} M & p.q^{T} \\ u.v^{T} & N \end{pmatrix} \end{array}$$

► Generalized Laplace Theorem: For an $n \times n$ matrix P and $S \subset [n]$, $det(P) = \sum_{|T|=|S|} sgn(S,T) det(P[S,T])det(P[S^c,T^c]).$

 \succ sgn(*S*,*T*) ∈ {−1,1}.

 $\geq \det(A) = \det(M)\det(N) + \sum_{S'=S-e+f} \pm \det(A[S,S'])\det(A[S^c,S'^c]) + 0$

$$\pm \det \begin{pmatrix} M & p \\ v^T & 0 \end{pmatrix} \det \begin{pmatrix} 0 & q^T \\ u & N \end{pmatrix}$$

"TWIST" OPERATION

$$For A = S \left(\begin{matrix} S & S^{c} \\ M & p, q^{T} \\ u, v^{T} & N \end{matrix} \right), \det(A) = \det(M)\det(N) \pm \det\begin{pmatrix} M & p \\ v^{T} & 0 \end{pmatrix} \det\begin{pmatrix} 0 & q^{T} \\ u & N \end{pmatrix}$$

$$For A = S \left(\begin{matrix} M & p, q^{T} \\ q, v^{T} & N^{T} \end{matrix} \right), \det(A) = \det(M)\det(N) \pm \det\begin{pmatrix} M & p \\ v^{T} & 0 \end{pmatrix} \det\begin{pmatrix} 0 & q^{T} \\ u & N \end{pmatrix}$$

$$For A = S \left(\begin{matrix} M & p, q^{T} \\ q, v^{T} & N^{T} \end{matrix} \right), \det(A) = \det(A) \det(A) = \det(A) \det(A) + \det$$

PMET FOR IRREDUCIBLE MATRICES

Question: Are these three operations sufficient for PME for irreducible matrices?
 This work: YES!

Theorem: Let A & B be irreducible matrices s.t. $A \equiv B$. Then, $\exists (A = A_0, A_1, ..., A_k)$

$$\succ A_i = \operatorname{tw}(A_{i-1}, X_i)$$
 where X_i is a cut of A_{i-1} for each $i \in [k]$.

 $> A_k$ is diagonally equal to B or B^T .

 \succ Theorem: For $n \times n$ matrices, there exists polynomial time algorithm that

→ Outputs
$$(A = A_0, A_1, ..., A_k)$$
 such that $k \le 2n$ iff $A \equiv B$.

➢ Otherwise output "No".

MINIMAL CUT

For $n \times n$ matrix $A, S \subseteq [n]$ is cut if rank $(A[S, S^c]) = \operatorname{rank}(A[S^c, S]) = 1$. S is a minimal cut if there is no cut $T \subset S$. Lemma: S is a minimal cut of $A, |S| \ge 3 \Rightarrow$ For $t \in S^c$, A[S + t] has no cuts. Proof: Suppose not true. Let X be a cut of A[S + t] with $t \in X$.

MINIMAL CUT

 \succ Lemma: $A \equiv B, S$ is a minimal cut of $A, |S| \ge 3 \Rightarrow S$ is also a cut of B.

Proof Idea: Claim ⇒ For $\forall t \in S^c$, A[S + t] has no cuts.

 $\geq A[S+t] \equiv B[S+t] \Rightarrow B[S+t] = DA[S+t]D^{-1}or DA[S+t]D^{-1}$ [Hartfiel-Leowy, 84] \geq Fix $t_0 \in S^c$. Wlog, assume $A[S+t_0] = B[S+t_0]$, then

$$A[S + \{t_0, t\}] = \frac{S}{t_0} \begin{pmatrix} M & p & \alpha p \\ q^T & n & * \\ \beta q^T & * & * \end{pmatrix} \& B[S + \{t_0, t\}] = \frac{S}{t_0} \begin{pmatrix} M & p & x \\ q^T & n & * \\ y^T & * & * \end{pmatrix}$$
$$\gg B[S + t] = DA[S + t]D^{-1} \Rightarrow x = \alpha_1 p \& y = \beta_1 q.$$

 $\geq B[S+t] = DA[S+t]^T D^{-1}$ can't happen.

PROOF OF THEOREM

Theorem: Let A & B be irreducible matrices s.t. $A \equiv B$. Then, $\exists (A = A_0, A_1, ..., A_k)$

 $> A_i = \operatorname{tw}(A_{i-1}, X_i)$ where X_i is a cut of A_{i-1} for each $i \in [k]$.

 $\triangleright A_k$ is diagonally equal to B or B^T .

▶ Proof: If A has no cut, $A \equiv B \Leftrightarrow A \text{ DE } B$ or B^T . [Hartfiel-Leowy, 84].

≻Lemma: Let S be a cut of A, $t \in S \& X$ be a cut of $A[S^c + t]$. Then, \exists a cut T of A with B = tw(A, T) such that

 $\geq B[S^c + t] = \operatorname{tw}(A[S^c + t], X).$

 $\succ S$ is a minimal cut of $A \Rightarrow S$ is a minimal cut of B.

PROOF OF THEOREM

 \succ Let S be a minimal cut of A.

⇒
$$A \equiv B \Rightarrow$$
 By induction hypothesis for $A[S^{c} + t]$, there exists
 $(A[S^{c} + t] = A'_{0}, A'_{1}, ..., A'_{k})$ such that A'_{k} DE $B[S^{c} + t]$ or $B[S^{c} + t]^{T}$

≻Lemma: Let S be a cut of A, $t \in S \& X$ be a cut of $A[S^c + t]$. Then, \exists a cut T of A with B = tw(A, T) such that

 $\geq B[S^c + t] = \operatorname{tw}(A[S^c + t], X).$

 $\succ S$ is a minimal cut of $A \Rightarrow S$ is a minimal cut of B.

 \succ Lemma on repeat $\Rightarrow \exists (A = A_0, A_1, ..., A_k)$ such that $A_i = tw(A_{i-1}, T_i)$

 $\succ A_i[S^c + t] = A'_i \,\forall \in [k].$

 $\succ S$ is a minimal cut of A_i .

$$\Rightarrow A_k [S^c + t] \text{ is DE to } B[S^c + t] \text{ or } B[S^c + t]^T$$

$$\Rightarrow S \text{ is a minimal cut of } A_k.$$

To complete proof of Theorem, find sequence from A_k to B.

PROOF OF THEOREM

 \succ Given A \equiv B and

 $\succ S$ is a minimal cut of A common to B.

For a t₀ ∈ S , A[S^c + t₀] = B[S^c + t₀].

≻Lemma: B is diagonally equal to A or $tw(A, S^c)$.

≻Proof Idea: S is a minimal cut of $A \Rightarrow A[S + t]$ is irreducible $\forall t \in S^c$.

 $\geq A[S+t]$ is irreducible $\Rightarrow A[S+t]$ is diagonally equal to

 $\geq B[S + t]$: B is diagonally equal to A.

 $\geq B[S+t]^{\mathrm{T}}$: B is diagonally equal to tw(A, S^c).

ALGORITHM OVERVIEW

- \succ If A has no cut, check if A is DE to B or B^T .
- \geq Else, Find a minimal cut S.

Fix $t_0 \in S$, recursively check $A[S^c + t_0] \equiv B[S^c + t_0]$.

> If $A[S^c + t_0] \equiv B[S^c + t_0]$, get the sequence for $A[S^c + t_0]$ to $B[S^c + t_0]$.

≻Get a sequence from A to A' such that $A'[S^c + t_0]$ is DE to $B[S^c + t_0]$.

≻ Check if B is DE to A' or tw(A', S^c).

OPEN PROBLEMS

 \geq Principal Minor Assignment Problem: For an unknown $n \times n$ matrix A,

- \succ Input: An oracle that outputs det(*A*[*S*]) on input *S* ⊆ [*n*]
- **Goal:** Find any $B \equiv A$ in poly(n) time.
- ➢ Results known for special classes of matrices.
- \geq Blackbox PIT for sum of two DET1.
- **>**PIT for sum of k DET1.

Check $\sum_{j=1}^{j=k} \det\left(\sum_{i=1}^{n} y_i A_i^j\right) = 0$

THANK YOU!