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PRINCIPAL MINOR EQUIVALENCE TESTING

➢Given an 𝑛 × 𝑛 matrix 𝐴 and 𝑆, 𝑇 ⊆ 𝑛 , let 𝐴[𝑆, 𝑇] be the submatrix of 𝐴 with rows 

indexed by 𝑆 and columns indexed by 𝑇. Let 𝐴 𝑆 = 𝐴 𝑆, 𝑆 . 

➢Principal minor corresponding to set 𝑆 ⊆ [𝑛] is det(𝐴[𝑆]). 

➢Question (PMET): Given 𝐴, 𝐵 ∈ 𝔽𝑛×𝑛, check whether all principal minors of 𝐴 and 𝐵
are same. If yes then we say 𝐴 ≡ 𝐵.

➢Example: 

A =
2 1 2
3 −1 1

−2 1 0
, B =

2 1/2 −2
6 −1 −2
2 −1/2 0

.

➢ 1 → 2; 2 → −1; 3 → 0; 1,2 → −5; 1,3 → −4; 2,3 → 1; 1,2,3 → −2.



DETERMINANTAL POINT PROCESS

➢A Determinantal Point Process (DPP) on [𝑛] is a random subset 𝑌 ⊆ [𝑛] such  

that there exists a matrix 𝐴 that satisfies

ℙ 𝑆 ⊆ 𝑌 = det 𝐴 𝑆 ∀𝑆 ⊆ 𝑛 .

➢Such a matrix 𝐴 is called a kernel of the DPP.

➢DPPs have applications in

➢Recommender systems

➢ Image search and segmentation

➢Audio signal Processing

➢Equivalence testing of Principal Minors ⇒ Testing whether two matrices are 

kernels of a same DPP.



POLYNOMIAL IDENTITY TESTING

➢PIT:  Input is a polynomial from a class of polynomials, the goal is to check whether it is 0.

➢ In Blackbox setting, the input polynomial is given as an oracle.

➢ In Whitebox setting, the polynomial access is given via

➢Algebraic circuits

➢Algebraic branching programs

➢ Symbolic matrices etc.

➢Symbolic Determinant: Determinant of a matrix with linear forms
𝐴 = σ𝑖=1

𝑚 𝑦𝑖𝐴𝑖

➢[PIT Lemma]:  At a random point, a non-zero polynomial evaluates to non-zero with high 
probability.  

➢Big open question: Deterministic algorithm for PIT?

➢Known for some restricted classes of polynomials.



SYMBOLIC DETERMINANT WITH RANK ONE CONSTRAINT

➢DET1𝑛,𝑚 = det σ𝑖=1
𝑚 𝑦𝑖𝐴𝑖 𝐴𝑖 ∈ 𝔽𝑛×𝑛 , rank 𝐴𝑖 = 1 .

➢DET1: 𝑚 = poly 𝑛 .

➢Polynomial Identity Testing for this class captures

➢Bipartite Perfect Matching

➢Linear Matroid Intersection

➢Full Matrix Rank Completion.

➢White box PIT [Lovász 89], Blackbox PIT [Gurjar-Thierauf 18]



EXAMPLE: BIPARTITE PERFECT MATCHING

a b c

1 0 𝑥1𝑏 𝑥1𝑐

2 0 𝑥2𝑏 𝑥2𝑐

3 𝑥3𝑎 0 𝑥3𝑐

1

2

3

b

a

c

RL

𝐴𝐺  =

det 𝐴𝐺 = 𝑥1𝑏𝑥2𝑐𝑥3𝑎 + 𝑥1𝑐𝑥2𝑏𝑥3𝑎

➢ 𝐴G = σ𝑖=1
𝑚 𝑥𝑖𝐴𝑖 , where 𝐴𝑖 has single non-zero entry 1.

➢ In det 𝐴G , each monomial correspond to a perfect matching.

➢ det 𝐴𝐺 ≠ 0 ⇔ 𝐺 has a perfect matching.



PIT FOR SUM OF TWO DET1

➢Given 𝐴 = σ𝑖=1
𝑚 𝑦𝑖𝐴𝑖 ,  𝐵 = σ𝑖=1

𝑚 𝑦𝑖𝐵𝑖 such that rank 𝐴𝑖 = rank 𝐵𝑖 = 1,

Check whether det 𝐴 + det B = 0 or det A = det B . 

➢Example: Check if two bipartite graphs 𝐺1, 𝐺2  have same set of perfect matchings.

➢Check whether det 𝐴𝐺1
= det 𝐴𝐺2

.

➢Theorem: Let 𝑃 = det(σ𝑖=1
𝑚 𝑦𝑖𝐴𝑖) such that 𝐴𝑖 = 𝑢𝑖 . 𝑣𝑖

𝑇 . Let 𝑈, 𝑉 ∈ 𝔽𝑛×𝑚 with ith 

column as 𝑢𝑖 and 𝑣𝑖 respectively. Then for 𝑇 = 𝑛 and 𝑦𝑇 = ς𝑒∈𝑇 𝑦𝑖

➢Coeff 𝑦𝑇 =  det 𝑈𝑇 det(𝑉𝑇) where 𝑈𝑇 = 𝑈 𝑛 , 𝑇 , 𝑉𝐵 = 𝑉 𝑛 , 𝑇

➢Given 𝑈1, 𝑉1 , 𝑈2, 𝑉2 , check det 𝑈1,𝑇 det 𝑉1,𝑇 = det 𝑈2,𝑇 det 𝑉2,𝑇  ∀𝑇.

➢Example: Check whether two pairs of binary matroids have same common bases.



PIT FOR SUM OF TWO DET1  

➢Claim: Equivalence testing of principal minors ⇒ PIT for Sum of two DET1.

➢ 𝑈1, 𝑉1 : 𝑃1, (𝑈2, 𝑉2): 𝑃2, check det 𝑈1,𝑇 det 𝑉1,𝑇 = det 𝑈2,𝑇 det 𝑉2,𝑇  ∀ 𝑇.

➢Proof: Find 𝑇0 such that det 𝑈1,𝑇0
det 𝑉1,𝑇0

≠ 0.

➢ If det 𝑈1,𝑇0
det 𝑉1,𝑇0

≠ det 𝑈2,𝑇0
det 𝑉2,𝑇0

, then 𝑃1 ≠ 𝑃2.

➢Wlog 𝑇0 = [𝑛], 𝑈𝑖 = (𝐼𝑛
𝑈𝑖) and 𝑉𝑖 = (𝐼𝑛

𝑉𝑖) for 𝑖 ∈ {1,2}.

➢          𝑃1 = 𝑃2 ⇔
0𝑛

𝑉1
𝑇

−𝑈1 0𝑚−𝑛

≡
0𝑛

𝑉2
𝑇

−𝑈2 0𝑚−𝑛

.



PRINCIPAL MINOR PRESERVING OPERATIONS

➢Transpose: A ≡ 𝐴𝑇 .

➢Diagonally Equal (DE) : 𝐷 →  A diagonal matrix with non-zero entries.  

         𝐴 ≡ 𝐷𝐴𝐷−1.

➢For any 𝜎: 𝑛 → 𝑛 , ς𝑖=1
𝑛 𝐴[𝑖, 𝜎(𝑖)] = ς𝑖=1

𝑛 𝐷[𝑖]

𝐷[𝜎(𝑖)]
𝐴 𝑖, 𝜎 𝑖 .

➢Example: A =
2 1 2
3 −1 1

−2 1 0
, B =

2 1/2 −2
6 −1 −2
2 −1/2 0

    

 B = 𝐷𝐴𝐷−1 where 𝐷 = diag 1,
1

2
, −1 . 

➢Question: Are these two operations sufficient to describe any 𝐵 with 𝐵 ≡ 𝐴?

➢True for a certain class of irreducible matrices.



IRREDUCIBLE MATRICES

➢A matrix 𝐴 is called reducible if ∃ permutation matrix 𝑃 such that 𝑃𝐴𝑃 is block upper 

triangular.

➢A matrix that is not reducible is called irreducible matrix.

➢ Example: A =

1 3 2 4
0 2 0 −2
1 5 −1 6
0 1 0 −1

, Exchange 2 & 3 →

1 2 3 4
1 −1 5 6
0 0 2 −2
0 0 1 −1

➢For a block upper triangular matrix 𝐴 with blocks (𝑇1, 𝑇2, … , 𝑇𝑘),   

   det 𝐴 = ς𝑖=1
𝑘 det(𝐴[𝑇1]) .

➢𝐴[𝑇𝑖] is irreducible.

➢𝐴 ≡ 𝐵 ⇔ 𝐴 {1,3} ≡ 𝐵 1,3  & 𝐴 2,4 ≡ 𝐵[{2,4}].

➢PMET for Irreducible matrices ⇒ PMET for general matrices [Hartfiel-Leowy, 84].



PMET FOR IRREDUCIBLE MATRICES WITH CONSTRAINTS

➢Cut: For 𝑛 × 𝑛 matrix 𝐴, 𝑆 ⊂ [𝑛] with 2 ≤ 𝑆 ≤ 𝑛 − 2 is a cut if  
  rank 𝐴 𝑆, 𝑆𝑐 ≤ 1 and rank 𝐴 𝑆𝑐 , 𝑆 ≤ 1. 

➢Example: 

1 2 1 2
1 −1 2 4
1 −1 2 −2

−1 1 1 −1

➢{1,2} is a cut as 𝐴 1,2 , 3,4 = ⟨1,2⟩𝑇. 1,2  & 𝐴 3,4 , 1,2 = ⟨1, −1⟩𝑇. ⟨1, −1⟩.

➢For an irreducible symmetric matrix 𝐴,     
  𝐴 ≡ 𝐵 ⇔ 𝐵 = 𝐷𝐴𝐷−1 𝑜𝑟 𝐵 = 𝐷𝐴𝑇𝐷−1. [Engel-Schneider, 80] 

➢For an irreducible matrix 𝐴 with no cuts,     
  𝐴 ≡ 𝐵 ⇔ 𝐵 = 𝐷𝐴𝐷−1 𝑜𝑟 𝐵 = 𝐷𝐴𝑇𝐷−1. [Hartfiel-Leowy, 84]

➢Not sufficient for irreducible matrices with cuts. [Ahmadieh, 23]



DETERMINANT OF MATRIX WITH A CUT

➢Let A be an irreducible matrix with cut 𝑆,     

   A =
𝑆 𝑆𝑐

𝑆 𝑀 𝑝. 𝑞𝑇

𝑆𝑐 𝑢. 𝑣𝑇 𝑁

    .   

➢Generalized Laplace Theorem: For an 𝑛 × 𝑛 matrix 𝑃 and 𝑆 ⊂ [𝑛],  

  det 𝑃 = σ 𝑇 =|𝑆| sgn 𝑆, 𝑇  det 𝑃 𝑆, 𝑇 det 𝑃 𝑆𝑐, 𝑇𝑐 .

➢ sgn 𝑆, 𝑇 ∈ −1,1 .

➢det 𝐴 = det 𝑀 det 𝑁 + σ𝑆′=𝑆−𝑒+𝑓 ±det 𝐴 𝑆, 𝑆′ det 𝐴 𝑆𝑐, 𝑆′𝑐 + 0 

    

±det
𝑀 𝑝

𝑣𝑇 0
 det 0 𝑞𝑇

𝑢 𝑁



“TWIST” OPERATION

➢For A =
𝑆 𝑆𝑐

𝑆 𝑀 𝑝. 𝑞𝑇

𝑆𝑐 𝑢. 𝑣𝑇 𝑁

  , det 𝐴 = det 𝑀 det 𝑁 ± det
𝑀 𝑝

𝑣𝑇 0
 det 0 𝑞𝑇

𝑢 𝑁
.

➢Let tw(A, S) =

𝑆 𝑆𝑐

𝑆 𝑀 𝑝. 𝑢𝑇

𝑆𝑐 𝑞. 𝑣𝑇 𝑁𝑇
 : Twist of matrix 𝐴 w.r.t. cut S

➢ det tw(𝐴, 𝑆) = det 𝑀 det 𝑁𝑇 ± det
𝑀 𝑝

𝑣𝑇 0
 det 0 𝑞𝑇

𝑢 𝑁
.

➢ det 𝑁 = det(𝑁𝑇) and det 0 𝑞𝑇

𝑢 𝑁
= det

0 𝑢𝑇

𝑞 𝑁𝑇 .

➢𝐴 ≡ tw 𝐴, 𝑆 .



PMET FOR IRREDUCIBLE MATRICES

➢Question: Are these three operations sufficient for PME for irreducible matrices? 

➢This work:  YES!

➢Theorem: Let 𝐴 & 𝐵 be irreducible matrices s.t. 𝐴 ≡ 𝐵. Then, ∃ 𝐴 = 𝐴0, 𝐴1, … , 𝐴𝑘

➢𝐴𝑖 = tw 𝐴𝑖−1, 𝑋𝑖  where 𝑋𝑖 is a cut of 𝐴𝑖−1 for each 𝑖 ∈ 𝑘 .

➢𝐴𝑘 is diagonally equal to 𝐵 or 𝐵𝑇.

➢Theorem: For 𝑛 × 𝑛 matrices, there exists polynomial time algorithm that

➢Outputs 𝐴 = 𝐴0, 𝐴1, … , 𝐴𝑘  such that k ≤ 2𝑛 iff 𝐴 ≡ 𝐵.

➢Otherwise output “No”.



MINIMAL CUT

➢For 𝑛 × 𝑛 matrix 𝐴, 𝑆 ⊆ [𝑛] is cut if rank 𝐴 𝑆, 𝑆𝑐 = rank 𝐴 𝑆𝑐 , 𝑆 = 1.

➢𝑆 is a minimal cut if there is no cut 𝑇 ⊂ 𝑆.

➢Lemma: 𝑆 is a minimal cut of 𝐴, 𝑆 ≥ 3 ⇒ For t ∈ 𝑆𝑐 , A S + t  has no cuts.

➢Proof:  Suppose not true. Let 𝑋 be a cut of 𝐴[𝑆 + 𝑡] with 𝑡 ∈ 𝑋. 

 A= 

𝑆 ∖ 𝑋 𝑋 − 𝑡 𝑡 𝑆𝑐 − 𝑡

𝑆 ∖ 𝑋 ∗ 𝑢1. 𝑣1
𝑇 𝑢1 𝑢1. 𝑣2

𝑇

𝑋 − 𝑡 𝑝1. 𝑞1
𝑇 ∗ 𝑢2 𝑢2. 𝑣2

𝑇

𝑡 𝑞1
𝑇 𝑞2

𝑇 ∗ ∗

𝑆𝑐 − 𝑡 𝑝2. 𝑞1
𝑇 𝑝2. 𝑞2

𝑇 ∗ ∗

𝐴 𝑆 ∖ 𝑋, 𝑆 ∖ 𝑋 𝑐

= 𝑢1. 𝑣1 1 𝑣2
𝑇

𝐴 𝑆 ∖ 𝑋 𝑐,∖ 𝑋
= 𝑝1 1 𝑝2 . 𝑞2

𝑇
Contradicts the 

minimality of 𝑆.



MINIMAL CUT

➢Lemma: 𝐴 ≡ 𝐵, 𝑆 is a minimal cut of 𝐴, 𝑆 ≥ 3 ⇒  𝑆 is also a cut of 𝐵. 

➢Proof Idea: Claim ⇒ For ∀𝑡 ∈ 𝑆𝑐 , 𝐴[𝑆 + 𝑡] has no cuts.

➢𝐴 𝑆 + 𝑡 ≡ 𝐵 𝑆 + 𝑡 ⇒ 𝐵 𝑆 + 𝑡 = 𝐷𝐴 𝑆 + 𝑡 𝐷−1𝑜𝑟 𝐷𝐴 𝑆 + 𝑡 𝐷−1 [Hartfiel-Leowy, 84]

➢Fix 𝑡0 ∈ 𝑆𝑐 . Wlog, assume 𝐴 𝑆 + 𝑡0 = 𝐵[𝑆 + 𝑡0], then    

 𝐴[𝑆 + {𝑡0, 𝑡}] =

𝑆 𝑡0 𝑡
𝑆 𝑀 𝑝 𝛼𝑝

𝑡0 𝑞𝑇 𝑛 ∗

𝑡 𝛽𝑞𝑇 ∗ ∗

  & B[𝑆 + 𝑡0, 𝑡 ] =

𝑆 𝑡0 𝑡
𝑆 𝑀 𝑝 𝑥

𝑡0 𝑞𝑇 𝑛 ∗

𝑡 𝑦𝑇 ∗ ∗

➢𝐵 𝑆 + 𝑡 = 𝐷𝐴 𝑆 + 𝑡 𝐷−1 ⇒ 𝑥 = 𝛼1𝑝 & 𝑦 = 𝛽1𝑞. 

➢𝐵 𝑆 + 𝑡 = 𝐷𝐴 𝑆 + 𝑡 𝑇𝐷−1 can’t happen.



PROOF OF THEOREM

➢Theorem: Let 𝐴 & 𝐵 be irreducible matrices s.t. 𝐴 ≡ 𝐵. Then, ∃ 𝐴 = 𝐴0, 𝐴1, … , 𝐴𝑘

➢𝐴𝑖 = tw 𝐴𝑖−1, 𝑋𝑖  where 𝑋𝑖 is a cut of 𝐴𝑖−1 for each 𝑖 ∈ 𝑘 .

➢𝐴𝑘 is diagonally equal to 𝐵 or 𝐵𝑇.

➢Proof: If 𝐴 has no cut, 𝐴 ≡ 𝐵 ⇔ 𝐴 DE 𝐵 or 𝐵𝑇. [Hartfiel-Leowy, 84].

➢Lemma: Let 𝑆 be a cut of 𝐴, 𝑡 ∈ 𝑆 & 𝑋 be a cut of 𝐴 𝑆𝑐 + 𝑡 . Then, ∃ a cut 𝑇 of 𝐴 

with 𝐵 = tw(𝐴, 𝑇) such that

➢𝐵 𝑆𝑐 + 𝑡 = tw 𝐴 𝑆𝑐 + 𝑡 , 𝑋 .

➢𝑆 is a minimal cut of 𝐴 ⇒ 𝑆 is a minimal cut of 𝐵. 



PROOF OF THEOREM

➢Let 𝑆 be a minimal cut of 𝐴. 

➢𝐴 ≡ 𝐵 ⇒ By induction hypothesis for 𝐴[𝑆𝑐 + 𝑡], there exists 
 (𝐴 𝑆𝑐 + 𝑡 = 𝐴0

′ , 𝐴1
′ , … , 𝐴𝑘

′ ) such that 𝐴𝑘
′  DE 𝐵[𝑆𝑐 + 𝑡] or 𝐵 𝑆𝑐 + 𝑡 𝑇

➢Lemma: Let 𝑆 be a cut of 𝐴, 𝑡 ∈ 𝑆 & 𝑋 be a cut of 𝐴 𝑆𝑐 + 𝑡 . Then, ∃ a cut 𝑇 of 𝐴 

with 𝐵 = tw(𝐴, 𝑇) such that

➢𝐵 𝑆𝑐 + 𝑡 = tw 𝐴 𝑆𝑐 + 𝑡 , 𝑋 .

➢𝑆 is a minimal cut of 𝐴 ⇒ 𝑆 is a minimal cut of 𝐵. 

➢Lemma on repeat ⇒ ∃ (𝐴 = 𝐴0, 𝐴1, … , 𝐴𝑘) such that 𝐴𝑖 = tw(𝐴𝑖−1, 𝑇𝑖)

➢𝐴𝑖 𝑆𝑐 + 𝑡 = 𝐴𝑖
′ ∀ ∈ [𝑘].   

➢𝑆 is a minimal cut of 𝐴𝑖.

⇒ 𝐴𝑘 𝑆𝑐 + 𝑡  is DE to 𝐵[𝑆𝑐 + 𝑡] or 𝐵 𝑆𝑐 + 𝑡 𝑇

⇒ 𝑆 is a minimal cut of 𝐴𝑘 .

To complete proof of Theorem, find sequence from 𝐴𝑘 to 𝐵.



PROOF OF THEOREM

➢Given A ≡ 𝐵 and

➢𝑆 is a minimal cut of 𝐴 common to 𝐵.

➢ for a t0 ∈ 𝑆 , 𝐴 𝑆𝑐 + 𝑡0 = 𝐵 𝑆𝑐 + 𝑡0 .

➢Lemma: 𝐵 is diagonally equal to 𝐴 or tw 𝐴, 𝑆𝑐 .

➢Proof Idea: 𝑆 is a minimal cut of 𝐴 ⇒ 𝐴 𝑆 + 𝑡  is irreducible ∀𝑡 ∈ 𝑆𝑐 .  

➢𝐴 𝑆 + 𝑡  is irreducible ⇒ 𝐴[𝑆 + 𝑡] is diagonally equal to 

➢𝐵 𝑆 + 𝑡 : 𝐵 is diagonally equal to 𝐴.

➢  𝐵 𝑆 + 𝑡 T: B  is diagonally equal to tw 𝐴, 𝑆𝑐 .



ALGORITHM OVERVIEW

➢If 𝐴 has no cut, check if 𝐴 is DE to 𝐵 or 𝐵𝑇 .

➢Else, Find a minimal cut 𝑆.

➢Fix 𝑡0 ∈ 𝑆, recursively check 𝐴 𝑆𝑐 + 𝑡0 ≡ 𝐵 𝑆𝑐 + 𝑡0 .

➢If 𝐴 𝑆𝑐 + 𝑡0 ≡ 𝐵 𝑆𝑐 + 𝑡0 , get the sequence for 𝐴[𝑆𝑐 + 𝑡0] to 𝐵 𝑆𝑐 + 𝑡0 .

➢Get a sequence from 𝐴 to 𝐴′ such that 𝐴′ 𝑆𝑐 + 𝑡0  is DE to 𝐵 𝑆𝑐 + 𝑡0 .

➢Check if 𝐵 is DE to 𝐴′ 𝑜𝑟 tw 𝐴′, 𝑆𝑐 .



OPEN PROBLEMS

➢Principal Minor Assignment Problem: For an unknown n × 𝑛 matrix 𝐴, 

➢ Input: An oracle that outputs det(𝐴[𝑆]) on input 𝑆 ⊆ 𝑛

➢Goal: Find any 𝐵 ≡ 𝐴 in poly(𝑛) time.

➢Results known for special classes of matrices.

➢Blackbox PIT for sum of two DET1.

➢PIT for sum of 𝑘 DET1.

       Check  σ𝑗=1 
𝑗=𝑘

det σ𝑖=1
𝑛 𝑦𝑖 𝐴𝑖

𝑗
= 0 



THANK YOU!
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