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Abstract

Plastic deformation in metals is inherently non-homogeneous and governed by the kine-

matics and kinetics of defect structures. These are manifested in the form of anisotropic

mechanical properties and residual strains at the bulk scale, whereas by plastic strain gra-

dients, complex dislocation patterns, particle deformed zones, etc. at the microstructural

level. As with the case of structural metals and alloys, the intrinsic microstructural hetero-

geneity originating from modern manufacturing methods (for example, rapid solidification)

and subsequent thermomechanical processing further complicates their behavior.

While a range of experimental characterization techniques are readily available to examine

these, not much work has been carried out towards the development of relevant mesoscale

models. This forms the motivation of the present study, to elucidate and predict the factors

contributing to the heterogeneous plastic deformation in metals and alloys. This has been

achieved with the broad objective of developing experimentally informed mesoscale plasticity

frameworks to predict and correlate the inter-dependencies between the local substructure,

compositional heterogeneity and residual strains in microstructures subjected to mechanical

deformation. Towards these objectives, each Chapter of the thesis firstly introduces the

novelties in the experimental/modeling approach, followed by its validation and subsequent

application to a practical study.

Chapter 3 introduces a combined experimental and Taylor hardening based Strain Gradient

Crystal Plasticity (SGCP) framework for studying the development of orientation and mis-

orientation gradients at the grain boundaries during plastic deformation. The regions in the

vicinity of prior-deformation grain boundaries experiencing localized plastic deformation are

referred to as Near Boundary Gradient Zones (NBGZs). The substructure evolution within

the NBGZs is quantified on grain pairs with different combinations of crystallographic ori-

entations in a solid solution strengthened aluminum alloy. Realistic virtual microstructures

are then simulated using the SGCP framework to study the evolution of local misorien-

tations, stresses and strains and their correlation with the underlying substructure. Our

combined study shows that the width (mean with deviation) of the distribution of the length

of NBGZ, normalized by the grain size, scales with the grain-average Schmid factor.
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Chapter 4 further extends these observations to a precipitation strengthened aluminum al-

loy. The key difference over here is in that the precipitates decorating the grain boundary

play a dominating role over the crystallographic orientations, in governing the substruc-

ture evolution within the NBGZs, especially for the (plastically) intermediate (0.35<Schmid

factor≤0.45) and hard (Schmid factor≤0.35) oriented grains. The softer (Schmid factor>0.45)

grains on the other hand, still display an orientation dependence and a much wider NBGZ,

as in Chapter 3. As with the grain boundaries showing solute segregation, the relationship

between the NBGZ and Schmid factor observed in Chapter 3 is retained.

Further, we focus on capturing the thermal distortion induced substructure developments,

specifically in terms of the rapidly solidified alloys. The adverse thermal gradients (and

cooling rates) results in the development of significant microscale internal stresses, which

are attributed to the printing induced dislocation substructures. The resulting backstress

due to the Geometrically Necessary Dislocations (GNDs) is responsible for the observed

Tension–Compression (TC) asymmetry. A combined Phase Field (PF)-Strain Gradient

J2 Plasticity (SGP) framework is developed to examine the TC asymmetry in such mi-

crostructures. The novelty of the modeling framework lies in its capabilities to account for

the orientation-based anisotropy, multi-grain interaction, anisotropic elasticity, dislocation

strengthening, solid solution strengthening along with GND-induced directional backstress.

The results presented point to the microstructural factors, such as dislocation substructure

and solute segregation, and mechanistic factors, such as backstress, which may contribute

to the development of TC asymmetry in rapidly solidified microstructures.

We then focus on quantifying the residual strains (and corresponding strain gradients) using

various experimental methodologies in Chapter 6. To begin with, a key challenge over here

is in establishing the numerical convergence/scaling between various multi-scale residual

strain measurement techniques, as these differ in scale and resolution while also yielding

significantly different strain values. The High Resolution Electron Backscatter Diffraction

(HR-EBSD) and Transmission Kikuchi Diffraction (HR-TKD) (sensitive to ∆θ/θ), pro-

vides quantitatively higher residual strains than the micro-Laue X-Ray Diffraction (XRD)

and Transmission Electron Microscope (TEM) based Precession Electron Diffraction (PED)

(sensitive to ∆d/d). Even after correcting the key known factors affecting the accuracy of

HR-EBSD strains, a scaling factor of ∼ 1.57 emerges. Simulated Kikuchi patterns obtained
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from ideal lattices deformed by changing an interplanar angle or a lattice parameter also dis-

play a similar behavior. The differences in the strain measurements are further emphasized

by mapping identical locations with HR-TKD and TEM-PED. These measurements exhibit

different spatial resolution, but on scaling (with ∼ 1.57) provide similar lattice distortions

numerically.

Finally, Chapter 7 compares the ∆d/d-sensitive XRD (bulk) and ∆θ/θ-sensitive HR-EBSD

(local) residual strains with their simulated counterparts in an austenitic stainless steel sub-

jected to tensile and cyclic deformation. These are predicted using a dislocation density-

based crystal plasticity model, with consideration for directional hardening due to the back-

stress evolution. The study emphasizes on bulk residual strain developments for four specific

grain families: (111), (001), (101) and (311), specifically in terms of their correlation with

the underlying microstructure, studied using crystallographic orientation, misorientation,

dislocation density and backstress evolution. Further, the measured local residual strains,

which are also qualitatively predicted by the crystal plasticity simulations, highlight the

additional effect of spatial heterogeneity and neighboring grains on the development of

residual strains. Finally, statistical analysis of the simulated predictions reveal the follow-

ing hierarchy in the development of bulk residual strains for the different grain families:

(001)>(311)>(111)>(101) for tensile deformation and (001)>(311)>(111)∼(101) for cyclic

deformation. The dominant factors contributing to the observed hierarchy are the elastic

stiffness and the grain rotations (or lack thereof) for different grain families.

In summary, the thesis is directed towards the development of experimentally informed

modeling frameworks to explore the process-structure-property relationship in structural

metals and alloys.

Keywords: Strain gradient, crystal plasticity, J2 plasticity, phase field, backstress, EBSD,

orientation gradients, residual strain
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Chapter 1

Introduction

1.1 Overview

Plastic deformation of structural metals and alloys is inherently heterogeneous and several

factors may contribute to this. Prior processing may lead to a heterogeneity in the as-built

microstructure, in the form of varied grain morphology and (mis)orientations, solute segre-

gation, second phase precipitates and pre-existing residual stresses. These microstructural

heterogeneities may in turn result in anisotropic plastic deformation, with effects including

tension-compression asymmetry and orientation-dependent anisotropic residual strain de-

velopments during deformation. Further, loading conditions and constraints during service

may lead to plastic strain gradients, which are accommodated by Geometrically Necessary

Dislocations (GNDs), and may result in the development of opposing stress fields, commonly

called backstress, that hinder the subsequent plastic deformation.

Generally speaking, the heterogeneities in the microstructure and plastic deformation are

often inter-related. This is schematically shown in Figure 1.1. For example, GNDs may pile

up at grain boundaries and interfaces with second phase precipitates, which are manifested

in terms of misorientation developments. Residual strains (or stresses) may also develop at

these heterogeneous interfaces during both processing and in-service deformation. Further,

thermal gradients during processing may result in solute segregation, residual stresses and

dislocation structures. Delineating and isolating their individual effects on plastic deforma-

tion is often challenging.

This serves as the main motivation for the present thesis, which attempts to quantify the

inter-relationships between the microstructure and plastic deformation via combined mod-

eling and experiments. The microstructural heterogeneities have been measured in terms of

1
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Figure 1.1: Schematic showing the inter-relationships between misorientation, solute seg-
regation and residual strains, which influence heterogeneous plastic deformation in struc-

tural metals and alloys.

the misorientations, GND densities, solute segregation and residual strains. Novel modeling

and experimental techniques have been developed and used to this end. Specifically, strain

gradient crystal plasticity models have been developed to account for GNDs and their effect

on deformation. Further, phase field models, coupled with strain gradient plasticity models,

have been developed to simulate the microstructure evolution during solidification. The

residual strains during processing and deformation have been predicted and compared with

their experimental counterparts. Experimentally, the microstructures have been quantified

using various diffraction-based techniques, such as High Resolution-Electron Backscattered

Diffraction (HR-EBSD), High Resolution-Transmission Kikuchi Diffraction (HR-TKD), X-

Ray Diffraction (XRD) and Precession Electron Diffraction (PED) within Transmission

Electron Microscopy (TEM) to measure the misorientation and residual strain developments

during processing and deformation. Further, solute segregation in the microstructure has

been measured using Energy Dispersive X-ray Spectroscopy (EDS). Model predictions have

been studied together with the experimental observations and measurements to identify the

microstructural factors contributing to heterogeneous plastic deformation.
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1.2 Thesis Outline

The following chapters of this thesis have studied these phenomena for different materials

systems and applications. A literature review of the associated phenomena, as well as

the modeling and experimental techniques used for quantifying them is first presented in

Chapter 2. A summary of the gaps in the literature is presented, along with the objectives

of the present thesis to address these gaps.

Following this, Chapter 3 deals with quantifying the plastic strain gradients developed in

the vicinity of grain boundaries in deformed microstructures of a solid solution strengthened

Aluminum-Magnesium (Al-Mg) alloy. These plastic strain gradients manifest in terms of the

development of GNDs and misorientation gradients near grain boundaries, which are called

as Near Boundary Gradient Zones (NBGZs). A Strain Gradient Crystal Plasticity (SGCP)

framework has been developed to study the development of NBGZs. Model predictions have

been compared with EBSD measurements of the Kernel Average Misorientation (KAM),

with the objective of quantifying the length scale associated with the NBGZs.

Chapter 4 further extends these observations to study the NBGZ development in a precipita-

tion strengthened Aluminum-Copper (Al-Cu) alloy. Since a majority of the aluminum alloys

employed in the aerospace and automobile sectors manifest a significant volume fraction of

precipitates embedded within the microstructure, it is crucial to quantify the heterogeneities

developing in such alloys and subsequently reverse engineer appropriate heat treatments to

avoid in-service failure of the components. In particular, this Chapter focuses on the role of

local crystallographic orientation in influencing the orientation and misorientation gradients

developing in the vicinity of precipitate and solute decorated grain boundaries and compares

it to their (non-decorated) counterparts in Chapter 3.

Following this, Chapter 5 of the thesis examines the thermal distortion induced strain gra-

dients and their subsequent effects on the underlying microstructure, mainly observed in

rapidly solidified materials. Due to the enormous thermal gradients (and hence, cooling

rates) imposed during rapid solidification, the GNDs entrapped within the chemical/dislo-

cation cell walls and the inter-dendritic regions play a crucial role in maintaining the local

lattice compatibility. The backstress arising as a result of these GNDs is primarily responsi-

ble for the ensuing anisotropy in the mechanical and microstructural properties. Chapter 5

proposes a combined Phase Field-Strain Gradient Plasticity (PF-SGP) framework, that not

only allows us to predict in-hand the values of these microstructural parameters but also the

governing physics occurring at these micro-scales, which are often neglected in the experi-

ments. This framework is then employed to predict the dislocation substructure evolution

and ensuing Tension-Compression (TC) asymmetry in a rapidly solidified Fe-Cr alloy.
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To physically validate the residual strain predictions, it is essential to employ various ex-

perimental residual strain measurement techniques, ranging from the XRD-based single

crystal micro-Laue to the newly developed TEM-PED technique. A key challenge to any

such residual strain measurements is the variation in their relative magnitudes, since each

method subtends a different interaction volume and relies on different algorithms. More

importantly, they are sensitive to two different aspects of lattice distortion, (∆θ/θ) for HR-

EBSD and HR-TKD versus (∆d/d) for micro-Laue and TEM-PED. Two questions naturally

emerge: (i) are these strain measurements numerically similar and (ii) if not, is there a re-

lationship between them. Addressing these and a general comparison of the techniques for

an Interstitial Free (IF) steel were the motivations behind the Chapter 6 of the thesis.

Further, Chapter 7 studies the evolution of the anisotropic bulk lattice strains ((∆d/d)-

sensitive) and the local residual strains ((∆θ/θ)-sensitive) using combined experimental and

crystal plasticity approach, during tensile and cyclic deformation of an austenitic stainless

steel. Here, the residual strain developments for various grain families have been explored,

specifically in terms of their correlation with the underlying microstructure, studied using

crystallographic orientation, misorientation, dislocation density and backstress evolution.

Finally, the Chapter emphasizes on the factors contributing to the observed hierarchy in

the bulk lattice strains for various grain families.

In summary, synergistic modeling and experiments have been used in this thesis to study

the inter-relationships between the various internal and external factors contributing to the

heterogeneities in the microstructure evolution across different length scales during plastic

deformation. In order to highlight the effect of these factors, different material systems have

been studied in different chapters, such that the contribution of one factor may dominate

over the other for a given material system and application.



Chapter 2

Background

As discussed in Chapter 1, the primary objective of this thesis is to study the inter-

relationships between misorientations, solute segregation and residual strains in deformed

microstructures. In this regard, a detailed summary of the existing approaches, from an

experimental as well as a modeling perspective, has been discussed in the present Chapter.

In parallel, each Chapter of the thesis (Chapters 3-7) presents a thorough review of the

literature on the topics of interest as well.

2.1 Crystallographic Orientation and Misorientation

Figure 2.1: (a) Schematic denoting the global and crystal frame of reference. (b) Rotation
operations involved while transforming the global reference to the crystal reference frame

using Euler angles ϕ1,ϕ,ϕ2 (Bunge (2013) notation). Adapted from Rout et al. (2015).

5
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The term crystallographic orientation refers to how a unit crystal is oriented with respect

to a fixed global or laboratory frame of reference (Kocks et al., 1998; Randle and Engler,

2000). Generally speaking, the global frame of reference is represented in terms of the

Rolling (RD), Transverse (TD) and Normal (ND) directions of the specimen, whereas the

crystal reference frame is represented using the [100], [010] and [001] directions of a cubic

unit cell (cf. Figure 2.1(a)). Mathematically, this can be quantified using the orientation

tensor, g, which constitutes of a series of rotation operations transforming the laboratory

axes to the crystal axes. While a range of methodologies exists in the literature for defining

g (Kocks et al., 1998; Randle and Engler, 2000; Verlinden et al., 2007; Bunge, 2013), the

present study employs the Euler angle definition formulated by Bunge. This approach

provides three rotation operations: ϕ1 about the ND (gϕ1), followed by ϕ about the new

RD (gϕ), and a final rotation of ϕ2 about the new ND (gϕ2) (cf. Figure 2.1(b)). The

resulting orientation tensor g can then be given by Randle and Engler (2000):

g = gϕ1 · gϕ · gϕ2 (2.1)

g =


cosϕ1 cosϕ2 − sinϕ1 sinϕ2 cosϕ sinϕ1 cosϕ2 + cosϕ1 sinϕ2 cosϕ sinϕ2 sinϕ

− cosϕ1 sinϕ2 − sinϕ1 cosϕ2 cosϕ − sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cosϕ cosϕ2 sinϕ

sinϕ1 sinϕ − cosϕ1 sinϕ cosϕ


(2.2)

where ϕ1, ϕ and ϕ2 can be experimentally acquired using techniques such as Electron

Backscatter Diffraction (EBSD) or Transmission Electron Microscopy based Precession

Electron Diffraction (TEM-PED). Finally, based on the crystal symmetry, the Euler an-

gles involved in the transformation from the global to the crystal frame of reference may

not be unique and various combinations of Euler angles may be valid to achieve the same

transformation.

By definition, all material points lying within a grain (crystal) should manifest the same

orientation. However, the presence of local heterogeneities, dislocation substructures and

anisotropic residual strains arising during solidification and subsequent thermomechanical

processing result in perturbations/gradients in the orientation. Mathematically, these per-

turbations, often referred to as misorientation, between two material points A and B with

orientation tensors gA and gB can be defined as:

∆gAB = gB · g−1
A (2.3)
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The resulting misorientation angle can then be derived as: cos ∆θ = 1
2

(
∆g11AB + ∆g22AB + ∆g33AB − 1

)
(Randle and Engler, 2000). For a uniformly spaced three-dimensional grid, the resulting

misorientation vector at any material point can be given by ∆θ = [∆θx ∆θy ∆θz], where

∆θx, ∆θy and ∆θz refer to the misorientation angles between its immediate neighbors along

the x, y and z directions (Kocks et al., 1998; Wright et al., 2011). Generally speaking, a

grain is considered to be constituted of all material points manifesting a misorientation ≤ 5◦

with their immediate neighbors (Thool et al., 2020). Note that the term ‘misorientation’

refers to the crystallographic mismatch between any two material points, whereas the term

‘disorientation’ denotes the minimum rotation angle (about an axis) required to align their

crystal axes, while accounting for the symmetry of the crystal (Krakow et al., 2017).

As will be seen in the subsequent Chapters, various types of misorientation measures exist

in the literature to quantify the orientation gradients developing in a material (Wright

et al., 2011, 2016; Thool et al., 2020). Broadly, these are divided into two categories; the

kernel based, which define the local pixel-by-pixel misorientation and the grain based, which

quantify the average misorientation between all material points lying within the grain. The

reader is referred to Chapter 3 for further detailed reading on this topic.

The subsequent sections focus on correlating the above-mentioned misorientation vector

with various physical aspects of the deformed microstructure.

2.1.1 Geometrically Necessary Dislocations (GNDs)

According to Ashby (1970)’s classification, two types of dislocations exist in a material,

namely, the Statistically Stored Dislocations (SSDs) and Geometrically Necessary Dislo-

cations (GNDs). While the SSDs are generated to accommodate the plastic deformation

processes via dislocation bowing, trapping and multiplication at junctions, the GNDs are

essential to accommodate the lattice incompatibilities and strain gradients arising during

heterogeneous deformation (Ashby, 1970; Arsenlis, 2001). Ashby (1970) suggested that both

types of dislocations would act as forest obstacles during deformation, leading to enhanced

strengthening in the material. Parallelly, some researchers have employed the analogy of

charged particles, to signify that similar to repulsion between the like charges, a repulsive

stress exists between the GNDs (Arsenlis, 2001; Evers et al., 2004a,b). This is primarily

due to their identical Burgers vector and line tangent direction.

Based on Ashby (1970)’s theory, the GNDs are expected to form near regions of localized

heterogeneous deformation. For example, regions in the vicinity of grain boundaries have to

accommodate additional constraints imposed by their neighbors, thus impeding their free
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deformation (Mishra et al., 2009; Tóth et al., 2010). The core-mantle analogy of a grain

also points out that such regions develop large orientation or plastic strain gradients during

mechanical deformation (Tóth et al., 2010). A significant work has thus been carried out,

experimentally (Sun et al., 2000; Pantleon, 2008; Jiang et al., 2013a; Birosca et al., 2019;

Hansen et al., 2020) along with the development of modeling frameworks (Evers et al.,

2004b; Hansen et al., 2020; Zhang et al., 2023), to study the GND density accumulations

in such regions. Further, Hansen et al. (2020) have also used the sign of the individual Nye

tensor components, to examine the clustering of similarly-signed GNDs in these regions.

Another class of microstructures showing such deformation characteristics are those of

rapidly solidified/Additively Manufactured (AM) materials. The large thermal gradients

and cooling rates in AM necessitates the presence of GNDs to accommodate the ther-

mal distortion induced lattice incompatibilities, especially in the vicinity of inter-dendritic

boundaries and cell walls (Bertsch et al., 2020; Small et al., 2020; Small and Taheri, 2021;

Voisin et al., 2021). The directional backstresses arising due to these GNDs have often been

attributed to the anisotropy in their post-solidification mechanical properties (Chen et al.,

2019; Liu et al., 2020a; Wang et al., 2023).

GNDs were first related to the presence of lattice curvatures in the material by Nye (1953).

The lattice-geometric consequences due to a flux of GNDs results in a closure mismatch

(Bi) in a Burgers circuit, and is given by (Nye, 1953):

Bi = Λijlj (2.4)

where Λij is the Nye tensor and lj is the tangent line direction. Physically, Equation 2.4

provides an estimate of those dislocations whose geometric consequences were not annihi-

lated by the remaining dislocations lying within the Burgers circuit. In other words, these

dislocations are essential to accommodate the discontinuities in the crystalline lattice.

The Nye tensor can be related to the lattice curvature, κ, as follows (Nye, 1953; Arsenlis,

2001),

Λij = κji − δijκkk (2.5)

where, δ is the second rank identity tensor. Note that the above formulation proposed by

Nye (1953) does not account for the contribution of the elastic strain gradients. Further,

the curvature tensor, which is defined as the gradient of the misorientation vector can be

written as follows (Pantleon, 2008),



Chapter 2. Background 9

κik =
∆θi
∆xk

(2.6)

where, ∆θi and ∆xk represent the misorientation (cf. Section 2.1) and spatial increment

between the material points along directions i and k, respectively (see Figure 2.2(a)). Thus,

any technique that provides a spatially resolved grid of crystallographic orientations may

be utilized to estimate the misorientation vector, ∆θ, and hence lattice curvatures, κ, and

the Nye tensor, Λ, for example, EBSD or TEM-PED.

Using the Nye tensor, the bulk GND density can hence be estimated as (Ruggles and

Fullwood, 2013):

ρGND =
1

b
||Λ||1 (2.7)

where, ||Λ||1 denotes the entrywise one norm of the Nye tensor (Ruggles and Fullwood,

2013). Note that other forms of equation 2.7, which employ the L2 norm of Λ, or scalar

pre-factors may also be employed (Ruggles and Fullwood, 2013; Ruggles et al., 2016).

While Equation 2.7 provides an estimation of the bulk/total GND density, the slip system

level GND densities can be determined based on the formulations provided by Nye (1953),

Kröner (1962), Dai (1997), Arsenlis (2001) as follows,

Λ =

18∑
ξ=1

ρξGNDb
ξmξ

0 ⊗ tξ0 (2.8)

where, b is the Burgers vector and m0 and t0 represent the unit vectors along the dislocation

slip and line tangent direction, in the intermediate (or reference) configuration. The unit

vector along the line tangent direction is given by t0 = n0 ×m0, where n0 represents the

unit vector along the slip plane normal. ξ denotes the index (or type) of dislocation, the

maximum value for which, in a Face Centered Cubic (FCC) crystal would be 18 (assuming

12 edge and 6 screw dislocations).

Based on the crystal structure and active GND configurations within a material, Equation

2.8 can be inverted to estimate the slip system level GND densities. However, the imposed

plastic strain gradients can be accommodated by multiple varying GND configurations,

especially in a crystal with high degrees of symmetry (for example, cubic systems). This

leads to non-unique solutions (Arsenlis, 2001; Dunne et al., 2012) of Equation 2.8. As

can be seen, the Nye tensor has nine independent components, whereas there are eighteen
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distinct types of GND densities (cf. Equation 2.8). Hence additional constraints have to

be imposed, in order to obtain the GND density, for example, minimizing the dislocation

line length or minimizing the total energy due to the dislocations (Dunne et al., 2012).

Additionally, different algorithms such as L2 or L1 optimization, least squares method, etc.

can also be employed (Arsenlis, 2001; Kysar et al., 2007, 2010; Das et al., 2018). The choice

of the algorithm has to be governed by the accuracy and the computation time required for

an approach. One such algorithm routinely used for estimated GND densities is given by

Arsenlis (2001), Das et al. (2018):

ρGND =
(
AT ·A

)−1 ·AT ·Λ (2.9)

where, A =
∑
bξmξ

0⊗ tξ0 (cf. Equation 2.8). Equation 2.9 is known as the matrix inversion

technique, which is derived by simple matrix manipulations (Arsenlis, 2001; Dunne et al.,

2012; Das et al., 2018). We refer the reader to Chapter 3 for further details on alternate

approaches such as the least squares, L2 and L1 optimization methods.

Experimentally, estimating the GND densities using Electron Backscatter Diffraction (EBSD)

data has frequently been employed to study the local heterogeneities developing during de-

formation (Sun et al., 2000; Pantleon, 2008; Ruggles and Fullwood, 2013; Ruggles et al.,

2016; Small et al., 2020), especially when the microstructure is subjected to cyclic loading

(Jiang et al., 2015). However, an important drawback of this formulation is the absence

of spatial derivatives along the z direction, since EBSD data is restricted to only two di-

mensions (plane stress approximation) (Fullwood et al., 2015; Pai et al., 2024a). Three

dimensional EBSD data can be acquired by using the non-trivial serial sectioning technique

(Saylor et al., 2004)/Focused Ion Beam (FIB) milling (Calcagnotto et al., 2010). However,

such approaches are beyond the scope of the thesis. Owing to this drawback, only five out

of the nine independent components of the Nye tensor can be obtained using EBSD. These

are given by Pantleon (2008),

Λ12 = κ21; Λ13 = κ31; Λ21 = κ12; Λ23 = κ32; Λ33 = −κ11 − κ22 (2.10)

The resulting bulk GND densities can be estimated using the formulation provided in Equa-

tion 2.8. Since a complete description of Nye tensor is absent in Equation 2.10, the resulting

GND density magnitudes are referred to as lower bound estimates. Nevertheless, these lower

bound ρGND can still reveal significant information about the GND density localizations

near the grain and the phase boundaries (Kundu and Field, 2016, 2020; Hansen et al., 2020).

As stated previously in Equation 2.9, to resolve the experimental GND densities onto the
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individual slip systems, different optimization algorithms have been used in the literature

(Kysar et al., 2007, 2010; Dunne et al., 2012). In either case, the obtained GND density

will be a lower bound estimate of the actual GNDs present in the material.

Alternatively, some studies have proposed a rather simpler methodology to estimate the

GND densities, using the pixel-by-pixel misorientation acquired from EBSD data (Calcagnotto

et al., 2010). GND density in such formulations is given as: ρGND = 2∆θ
ub , where ∆θ is the

misorientation angle and u and b correspond to the unit length and the Burgers vector mag-

nitude, respectively (Calcagnotto et al., 2010). Quantitatively, their estimates have proven

to be nearly identical to those derived using Equations 2.7-2.9 (Calcagnotto et al., 2010).

Figure 2.2: (a) Curvature κ calculation from EBSD data and (b) Shift in zone axes
position due to lattice distortion and rigid body rotation. Adapted from Pantleon (2008)

and Wilkinson et al. (2009)/Kumar et al. (2025).

The other approach for estimation of GND density is using the cross-correlation techniques

(Wilkinson et al., 2006, 2009; Britton and Wilkinson, 2011; Ruggles and Fullwood, 2013;

Fullwood et al., 2015; Ruggles et al., 2016). This formulation uses the shifts in the zone axes

positions to get an estimate of the lattice distortion gradient tensor, which is used to obtain

the elastic deformation gradient tensor and ultimately the Nye tensor for the GND density

calculations. Consider an undistorted reference crystal in an initial strain free-sample, as

shown in Figure 2.2(b), with a direction vector r. On deforming the material, the crystal

experiences a lattice distortion and rigid body rotation, modifying the direction vector r to

r′. Using the distortion gradient tensor A, we can write,

r′ = A · r;A =
∂ui
∂xj

(2.11)

The resulting displacement due to the strain and rigid body rotation Q, can be related to

A by:
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Q = r′ − r = (A− δ) · r (2.12)

EBSD techniques only measure the distance q, which is perpendicular to r. Hence, using

the reference of Figure 2.2(b) and basic vector calculus, we can write q = Q− λr, where λ

is a scalar (Wilkinson et al., 2009). Further re-arranging the above equation:

q = (A− (λ+ 1)δ) · r (2.13)

The above expression results in 3 equations and 10 unknowns (nine components of the tensor

A and λ). On elimination of the constant λ, we now have 2 equations and 8 unknowns,

which can be written as (Wilkinson et al., 2009),

r2r3

[
∂u2
∂x2

− ∂u3
∂x3

]
+ r1r3

[
∂u2
∂x1

]
+ r23

[
∂u2
∂x3

]
− r1r2

[
∂u3
∂x1

]
− r22

[
∂u3
∂x2

]
= r3q2 − r2q3

r1r3

[
∂u1
∂x1

− ∂u3
∂x3

]
+ r2r3

[
∂u1
∂x2

]
+ r23

[
∂u1
∂x3

]
− r21

[
∂u3
∂x1

]
− r2r1

[
∂u3
∂x2

]
= r3q1 − r1q3

(2.14)

Hence, to solve the above expression, q has to be measured at four widely spaced zone axes

directions. However, additional measurements of q still cannot separate: ∂u1
∂x1

, ∂u2
∂x2

, ∂u3
∂x3

. To

resolve these terms, which are related to the hydrostatic dilation, a plane stress assumption

has to be employed (Wilkinson et al., 2009). Since the ESBD measurements come from a

region ≤ 30 nm from the sample surface, this assumption does hold to be valid. Combining

the plane stress assumption with the Hooke’s law, we can now separate the three terms,

thus allowing us determination of the complete lattice distortion tensor (Fullwood, 2020).

This is then used to calculate the elastic deformation gradient tensor (F e), and finally the

Nye tensor using:

Λ = (∇× F e) (2.15)

The resulting GND density (bulk as well as slip system level) can be estimated using Equa-

tions 2.7-2.9, respectively.

These formulations, along with Equations 2.11-2.15, shall again be revisited in Chapter 6.

Note that variations in the EBSD-based data acquisition parameters (for example, detector
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binning and step size) can alter the estimated GND density magnitudes (Jiang et al., 2013b;

Ruggles et al., 2016). These parameters should hence be optimized before-hand, in order

to derive reliable GND density estimates. In addition, this formulation (Equation 2.11-

2.14) can also be employed to determine the residual strains in the material (see Small

et al. (2020); Small and Taheri (2021); Manda et al. (2024) and Chapter 6). Finally, we

do note that more sophisticated techniques for quantifying the GND densities, such as the

Integrated-DIC (I-DIC) EBSD exist (Zhong et al., 2024). However, they are beyond the

scope of the present study.

From a mesoscale modeling perspective, the GND densities can be quantified using the

Strain Gradient Crystal Plasticity (SGCP) type of formulations (Arsenlis, 2001; Evers et al.,

2004a; Bayley et al., 2006; Geers et al., 2006a). These are often referred to as non-local

frameworks, since they account for the deformation behavior of neighboring material points

within their constitutive equations. The mathematical formulations employed in SGCP to

quantify ρGND are identical to those described previously in Equations 2.7-2.9, the only key

difference being that the Nye tensor is now derived using a much more precise/complete

formulation based on the curvature of the plastic deformation gradient tensor as follows

(Dai, 1997; Arsenlis, 2001):

Λij = −
(
∇× F pT

)T
= −ejlkF pik,l (2.16)

where, F pik and ejlk denote the plastic deformation gradient tensor and the permutation ten-

sor. The reader is further referred to Chapter 3 (Section 3.2.3) for a detailed mathematical

description of the SGCP formulation used in the thesis.

2.1.2 Backstresses

As discussed previously in Section 2.1.1, GNDs constitute of like-signed dislocations that ac-

commodate the discontinuities in the crystalline lattice (Arsenlis, 2001). These are typically

observed near regions manifesting localized heterogeneous deformation, for example, grain

boundaries, second-phase precipitates, etc. A pile-up of GNDs hence results in a long-range

repulsive stress, also referred to as backstress, which resists the applied deformation, thereby

raising the strength of the material. Some physical evidences of such a phenomenon are the

Hall-Petch effect (Hall, 1951), bending of beams (Stölken and Evans, 1998) and torsion of

thin wires (Fleck et al., 1994; Gan et al., 2014).

In terms of constitutive models for plastic deformation, these backstresses result in kinematic

hardening, i.e., a translation of the yield surface in the stress space without altering its
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size/shape during the operation (Khan and Huang, 1995). Mathematically, this can be

written as:

f(σ − χ) − sa = 0 (2.17)

where, χ and sa account for the kinematic and isotropic hardening of the yield surface

f(σ). Various empirical, phenomenological and physically-based formulations have been

described in the literature to accurately predict the directional backstresses developing in a

material. Note that while the GND density predictions are limited to non-local formulations

which account for gradients in the plastic strains (Arsenlis, 2001), kinematic hardening has

been implemented within local (empirical and phenomenologically-based laws) as well as

non-local (physically-based laws) plasticity frameworks.

To begin with, Prager (1955) proposed a linear empirical relationship between the backstress

(χ) and plastic strain increment given by:

dχ = Cdεp (2.18)

where C is a material constant. In order to mitigate the drawbacks associated with this

formulation (i.e., transverse softening during tensile loading (Khan and Huang, 1995)),

Ziegler (1959) proposed the following formulation: dχ = (σ − χ)dµ, where dµ represents

the scalar proportionality constant. Further, Armstrong et al. (1966) proposed a non-linear

(single component) phenomenologically-based backstress formulation, given by:

dχ = Cdεp − γχ |dεp| (2.19)

where, dεp denotes plastic strain increment and C and γ are material parameters obtained

by calibrating the experimental mechanical response with simulated predictions. As can be

seen, the first term on the RHS accounts for the initial linear increment in χ, while the

second term captures the non-linear saturation behavior (Armstrong et al., 1966).

An important extension to this formulation was proposed by Chaboche and Nouailhas

(1989), to account for multiple backstress components, thus improving the model predictions

of (anisotropic) cyclic plasticity and multiaxial loading. They (Chaboche and Nouailhas,

1989) represented the backstress as a superposition of multiple backstress components, i.e.,
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dχ =

n∑
i=1

dχi (2.20)

where, n represents the total number of backstress components, with each component de-

noted by the index i. The definition of each of the components, dχi, is given by Equation

2.19. Various other formulations for incorporating kinematic hardening within plasticity

frameworks have been proposed in the literature, for example, the Ohno and Wang (1993)

model or the Burlet-Cailletaud (Burlet and Cailletaud, 1987; Taleb et al., 2006) model.

While Equations 2.17-2.20 described the backstress developments using a continuum tensor

representation, these can also be employed to predict the slip system level backstresses,

i.e., these formulations can be implemented within a macro-plasticity or a crystal plasticity

framework, with the only difference being that the latter predicts the backstress increments

at a slip system level, thus accounting for orientation-based anisotropy, whereas the former

would estimate an effective backstress. Further, many recent studies have employed non-

local crystal plasticity formulations to predict the slip system level plastic strain gradients

and GND densities, followed by using physically-based scalar backstress formulations to

examine the local heterogeneities developing during deformation (Evers et al., 2004a,b;

Bayley et al., 2006; Geers et al., 2006a). A key advantage of these models is that they

explicitly account for the underlying substructure, for example, ρGND, κ, while estimating

the backstress evolution. These formulations are broadly classified into two categories. The

lower order models, where non-locality is accounted for using constitutive equations such as

the Taylor hardening-based formulations (Kapoor et al., 2018), exhibit a direct relationship

between the χ and the ρGND. For a given slip system α, these kinematic hardening models

can be written as: χα ∝ Gbα
√
ραGND, where G and b denote the shear modulus and the

Burgers vector, respectively.

On the other hand, the higher order models formulate the χ as a function of the spa-

tial gradient of ρGND, i.e., χ ∝ f (∇ρGND) ∝ f
(
∇2εp

)
. These models imply that any

spatial reordering of GNDs into special (low energy) configurations, for example, polygo-

nization during recovery, should not lead to a backstress field. Mathematically, this class of

physically-based kinematic hardening models can be given by:

χα ∝ GbαR2

2π(1 − v)
(∇ραGND ·mα

0 ) (2.21)

where, ν denotes the Poisson’s ratio. This formulation incorporates the long-range internal

stresses due to GND distribution within a domain of interest of radius R. Since these models
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depend upon higher order gradients of plastic strain, these are computationally expensive

over other lower-order formulations. As with other kinematic hardening models, these can

be implemented within a macro as well as a crystal plasticity framework.

Note that Equation 2.21 assumes the backstress due to dislocation fields on a slip system α

will only affect the shearing rate on that specific slip system, referred to as self-backstress

by Bayley et al. (2006). Further modifications to Equation 2.21 have also been proposed,

for example, the full internal stress model proposed by Bayley et al. (2006), which accounts

for the drawbacks associated with self-backstress based models. We also refer the reader

to Brahme et al. (2011); Zecevic and Knezevic (2015); Castelluccio and McDowell (2017);

Zirkle et al. (2021); Agius et al. (2022); Zhang et al. (2023) for further reading on the various

physically-based backstress formulations implemented within the plasticity frameworks.

Finally, the ρGND, the plastic strain gradients and the lattice curvatures are a direct outcome

of the local heterogeneities developing in a crystalline lattice, whereas the backstress is de-

rived using various (proposed) mathematical formulations within the plasticity frameworks.

Hence, backstresses cannot be measured explicitly from any experimental characterization

techniques, although, their effects can be quantified to a sufficient extent from the anisotropy

in the material behavior (for example, from the hysteresis loop during cyclic loading).

2.2 Residual Strains and their Quantification

The GND densities, essential to accommodate the local heterogeneities, result in localized

stress fields in a material which may not get fully relaxed upon unloading (Erinosho and

Dunne, 2016). The resulting self-equilibrating (elastic) strains retained in a material after

the removal of external loads are termed as residual strains (Verlinden et al., 2007; Noyan

and Cohen, 2013). These are often a byproduct of the non-uniform elastic-plastic strain gra-

dients developing in a material during deformation (Manda et al., 2024). At an atomic level,

residual strains denote the distortion of the crystalline lattice, whose non-equilibrium struc-

ture is retained by the defects (Verlinden et al., 2007). Similar to GNDs, the residual strains

are indicative of incompatible deformation arising due to external (deformation) or internal

(thermal strains) causes and serve as potential indicators of damage nucleation (Sudhalkar

et al., 2024). These are particularly important in rapidly solidified/AM microstructures

which often manifest dislocation substructures primarily composed of GNDs (Bertsch et al.,

2020; Voisin et al., 2021). The resulting “unrelaxed residual stresses” have been attributed

as a root cause for their anisotropic post-solidification mechanical properties (Chen et al.,

2019).
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More recently, the use of in-situ deformation setups have provided significant information

on the heterogeneous distribution of stresses and strains during loading (Neil et al., 2010;

Kanjarla et al., 2012; Upadhyay et al., 2019). Examining the evolution of residual strains

in such setups have allowed for a detailed understanding on the role of thermal, elastic and

plastic anisotropy during thermomechanical processing (Verlinden et al., 2007; Brown et al.,

2017; Pokharel et al., 2019). Finally, these have also been correlated with the evolution of

local substructure and specimen failure (Wang et al., 2003; Zheng et al., 2013). It is therefore

crucial to quantify and examine the development of residual strains in a material.

2.2.1 Classification of Residual Strains

Based on the length scales over which residual strains/stresses self-equilibrate, they are

divided into three distinct categories (Verlinden et al., 2007; Lodh et al., 2017, 2018; Zhang

et al., 2022) (see Figure 2.3).

• Bulk or macroscopic (type-I): These stresses often equilibrate over the scale of the

entire component.

• Intergranular (type-II): These equilibrate over the scale of a few grains.

• Local or intragranular (type-III): These stresses are primarily due to the individual

stress fields of local defect structures, such as dislocations and point defects.

Figure 2.3: Classification of residual stresses based on the length scales at which they
self-equilibrate. Adapted from Bandyopadhyay et al. (2024).

The subsequent sections discuss various residual strain measurement techniques, followed

by a brief discussion on predicting their simulated counterparts.
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2.2.2 Experimental Residual Strain Measurements

A range of experimental techniques, destructive and non-destructive, exist to measure the

bulk residual strains. The hole drilling method is one such semi-destructive technique, which

quantifies the near-surface (bulk) residual stresses in a material by employing strain gauges

to analyze the strain relief in the vicinity of a drilled hole (Valentini et al., 2019; Olson et al.,

2021). These are often used to provide estimates up to depths of a few millimeters. More

recently, the non-destructive ultrasonic methods, which measure changes in the ultrasonic

wave velocity and compare it to those for a stress-free material have been employed to

measure the bulk residual stresses in the aerospace and automotive sector (Acevedo et al.,

2020; Liu et al., 2021). Of interest to the present study are the non-destructive techniques of

X-ray/neutron diffraction, which have frequently been used to characterize the bulk residual

strain evolution during thermomechanical processing of metallic materials (Cullity, 1956;

Withers and Bhadeshia, 2001; Verlinden et al., 2007; Noyan and Cohen, 2013). The large

penetration depth subtended by these techniques ensures an aggregate data over numerous

grains in the material (Randle and Engler, 2000; Verlinden et al., 2007). In particular,

the (hkl)-specific residual strains, or lattice strains, provide an understanding of the load

bearing capacities and the deformation mechanisms active within various grain families,

along with their influence on the local as well as aggregate properties during deformation

(Korsunsky et al., 2002; Wang et al., 2003; Zheng et al., 2013).

The (hkl)-specific bulk residual strains (εhkl) using neutron diffraction are obtained by

tracking the shift in peak positions for a given (hkl) family compared to its undeformed

strain-free counterpart. Mathematically, this can be written as (Neil et al., 2010):

εhkl =
d

d0
− 1 (2.22)

where, d and d0 denote the interplanar spacing (for a given (hkl) family) in the deformed

and undeformed/strain-free specimens, respectively. The εhkl values parallel to the loading

direction are termed as longitudinal lattice strains, whereas those perpendicular to the

loading direction (in-plane) are termed as transverse lattice strains.

On the other hand, the (hkl)-specific bulk (biaxial) residual strains from X-ray Diffraction

(XRD) are commonly quantified using the d-sin2ψ technique, the formulations for which

have been provided below (Cullity, 1956; Verlinden et al., 2007; Lodh et al., 2022). To

begin with, the reader should note that the angles ϕ and ψ refer to the in-plane rotation

and out-of-plane tilt angles of the Eulerian cradle, respectively. Additionally, the subscripts

1, 2 and 3 denote the rolling/loading, transverse and surface normal directions, respectively.

This technique measures the interplanar spacing dϕψ for multiple (ϕ, ψ) combinations. With
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increasing ψ tilts, the corresponding shift obtained in the XRD peaks is directly proportional

to the accumulated residual strains for a particular grain family (Cullity, 1956). The residual

strains can be then be determined from the slope of the best-fit line (typically using least

squares regression) between dϕψ versus sin2 ψ using the following formulation:

dϕψ − d0
d0

=
1 + v

E

{
σ11 cos2 ϕ+ σ12 sin 2ϕ+ σ22 sin2 ϕ− σ33

}
sin2 ψ +

1 + v

E
σ33

− v

E
(σ11 + σ22 + σ33) +

1 + v

E
{σ13 cosϕ− σ23 sinϕ} sin 2ψ

(2.23)

Note that the residual stresses in Equation 2.23 can be interchanged with residual strains

and vice-versa by using appropriate anisotropic X-ray Elastic Constants (XECs), i.e., the

(directional) elastic modulus, E and the Poisson’s ratio, ν (Van Houtte and De Buyser,

1993; Lodh et al., 2022). Further, the undeformed strain-free interplanar spacing d0 can be

approximated to be equivalent to dϕ0, since the (directional) elastic modulus, E >> σ11+σ22

(error≤ 0.1%) (Prevéy, 1986). In cases where the out-of-plane shear stresses are zero, i.e.,

σ13, σ23 = 0, the above equation would result in a straight line between dϕψ and sin2 ψ.

Non-zero magnitudes of σ13, σ23 would otherwise result in ψ-splitting, as shown in Lodh

et al. (2022). Assumption of biaxial plane stress condition further simplifies the Equation

2.23. In summary, Equation 2.23 determines the longitudinal and transverse components

of εhkl by measuring the interplanar spacing dϕψ across multiple combinations of (ϕ, ψ).

The conventions for longitudinal as well as transverse lattice strains are identical to those

described for the neutron diffraction.

Further, differentiating the Bragg’s law provides us with the following relationship: −∆d/d0 =

∆θ cot θ, which indicates that a minor variation in the interplanar spacing (∆d) should result

in a pronounced peak shift (∆θ) at larger 2θ angles. Hence, the resolution of strains mea-

sured using the d-sin2ψ technique gets significantly improved at larger 2θ angles (Prevéy,

1986; Verlinden et al., 2007).

From an application standpoint, multiple studies have captured the elastic anisotropy,

elastic-plastic transition, neighborhood interactions and subsequent load transfers/relax-

ations in the bulk lattice strains (Neil et al., 2010; Wang et al., 2013; Brown et al., 2017;

Upadhyay et al., 2019) under varying imposed loading conditions. For example, Brown

et al. (2017) noted a marked difference in the lattice strain developments, and hence load

bearing capabilities, of the (200) family of grains during tensile and compressive loading

of an Additively Manufactured (AM) SS 304L specimens. Further, Upadhyay et al. (2019)

used in-situ neutron diffraction to understand the lattice strain evolution during biaxial

load path change (LPC) experiments on SS 316L cruciform specimens. Neil et al. (2010),

in their in situ neutron diffraction experiments on copper and stainless steel noted that the
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transverse lattice strains (perpendicular to the loading direction) exhibited a large grain to

grain scatter, as compared to the axial lattice strains due to a significant dispersion of the

transverse scattering vector.

While the above studies focused on measuring the in-plane residual strains/stresses, out-

of-plane residual stresses have also been estimated and correlated with the deformation

behavior of materials (Kumar et al., 2016; Neog et al., 2024). For example, Neog et al.

(2024) showed that the magnitude of out-of-plane normal stresses largely governed the

fracture behavior of their as-deposited Thermal Barrier Coatings (TBCs). In summary, the

determination of bulk residual strains, or (hkl)-specific residual strains have routinely been

explored and correlated with various aspects of material deformation (Clausen et al., 1999;

Wang et al., 2003; Kanjarla et al., 2012; Wang et al., 2013; Zheng et al., 2013; Thool et al.,

2020; Manda et al., 2024).

Owing to their large interaction volumes, the X-ray/neutron based in situ diffraction exper-

iments can measure the bulk residual strains (Verlinden et al., 2007). To further examine

the microstructure evolution at a finer length-scale, alternative residual strain measure-

ment techniques such as the High Energy X-ray Diffraction Microscopy (HEDM) (Kapoor

and Sangid, 2018; Tayon et al., 2024), single crystal micro-Laue X-ray Diffraction (XRD)

(Manda et al., 2024) and High Resolution Electron Backscattered Diffraction (HR-EBSD)

(Wilkinson et al., 2006, 2009; Fullwood et al., 2015) have been designed. We refer the reader

to Chapter 6 for a detailed mathematical description of the formulations involved in esti-

mating the micro-Laue based (Section 6.3.1) and HR-EBSD based (Section 6.3.2) residual

strains, which are of interest to the present study. For brevity, those formulations have not

been placed here.

These techniques focus on measuring the spatially resolved intergranular, or type-II (HEDM,

micro-Laue XRD) and intragranular, or type-III (HR-EBSD) residual strains in a material.

For example, Tayon et al. (2024) incorporated the far field-HEDM measured type-II resid-

ual strains into their crystal plasticity simulations and noted a significant influence of the

former on sample lifing during high cycle fatigue. Wilkinson and co-workers have frequently

employed cross-correlation based HR-EBSD (Wilkinson et al., 2006, 2009) to study the

substructure evolution (for example, intragranular stresses, Geometrically Necessary Dislo-

cation (GND) density) under different loading scenarios (Kartal et al., 2012; Jiang et al.,

2015; Guo et al., 2017). These techniques have also been used to spatially map the thermal-

mismatch based GNDs, along with residual stresses in the vicinity of a non-metallic inclusion

(Zhang et al., 2014). A recent study on AM Inconel 625 (Small et al., 2020) used HR-EBSD

estimated residual strains and GND densities and observed lower elastic strains in regions

manifesting subgrains and vice-versa. This hence led to the conclusion that the dislocation
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substructures, in particular the subgrain formation during AM, was governed by elastic

strain energy minimization (Small et al., 2020). A similar observation on the correlation

between elastic strains and GND densities was also reported by Manda et al. (2024), albeit

on IF steel specimen subjected to uniaxial tensile deformation.

The recently introduced Precession Electron Diffraction (PED) technique within the TEM,

which measures the shift in the diffraction vector g with respect to a strain free reference,

have enabled mapping residual strains at the submicron level as well (≤ 10−8 m) (Ghamar-

ian et al., 2014; Ghamarian, 2017). The reader is referred to Chapter 6 for a detailed

description on the mathematical formulation used in TEM-PED. Their application how-

ever, has mostly been limited to measuring the residual strains in Silicon and Germanium

micro discs, typically used in the semiconductor industries (Bashir et al., 2019).

In summary, the methodologies to experimentally quantify the residual strains across mul-

tiple length scales have been established and have been routinely employed to study the

deformation behavior of metallic materials (Verlinden et al., 2007).

2.2.3 Simulated Predictions of Residual Strains

A detailed review on the simulated predictions of residual strains, bulk as well as local,

along with their successes and shortcomings have been presented in Section 7.1 of Chapter

7. For brevity, we only summarize a few of those studies in the present context.

From a modeling perspective, approaches to predict the bulk residual strain evolution mainly

involve the use of polycrystal plasticity models to project the elastic strain tensor along spe-

cific < hkl > directions, or (hkl) poles. Two class of crystal plasticity models are commonly

employed for this purpose: the full-field approach and the homogenization or mean-field

approach. The former involves solving the constitutive equations over each material point

in a spatially discretized field (for example, finite element method) (Kanjarla et al., 2012).

This enables the prediction of local heterogeneities and stress distributions, within the

grains and also in the vicinity of grain boundaries (Kanjarla et al., 2012; Zheng et al., 2013;

Thool et al., 2020; Sedaghat and Abdolvand, 2021). The latter assumes each grain as an

ellipsoidal inclusion surrounded by a Homogeneous Effective Media (HEM) and iteratively

solves the interaction equation linking the microscopic (grain-level) scale to the macroscopic

scale (HEM) (Lorentzen et al., 2002; Neil et al., 2010; Wang et al., 2013; Tome and Leben-

sohn, 2023; Patra and Tomé, 2024). Since the mean-field approach estimates the aggregate

response over a polycrystal (Tome and Lebensohn, 2023), these models are computation-

ally cheaper in comparison to their full-field counterparts and hence, routinely employed to
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predict the developments of bulk lattice strains. Advances in computing power have also

permitted the use of full-field models (Dawson et al., 2001; Kanjarla et al., 2012; Zheng

et al., 2013; Aburakhia et al., 2022) to accurately predict the bulk lattice strains during

tensile deformation.

Similar to their experimental counterparts, the existing frameworks have accurately cap-

tured the bulk lattice strain developments under various types of loading conditions: namely

the tensile/compressive (Clausen et al., 1999; Dawson et al., 2001; Neil et al., 2010; Kan-

jarla et al., 2012; Chen et al., 2019; Aburakhia et al., 2022), cyclic (Lorentzen et al., 2002;

Wang et al., 2003; Saleh et al., 2013) and biaxial Load Path Change (LPC) experiments

(Upadhyay et al., 2019). Incorporating the initial/undeformed residual strains based on

experimentally-informed methods suggested by Musinski and McDowell (2015) or Kapoor

and Sangid (2018) have further allowed to account for the realistic initial conditions of

the as-received specimen. On the other hand, the local elastic (residual) strains, lattice

rotations and substructure developments are generally predicted by the full-field crystal

plasticity simulations and then compared with their counterparts from HEDM and HR-

EBSD based experiments (Dunne et al., 2012; Zhang et al., 2014; Abdolvand et al., 2018;

Kapoor and Sangid, 2018).

2.3 Solute Segregation in Metallic Systems

The presence of solute atoms in the crystalline lattice adds up to the frictional resistance

for dislocation glide (Labusch, 1972; Nabarro, 1977). Further, solute segregation at the cell

walls and low angle grain boundaries, generally observed in rapidly solidified/AM (Wang

et al., 2018; Bertsch et al., 2020; Voisin et al., 2021) or (certain) thermomechanically treated

materials (Sauvage et al., 2014; Xiao et al., 2020), leads to dislocation tangling, which

further trap or retard the movement of mobile dislocations (see Figure 2.4(a,b)). In addition

to chemical micro-segregation, these dislocation substructures also host a network of fine

precipitates typically composed of metallic carbides, nitrides and oxides (Saeidi et al., 2015;

Voisin et al., 2021) (cf. Figure 2.4(b)).

For example, Figure 2.4(a) shows the STEM-HAADF (Scanning Transmission Electron

Microscopy-High Angle Annular Dark Field) image and the corresponding elemental compo-

sition map in an Al-Mg alloy subjected to High Pressure Torsion (HPT) at 200◦ C (Sauvage

et al., 2014). Regardless of the noise, they qualitatively provide evidence of Mg segrega-

tion along the grain boundaries (Sauvage et al., 2014). Further, Figure 2.4(b) presents the

HAADF image, along with the line profiles (see yellow marker across the cell walls in Figure
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2.4(b)) and elemental composition maps (for Iron (Fe), Chromium (Cr) and Molybdenum

(Mo)) for an austenitic stainless steel manufactured using the Laser Powder Bed Fusion

(LPBF) technique (Voisin et al., 2021). These results clearly display higher Cr and Mo

concentrations across the cell walls, from the line profile analyses as well as the composition

maps. In addition, the HAADF images show a network of fine precipitates distributed along

the cell walls. Such non-equilibrium microstructures necessitate the presence of GNDs to

accommodate the interface incoherency and local lattice discontinuities. These dislocation

substructures have also been linked to elastic strain minimizations by Small et al. (2020),

in their AM Inconel 625. Finally, many studies (Liu et al., 2018a; Shamsujjoha et al., 2018;

Wang et al., 2018) have attributed such solute/precipitate decorated dislocation substruc-

tures to be the key factor responsible for high strength and ductility in AM alloys.

Though Bertsch et al. (2020) attributed the formation of dislocation cell structures to

the large magnitude of thermal distortion induced lattice incompatibilities, they did note

that the organization of dislocation substructures is significantly influenced by the chemical

micro-segregation and second-phase precipitation. In addition, the local stress fields aris-

ing due to the accumulation of GNDs around these chemical cell walls and inter-dendritic

regions often remains unequilibrated, and is an important factor contributing towards the

development of large local residual strains in AM materials (Chen et al., 2019; Small et al.,

2020; Small and Taheri, 2021). Finally, these factors are responsible for their anisotropic

mechanical properties (Chen et al., 2019; Jeon et al., 2019) (see Figure 2.4(c)).

These observations highlight the existence of a correlation between the solute segregation,

GND densities and residual strains, especially in rapidly solidified or thermomechanically

treated microstructures. It is hence crucial to quantify the local elemental composition,

in particular the micro-segregation and the distribution of second-phase particles in these

microstructures, to elucidate their role in developing the local heterogeneities during defor-

mation. While the previous Sections focused on the latter aspects (cf. Section 2.1, 2.2),

the subsequent paragraphs introduce methodologies to quantify the former, mainly from an

experimental and a mesoscale modeling perspective.

2.3.1 Experimental Determination of Solute Segregation

The local chemical composition at the mesoscale can be readily quantified using an Energy

Dispersive X-ray Spectroscopy (EDS) setup (Bell and Garratt-Reed, 2003; Newbury and

Ritchie, 2013), typically mounted within a Scanning Electron Microscope (SEM). While

the SEM can provide a detailed understanding of the surface properties, the local elemen-

tal composition can be quantified using EDS, up to a spatial resolution of few hundred
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Figure 2.4: (a) STEM-HAADF (Scanning Transmission Electron Microscopy-High Angle
Annular Dark Field) image along with the Energy Dispersive Spectroscopy (EDS) based
composition map for an Al-Mg alloy subjected to High Pressure Torsion (HPT) at 200◦ C
(Al(Kα)-blue, Mg(Kα)-red). (b) HAADF image, along with the line profiles (see yellow
marker across the cell walls) and elemental composition maps (for Iron (Fe), Chromium (Cr)
and Molybdenum (Mo)) for an austenitic stainless steel manufactured using the Laser Pow-
der Bed Fusion (LPBF) technique. (c) Comparison of the anisotropic mechanical response
of as-printed stainless steels with their annealed counterparts. Adapted from Sauvage et al.

(2014), Voisin et al. (2021) and Chen et al. (2019).
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nanometers (∼ 120 eV ) (Verlinden et al., 2007), thus making it an essential tool to map the

solute segregation and precipitate distribution (Prakash et al., 2019). When the incoming

electron beam strikes the sample, it removes an inner-shell electron from the atom. This, in

turn results in an electron from a higher energy orbital filling the vacancy, and thus, in that

process, emitting energy in the form of X-ray photons. The intensity as well as the energy

of the emitted X-rays is a unique characteristic of each element. The EDS detectors (for

example, Silicon Drift Detectors (SDD) (Newbury and Ritchie, 2013)) hence produce an

energy spectrum, where the peaks can be uniquely correlated to the corresponding elements

on the periodic table.

An important disadvantage of the SEM-EDS technique is in that the reliability of the

quantified composition reduces drastically for elements lighter than Boron. Moreover, the

surface preparation, dwell time and step size also effect the reliability of the quantified

chemical composition. The overlap of peaks in the energy spectrum too introduces signifi-

cant errors during the quantification. This has resulted in the development of an alternate

SEM-based technique, commonly referred to as Wavelength Dispersive X-ray Spectroscopy

(WDS), which quantifies the wavelength of the emitted X-rays from the specimen (Prakash

et al., 2019). Though time consuming, this provides a much better resolution over the EDS

and is useful in separating the overlapping peaks in the energy spectrum. Alternatively,

application of the ChemiSTEMTM technique (or TEM-EDS) on very thin foils can quantify

the local elemental composition up to atomic level resolution (Sarkar et al., 2022). Though

based on a similar principle, its primary advantage over SEM-EDS lies in its low electron-

atom interaction volume, which provides a significant improvement in the spatial resolution

for elemental analysis.

Lastly, the Atom Probe Tomography (APT) is a recently developed analytical technique

that quantifies elemental composition at a sub-nanometer resolution (Gault et al., 2021). In

addition, this technique also allows for a complete reconstruction of the 3D atomic structure

of the specimen, including the grain boundaries, phase boundaries and precipitates (Sauvage

et al., 2014; Devaraj et al., 2019; Gault et al., 2021). Note that the present study used

SEM-EDS to quantify the local elemental composition and SEM-EBSD to identify/index

the Al2Cu precipitates observed in Chapter 4.

2.3.2 Modeling Effects of Solute Segregation on Strengthening

From a modeling perspective, the effect of local elemental composition and precipitate

distribution can be introduced using field variables in crystal plasticity modeling framework

to alter the thermal vibrations or short-range (Labusch, 1972; Nabarro, 1977; Sieurin et al.,
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2006; Zander et al., 2007) and the athermal or long-range slip resistances (Shenoy et al.,

2008; Li et al., 2020b).

Models accounting for the solid solution strengthening in binary alloys were first proposed by

Labusch (1972) and Nabarro (1977). The strain field associated with a homogeneous solute

distribution can be described using the misfit parameters, εb and εG, as follows (Fleischer,

1963; Sieurin et al., 2006):

εb =
1

b

db

dc
; εG =

1

G

dG

dc
(2.24)

where, b is the Burgers vector, G is the shear modulus and c denotes the solute concentration

in terms of atomic fraction. Physically, Equation 2.24 accounts for perturbations in the size

(εb) and shear modulus (εG) associated with addition of solute atoms in the solvent matrix.

As proposed by Fleischer (1963); Sieurin et al. (2006), the resultant solute strengthening

can be described using an interaction of these two parameters as follows:

εL =

√(
εG

1 + 0.5 |εG|

)2

+ (αεb)
2 (2.25)

where, α typically lies in the range 9 − 16 (Sieurin et al., 2006). The maximum force of

interaction, fm, between the dislocations and the added solute atoms is given by (Butt and

Feltham, 1993; Sieurin et al., 2006):

fm =
Gb2

120
εL (2.26)

Based on the works of Labusch (1972) and Nabarro (1977), this interaction results in a

significant hindrance to the dislocation glide, thus resulting in a strengthening (τss) within

the range (of fm), w. This can be mathematically written as follows:

τSS =

(
2wf4mc

2
) 1

3

2b
7
3 (Gb2)

1
3

(2.27)

Equation 2.27 suggests that the solid solution strengthening, τss, varies as a function of the

solute concentration, c, and εL as a function of τss ∝ c2/3ε
4/3
L . The constants associated

with this expression can be determined using ab-initio calculations or by statistical analysis

of experimental datasets (Sieurin et al., 2006; Zander et al., 2007). For a system composed
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of N alloying elements, τss can be written as a superposition of the hardening contributions

of each of the solute species:

τss = K1

N∑
i=1

c
2
3
i ε

4
3
Li

(2.28)

where K1 is a constant (cf. Equation 2.27) and i denotes the solute species in consideration.

These formulations have been employed to predict strengthening in Aluminum (Zander

et al., 2007), Steel (Sieurin et al., 2006), Copper (Butt and Feltham, 1993) and Nickel

(Chaudhary et al., 2023) alloys. Finally, recent studies have also shown that a linearized form

of Equation 2.27, given by τss ∝ c ε
4/3
L , sufficiently predicts the solid solution strengthening

(Zander et al., 2007). A detailed review on the implementation and applicability of the above

model (cf. Equation 2.28) within a Strain Gradient Crystal Plasticity (SGCP) framework

(for an Aluminum-Copper alloy) and a Strain Gradient Plasticity (SGP) framework (for a

Iron-Chromium binary alloy) has been presented in Chapters 4 and 5 of the thesis.

Models accounting for the precipitate strengthening contributions typically vary based on

the size of precipitates under consideration, i.e., precipitate shearing due to weakly coupled

dislocation pairs dominates for the finer precipitates, whereas, Orowan looping dominates

for the large precipitates (Shenoy et al., 2008; Kozar et al., 2009; Collins and Stone, 2014;

Chaudhary et al., 2023). The critical shearable to non-shearable transition radius may

also differ based on the alloy grades under consideration (Li et al., 2020b). In addition,

these models also have to account for geometrical factors owing to the varying shape of

precipitates based on the thermomechanical treatment employed (Esmaeili et al., 2003; Li

et al., 2020b). Since the alloys used in the thesis do not manifest such a phenomenon, we

have not further deliberated on this topic.

The spatially resolved solute concentrations, on the other hand, can either be obtained from

experimental measurements using SEM/TEM based EDS, or from phase field based process

simulations of the evolution of solute concentrations during solidification, for example, see

Pinomaa et al. (2020a,b); Lindroos et al. (2022). While a detailed discussion on the former

was presented earlier in Section 2.3.1, the latter has been described in Section 5.2.1 of

Chapter 5.
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2.4 Scope of the Present Research: Correlating Misorienta-

tion, Solute Segregation and Residual Strains

While Section 2.1, 2.2 and 2.3 focused on individually addressing the aspects related to

GNDs/backstress, residual strains and solute segregation/precipitates, the deformation be-

havior of commercial alloys and structural materials often displays a combined interaction

between these three (Fribourg et al., 2011; Guo and Wu, 2018; Bhattacharyya et al., 2019).

For example, two of the key strengthening mechanisms in commercial alloys are the solid

solution strengthening and the precipitate strengthening (Dieter and Bacon, 1976). Start-

ing from the works of Labusch (1972) and Nabarro (1977), to the more advanced empirical

formulations proposed by Sieurin et al. (2006) and Zander et al. (2007), the former as-

sumes that substitutional solute atoms enhance the obstruction to free dislocation glide.

On the other hand, the latter considers the presence of randomly distributed second-phase

particles, spontaneously nucleated during heat treatments, to locally enhance the stresses

required for continuing plastic flow/dislocation glide by mechanisms such as Orowan bowing

or precipitate shearing (Dieter and Bacon, 1976; Bhattacharyya et al., 2019).

Generally speaking, either or both of these act as sites for the development of local het-

erogeneities during deformation, thus resulting in the generation of GNDs to maintain the

ensuing lattice compatibility. The resulting backstresses and unrelaxed elasto-plastic strain

gradients would govern the failure mechanisms in such alloys. The materials manufactured

through rapid solidification/AM form the other set of microstructures, were such a com-

bined interplay between the three aspects is commonly observed (Yoo et al., 2018; Bertsch

et al., 2020; Voisin et al., 2021). As noted in Section 2.3, the dislocation substructures,

which are mainly composed of GNDs are largely influenced by the micro-segregated solutes

as well as precipitates, which in turn influence the bulk as well as local residual strains, and

ultimately the failure behavior of these materials.

In summary, GNDs are essential to accommodate the local lattice discontinuities. These

discontinuities may arise due to various imperfections such as the grain/phase boundaries,

second-phase particles, solute-enriched cell walls, etc. The backstresses associated with

the GNDs have been attributed to significantly alter the macroscopic mechanical behavior.

For example, the long range backstresses arising due to the GND pileups at grain bound-

aries during deformation have been attributed to the well-known Hall-Petch effect (Hall,

1951). Similarly, the printing induced dislocation structures, for example, those arising due

to adverse thermal gradients/cooling rates, chemical micro-segregation and second-phase

precipitation, typical in rapidly solidified microstructures have been attributed to the de-

velopment of significant microscale internal stresses and multiscale residual stresses in the
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microstructure (Bertsch et al., 2020; Voisin et al., 2021). During deformation, these dislo-

cation networks resist subsequent dislocation motion, which in turn are responsible for the

increase in strength of rapidly solidified microstructures. An in-depth analysis and quan-

tification of GNDs in the vicinity of these imperfections in various structural materials has

been carried out in the subsequent Chapters.

While a range of studies exist in the literature to quantify and independently examine the

role played by each of these three aspects (see Section 2.1, 2.2 and 2.3), a combined exper-

imentally informed modeling approach that simultaneously accounts for all three has not

yet been looked upon. Such a unified modeling framework holds significant practical im-

portance, as majority of the materials employed today in aerospace, automobile as well as

communication sectors are either additively manufactured or are subjected to complex heat

treatment procedures, in order to tailor the microstructure to achieve the desired mechanical

properties (Sharma, 2003; Kaufman and Rooy, 2004; Schmitt et al., 2021). From a modeling

perspective, this is partly because accounting for GND densities and backstress necessitates

the development of a strain gradient plasticity framework which often introduces additional

degrees of freedom in the system, thus making it computationally expensive (Evers et al.,

2004a,b). In addition, though solute behavior as well as the role of precipitates can be

accounted for by existing empirical relationships (Labusch, 1972; Nabarro, 1977; Sieurin

et al., 2006; Zander et al., 2007), predicting micro-segregation and solute partitioning under

realistic temporal profiles invites the use of phase field frameworks (Moelans et al., 2008;

Plapp, 2011). Further, coupling these with mechanistic models is essential to capture the

local heterogeneities and residual strains arising during manufacturing and thermomechan-

ical treatments, which later lead to anisotropy in their mechanical behavior (Liu et al.,

2020a; Lindroos et al., 2022; Pinomaa et al., 2022; Hu et al., 2023). Addressing these gaps

in the literature, and exploring their inter-dependencies by developing a unified mesoscale

plasticity framework, which derives its inputs from experimental observations forms the key

motivation for Chapters 3-5 in the thesis.

Similarly, from an experimental standpoint, a key deterrent to any such combined examina-

tion is the variation in the relative magnitudes between the predictions of various residual

strain measurement techniques, namely the (∆d/d)-sensitive (for example, X-ray/Neutron

Diffraction, TEM-PED) and the (∆θ/θ)-sensitive (for example, HR-EBSD and HR-TKD).

While much of the literature has focused upon quantifying the GND densities, solute seg-

regation and even residual strains (though individually, the (∆d/d) or (∆θ/θ)-sensitive),

not much attention has been paid towards a direct comparison of the evolution of (∆d/d)-

sensitive and (∆θ/θ)-sensitive residual strains, especially with progressive deformation. As
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can be seen, such an experiment, though complex, would provide a significant understand-

ing on the strengths and shortcomings of the methodologies associated with each of the

residual strain measurement techniques. In addition, deriving a scaling factor between

these techniques would also enable in achieving numerical convergence, though artificially,

in their magnitudes. Addressing this issue, followed by further employing it to examine the

bulk and local residual residual strain evolution during progressive deformation forms the

motivation for Chapters 6 and 7 in the thesis.

Finally, employing the mesoscale plasticity frameworks provides significant information on

the local substructure as well as micro-texture evolution. Understanding the role played

by various substructure governing variables in influencing the bulk as well as local residual

strains derived above can aid researchers in designing microstructures exhibiting improved

mechanical properties/failure behavior. This forms the motivation for Chapters 6 and 7 in

the thesis.

2.4.1 Thesis Objectives

To address the gaps summarized in the preceding section, the following are the primary

objectives of the present thesis:

• Development of a Taylor hardening based Strain Gradient Crystal Plasticity frame-

work (SGCP), which can accurately predict the GND density, backstress and other

substructural features evolving during deformation.

• Experimental evaluation of the predicted Near Boundary Gradient Zones (NBGZs) in

an Al-Mg alloy subjected to interrupted tensile deformation.

• Combined experimental and SGCP study to examine the role of grain boundary solute

segregation and precipitates on the orientation dependence of NBGZs in an Al-Cu alloy

subjected to compressive loading.

• Development of a coupled Phase Field (PF)-Strain Gradient Plasticity (SGP) frame-

work to predict the underlying microstructural features developing during rapid so-

lidification of a Fe-Cr alloy, followed by SGP simulations to study the evolution of

mechanical and microstructural properties during (post-solidification) deformation.

• Exploring the relative magnitudes of residual strains predicted by (∆d/d)-sensitive

and (∆θ/θ)-sensitive measurement techniques.



Chapter 2. Background 31

• Development of a combined experimental and crystal plasticity framework to predict

the factors influencing the evolution of orientation dependent bulk and local residual

strains during tensile and cyclic deformation of an austenitic stainless steel (SS 316L).

These objectives have been addressed in the following Chapters of the thesis. The choice of

the material systems in different Chapters has been made in order to highlight the different

factors affecting correlated mechanical property and microstructure evolution. In brief,

Chapters 3 and 4 focus on the Aluminum-based alloy systems, while Chapters 5, 6 and 7

use Iron-based alloy systems. The appropriate material systems are decided based upon the

microstructural and mechanical properties dominant during the chosen thermomechanical

treatment regime.



Chapter 3

Study of Grain Boundary

Orientation Gradients

3.1 Introduction

Plastic deformation in polycrystals is inherently heterogeneous, with differential hardening

and deformation in the individual grains. This may be attributed to various factors such as

orientation-dependent micro-yielding, incompatibility with neighboring grains, proximity to

regions of stress concentrations (geometrical and microstructural), and the imposed state of

deformation. Generally speaking, the crystal lattice undergoes significant rotation during

deformation; the grain rotates towards the neighboring (grain) orientation with which it

shares the minimum misorientation (Nagarajan et al., 2021; Chen et al., 2022b). Further, the

lattice planes in the grain interior are able to rotate with relative ease during deformation,

whereas rotation of the lattice planes in the vicinity of the grain boundaries is restricted,

due to the additional constraints imposed by neighboring grains (Randle et al., 1996; Nave

and Barnett, 2004; Tóth et al., 2010). The grain boundaries should not only ensure the

lattice continuity across the interface, but they should also try to maintain mechanical

compatibility and force equilibrium (Taylor, 1938; Jiang et al., 2013a). During straining,

differential rotation within the grain contributes to the division of grain into two zones: an

exterior grain mantle, where lattice rotation is more constrained, resulting in a curvature

in lattice planes, and an interior grain core, which can rotate with relative ease (Drury and

Humphreys, 1986; Tóth et al., 2010). The lattice curvatures and strain gradients in these

regions are accommodated by Geometrically Necessary Dislocations (GNDs) (Nye, 1953;

1

Significant parts of this Chapter have been published in Pai et al. (2022).
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Ashby, 1970; Arsenlis and Parks, 1999; Tóth et al., 2010). GNDs consist of identical Burgers

vector and line tangent direction; a pile-up of GND density hence results in a repulsive stress

opposing the applied deformation (Li et al., 2020a; Zhao et al., 2021). Further, the grain

mantle developing such a localized misorientation gradient, is generally known as the Near

Boundary Gradient Zone (NBGZ) (Mishra et al., 2009; Raveendra et al., 2011; Keskar et al.,

2014; Singh et al., 2015, 2017).

Based on experimental characterization of a large number of grain pairs in an aluminum

alloy, Mishra et al. (2009) proposed an empirical relationship, relating the length of NBGZs

of two neighboring grains to their crystallographic orientations of the form: Li/Lj =

(Mj/Mi)
2.5, where Li and Mi are the NBGZ length and the Taylor factor, respectively,

and i, j denote the grain indices. Such a correlation stems from the fact that neighboring

grains with a large difference in Taylor factors (a measure of the proclivity for deformation)

may be expected to have higher orientation gradients, with the softer grain developing a

wider NBGZ. The NBGZs have been studied in terms of sensitization to corrosion (Srini-

vasan et al., 2015), effect on grain fragmentation (Keskar et al., 2014) and their effect on

deformation twinning during plane strain compression of Zr alloys (Singh et al., 2015). In

related studies, Sun et al. (2000) observed the development of orientation gradients in chan-

nel die compressed aluminum bicrystals and correlated this with a pile-up of GND density

at the bicrystal interfaces. Liang and Dunne (2009) developed an explicitly coupled length

scale dependent 3D crystal plasticity model, to simulate these bicrystal deformation experi-

ments, and predicted GND densities identical to the experimental counterparts (Sun et al.,

2000). It should be noted that GND pile-up in the vicinity of grain boundaries were also

simulated by Evers et al. (2004b), although not directly compared with experiments.

Experimental characterization of local misorientations and substructural properties are gen-

erally performed using measures such as Kernel Average Misorientation (KAM) and GND

density. Allain-Bonasso et al. (2012) observed the build-up of misorientation at grain bound-

aries in deformed interstitial-free steel specimens and correlated this with the corresponding

GND densities. Ohashi et al. (2009) estimated the GND density during tensile loading of

a Ni bicrystal specimen. This combined experimental and modeling study showed that

based on the grain orientation, GNDs may pile-up at the grain boundaries, or may accumu-

late over a narrow band in the grain interior (Ohashi et al., 2009). Pokharel et al. (2015)

studied the misorientation development near grain boundaries during tensile deformation of

polycrystalline copper and observed that larger grains exhibit a much smoother buildup of

misorientation as compared to the fine grains. GNDs are also essential for accommodating

the lattice mismatch at phase boundaries. To this end, Kundu and Field (2016) observed

that the rate of increase of GND density reduced with increasing strain in a Dual Phase
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(DP) steel. They attributed this to the lowering of compatibility requirements between the

neighboring ferrite and martensite grains.

Microstructural evolution in the NBGZs can perhaps be better predicted by non-local mod-

els for plastic deformation, due to their inherent ability to account for the strain gradients

and the development of GNDs near incompatible interfaces. Strain Gradient Crystal Plas-

ticity (SGCP) models are one such class of non-local formulations, which consider the effect

of plastic strain gradients on the hardening response due to GNDs. The contribution of

GNDs to hardening has been modeled in several different constitutive forms in crystal plas-

ticity frameworks. GNDs have been considered as forest obstacles, thus contributing to

enhanced strengthening by (Ashby, 1970; Dai, 1997; Dunne et al., 2012). Others have con-

sidered the GND contribution to act as a repulsive backstress, that opposes dislocation

glide (Evers et al., 2004a,b; Bayley et al., 2006; Geers et al., 2006b; Kapoor et al., 2018;

Bandyopadhyay et al., 2021). The frameworks considering backstress evolution can be fur-

ther classified into: lower order models, where non-locality is incorporated via constitutive

equations (Kapoor et al., 2018; Bandyopadhyay et al., 2021), work conjugate higher order

models, where additional terms in the virtual work relation are considered to account for the

presence of higher order stresses, work conjugate to the gradients of plastic strain (Gurtin,

2002), and non-work conjugate high order models, where backstress explicitly influences the

crystallographic slip rates (Kuroda and Tvergaard, 2006, 2008). The reader is referred to

a comprehensive review of the related modeling and experimental studies by Mayeur and

McDowell (2014) and Voyiadjis and Song (2019).

Studies linking the length of NBGZs to the crystallographic orientation of the grains, fol-

lowed by subsequent comparison between simulations and experiments have largely been

restricted to bicrystals (Liang and Dunne, 2009; Ohashi et al., 2009). A detailed quantita-

tive assessment of NBGZs, combined with a study of the underlying microstructure evolution

is generally missing. Specifically, there is a lack of insight on how various substructural and

local mechanical properties evolve within the NBGZ, and how they get affected by the ori-

entation of the neighboring grains. Further, the length scale dependence of the NBGZs has

not been studied systematically. Although, experiments (Subedi et al., 2015; Kundu and

Field, 2016) as well as simulations (Evers et al., 2004b; Geers et al., 2006b; Kysar et al.,

2007; Dunne et al., 2012) have shown that regions close to the grain boundaries and stress

concentrations deform heterogeneously, however, their dependence on microstructural pa-

rameters, such as the grain size, has not been established explicitly. Addressing these gaps

in the literature form the main objectives of the present work.

Although previous works have focused on studying the NBGZs experimentally, we believe

that it is essential to develop a modeling framework that can provide insights into the
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development of local microstructure-mechanical property correlations within the NBGZs.

Towards this end, the present work studies the formation of NBGZs in a polycrystalline

aluminum-magnesium (Al – 6wt.% Mg) alloy using combined experiments and modeling.

Interrupted tensile testing is performed and the microstructures are characterized using Elec-

tron Backscattered Diffraction (EBSD) to obtain the local orientation, misorientation and

GND density as a function of distance from the grain boundaries. We also simulate defor-

mation in realistic microstructures using a non-local SGCP framework. The SGCP model

uses a Taylor hardening based backstress model to capture the length scale effects. The

model is first qualitatively validated by demonstrating grain size dependent strengthening

and then used to simulate deformation in idealized microstructures. The combined experi-

mental and modeling methodology is then used to correlate the various microstructural and

substructural properties such as the KAM, GND density, SSD density, and effective plastic

strain within the NBGZs. Finally, we also establish statistical correlations of the length

of NBGZs with the underlying microstructural features such as the initial grain average

Schmid factor and the grain size.

The study of deformation in these NBGZs is important because the Hall-Petch type grain

boundary strengthening is primarily owed to the development of strain gradients and GNDs

in the NBGZs. While much focus has been placed on understanding the mechanistic origins

of these grain size effects, the underlying microstructural evolution has not been studied

systematically. Grain fragmentation is also another consequence of the development of

NBGZs. The broad objectives of this research are to understand the microstructural fac-

tors contributing to development of misorientation gradients at grain boundaries, towards

engineering grain boundaries with enhanced mechanical properties.

3.2 Materials and Methods

3.2.1 Material

The material used in the present work is an Aluminum-Magnesium (Al – 6wt.% Mg) alloy.

This is a solute solution strengthened alloy, with higher strength (relative to pure Al) and

enhanced strain hardening capability (Driver and Papazian, 1985; Hughes, 1993; Sauvage

et al., 2014). The composition of the alloy is given in Table 3.1. The material was annealed

in a laboratory vacuum furnace (∼ 10-6 torr) at 500◦ C for 6 hours, followed by water

quenching, to homogenize the texture and provide residual strain relief, if any. Equiaxed

grains, with near random crystallographic texture (Texture Index: 1.14) were obtained with

a mean grain size of ∼ 92 ± 22 µm.
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Table 3.1: Composition of Al – 6wt.% Mg alloy.

Al Mg Mn Si Cr Cu Fe

Comp.(wt%) 92.4 6.55 0.66 0.16 0.008 0.01 0.14

3.2.2 Experimental Methodology

Micro-tensile specimens were machined out of the material with dimensions: 16 mm (total

length), 5 mm (gauge length), 2 mm (gauge width) and 1.5 mm (thickness), respectively.

Uninterrupted tensile deformation was carried out on micro-tensile specimens in a screw-

driven InstronTM 3345 Universal Testing Machine (UTM), with a 5 kN load cell, at nominal

strain rates of 10−3 s−1 and 10−4 s−1. The deformation was performed up to an applied

strain of 10%. Subsequent microstructural characterization using EBSD and the tensile

stress-strain response indicated that the effect of essentially quasi-static strain rates on the

mechanical behavior as well as the microstructure evolution was negligible and there was

no appreciable difference between the materials deformed at the two different strain rates

(the data has not been presented here for brevity). Following this, interrupted tensile tests

were then performed on the micro-tensile specimens in a DEBENTM micro tensile stage at a

nominal strain rate of 10−3 s−1. Data from the uninterrupted tensile tests at ε̇ = 10−3 s−1

were used to calibrate the SGCP model, while the data from interrupted tensile tests were

used for microstructural characterization and comparison with SGCP model predictions.

Microstructural characterization was performed for samples deformed to 0%, 2.5%, 5%,

7.5%, 10% nominal strain. Traditional metallography, followed by electropolishing the speci-

mens in an electrolyte of 80 : 20 ratio of methanol and perchloric acid, was used for preparing

the samples for microstructural characterization. The electropolishing was carried out in a

StuersTM Lectropol-5 equipment at 273K and 12V. A FEITM Quanta 3D-FEG (Field Emis-

sion Gun) scanning electron microscope, equipped with TSL-EDXTM EBSD system, was

used for microtextural characterization. A Confidence Index (CI) cutoff of 0.1, which signi-

fies ∼ 95% accuracy in indexing, was used during data analysis. The step size (0.5 µm) and

beam conditions of the EBSD scans were identical at all stages. Although the dimensions of

the gauge region were 5 mm× 2 mm× 1.5 mm, we restricted the region of interest for our

microstructural characterization to 1200 µm× 1200 µm near the center to avoid boundary

effects, if any. Impressions from micro-hardness indents were utilized for identification of

the region of interest during interrupted EBSD measurements.

The present work utilizes Kernel Average Misorientation (KAM) and GND density to study

NBGZs. KAM is a point-to-point misorientation measure calculated using the orientation

data obtained from the EBSD maps and is given by: 1
n

∑
∆gij(gi, gj), where ∆gij(gi, gj)
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is the misorientation between the pixel, i, and its neighboring pixel, j (Kocks et al., 1998;

Wright et al., 2011, 2016). The number of neighbors is indicated by n (4 for the square

grid considered in the present work). Further, the maximum intragranular misorientation

allowed is 5◦ (Thool et al., 2020).

GND density calculated from the EBSD orientation data (Sun et al., 2000; Field et al.,

2005; Pantleon, 2008; Ruggles and Fullwood, 2013) has been used to study the orientation

gradients near grain boundaries (Liang and Dunne, 2009; Allain-Bonasso et al., 2012). The

bulk GND density can also be estimated using the entry-wise one-norm of the Nye tensor

as (Ruggles and Fullwood, 2013; Ruggles et al., 2016):

ρGND =
3

2b

∑
i

∑
j

Λij (3.1)

where, Λ denotes the Nye tensor and b is the magnitude of the Burgers vector. The Nye

tensor can be derived from the curvature of the crystal lattice using the following relationship

in index notation (Pantleon, 2008):

Λik = κki − δkiκmm (3.2)

where, κ is the curvature tensor. Further, the curvature tensor is related to the misorien-

tation vector by κkl = ∆θk/∆xl, where ∆θk = −ϵkij∆gij(∆θ/2sin(∆θ)) (Pantleon, 2008).

Only 6 components of the lattice curvature tensor can be derived using this method, as

derivatives along the third direction (normal to the surface) cannot be accessed.

We have used the OIM-based method available in the open-source OpenXY software (Full-

wood, 2020) for calculating the GND density. OpenXY permits GND calculation using three

different algorithms, Λ3, Λ5 and Λ9, where the subscript denotes the number of terms in

the Nye tensor used for GND estimation. We have used the nine-term approximation for the

present work. Although this technique estimates the bulk GND density from an incomplete

Nye tensor, it can still reveal valuable information regarding the GND pile-up near grain

boundaries (Ruggles and Fullwood, 2013).
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3.2.3 Strain Gradient Crystal Plasticity (SGCP) Framework

3.2.3.1 Finite Deformation Kinematics and Kinetics

The finite deformation framework utilizes the multiplicative decomposition of the deforma-

tion gradient tensor, F , into the elastic and plastic parts (Asaro and Rice, 1977), i.e.,

F = F e · F p (3.3)

where, F p accounts for the effect of plastic deformation on the initial, strain-free lattice,

transforming it from the reference to the isoclinic, intermediate configuration. The transfor-

mation from intermediate to the current configuration is represented by F e, which accounts

for the lattice distortion due to elastic deformation and the rigid body rotation. Further,

F p is related to the plastic spatial velocity gradient, Lp, as Ḟ p = Lp ·F p where, Lp is the

tensorial sum of crystallographic shearing rates over all the slip systems and is given by:

Lp =
N∑
α=1

γ̇αmα
0 ⊗ nα

0 (3.4)

Here, γ̇α represents the crystallographic shearing rate on slip system α, mα
0 and nα

0 rep-

resent the unit vectors along slip and slip plane normal directions, respectively, and N

represents the total number of slip systems. The crystallographic shearing rate, γ̇α, is a

function of the resolved shear stress, τα, slip system level backstress, ταb , and the SSD den-

sity, ραSSD, on slip system α. Further, the backstress, ταb , is assumed to evolve primarily a

function of the GND density, ραGND.

The elastic Green strain tensor in the intermediate configuration is given by:

Ee =
1

2
(F eT · F e − δ) (3.5)

The second Piola-Kirchhoff stress tensor is obtained using S = C0 : Ee, where C0 is the

fourth rank elasticity tensor in the intermediate configuration. The Cauchy stress tensor is

derived from the second Piola-Kirchhoff stress using the relationship: S = JeF e−1 ·σ ·F e,

where Je = det(F e) denotes the Jacobian of the elastic deformation gradient. Finally, the

resolved shear stress acting on the slip system α, is given by the Schmid law as,

τα = mα · σ · nα =
1

Je
mα · S · nα (3.6)
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where, mα and nα denote the slip and slip plane normal directions in the deformed con-

figuration, and can be related to the reference configuration using, mα = F e · mα
0 and

nα = F e · nα
0 .

The shearing rate due to dislocation glide has been modeled using a Kocks-type thermally

activated flow rule (Kocks et al., 1975), i.e.,

γ̇α = γ̇0 exp

{
−∆F

kT

(
1 −

(
|τα − ταb | − sαa

sαt

)p)q}
sgn (τα − ταb ) ; |τα − ταb | > sαa (3.7)

where, γ̇0 is the reference shear rate, ∆F is the activation energy for dislocation glide in the

absence of applied stress, k is the Boltzmann constant and T is the absolute temperature.

p and q are parameters that govern the shape of the activation enthalpy curve. sαt accounts

for the thermal slip resistance due to short range barriers, while the athermal slip resistance,

sαa , accounts for the slip resistance due to long range stress fields of dislocation junctions.

The thermally activated flow rule can be used to model temperature and strain rate effects

using a more physically based model (Kothari and Anand, 1998), as compared to the simple

power law flow rule. While these effects have not been studied in the present work, the

model implementation allows us to explore such aspects in the future.

The athermal slip resistance is modeled using a Taylor type hardening model,

sαa = τ0 + kihGb

√√√√ Ns∑
ξ=1

AαξρξSSD (3.8)

where, τ0 represents the threshold lattice resistance of an annealed crystal, kih is the hard-

ening coefficient associated with isotropic hardening due to SSDs and Aαξ is the interaction

matrix for dislocation junctions formed between dislocations on slip systems α and ξ (α,ξ =

1,2,. . . ,12 for FCC metals) (Evers et al., 2004b).

We use a Kocks-Mecking type model for substructure evolution, which has been modified

to account for the GND density, and is given by (Estrin, 1996; Kocks and Mecking, 2003;

Evers et al., 2004a,b; Li et al., 2020b):

ρ̇αSSD =
kmul
b

√
ραSSD + ραGND |γ̇α| − kdynρ

α
SSD |γ̇α| (3.9)

The first term on the right-hand side of Equation (3.9) accounts for dislocation multiplica-

tion at pre-existing junctions, while the second term accounts for dislocation annihilation

due to dynamic recovery. The parameters kmul and kdyn can be obtained by fitting the

model to the experimental response.
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3.2.3.2 GND Density and Backstress

Based on prior works (Nye, 1953; Dai, 1997; Arsenlis and Parks, 1999; Arsenlis et al., 2004),

the Nye tensor may be written as a function of the plastic deformation gradient as follows:

Λ = −
(
∇× F pT

)T
=

18∑
ξ=1

ρξGNDb
ξmξ

0 ⊗ tξ0 (3.10)

where, bξ is the Burgers vector magnitude and mξ
0 and tξ0 represent the unit vectors for

the dislocation slip direction and line tangent direction in the intermediate (or reference)

configuration. The unit vector along the line tangent direction can be given by tξ0 = nξ
0×mξ

0.

ξ denotes the index (or type) of dislocation, the maximum value for which in a FCC crystal

would be 18 (12 edge, 6 screw) (Evers et al., 2004a). The present work utilizes a rate form

of Equation (3.10), and is given by:

Λ̇ = −
(
∇× Ḟ pT

)T
=

18∑
ξ=1

ρ̇ξGNDb
ξmξ

0 ⊗ tξ0 (3.11)

The rate form of Nye tensor ensures that any remnant incompatibility in the lattice is taken

into account, even after the reversal of loading direction. The material considered in the

present work has an fcc crystal structure, with 12 slip systems. Following previous works

(Evers et al., 2004a,b; Geers et al., 2006b), SSD densities are assumed to be of edge type

only (12 distinct types), whereas both screw and edge type GNDs (18 distinct types) are

considered in the model. The dislocation configurations considered in the present work are

given in Table 3.2. The procedure for estimating GND densities from the Nye tensor is

given below.

We adopt the method for estimating GND densities from the Nye tensor as given in Das

et al. (2018). The 2nd order Nye tensor can be reshaped as a 9×1 column vector. The GND

density can also be represented as a ξ × 1 column vector, ρ. Here, we define a tensor, A,

which is a 9× ξ tensor, where ξ is the total number of GND configurations. Thus, Equation

(3.11) is rewritten as (Arsenlis and Parks, 1999; Das et al., 2018):

A · ρ = Λ (3.12)

By comparing Equation (3.11) and (3.12), it can be seen that each column in A comprises

of a dyadic product between the Burgers vector and line tangent direction for a dislocation

of type ξ. Note that ρ and Λ are represented here as column vectors.
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Since ξ > 9, the number of slip systems on which the GND density has to be resolved for a

FCC crystal is higher than the individual components of the Nye tensor, there is no unique

solution for the GND density. The imposed plastic strain gradients may be accommodated

by multiple dislocation configurations, especially in a crystal with high degrees of symme-

try. Mathematically, this may lead to non-unique solutions for the GND density (Arsenlis

and Parks, 1999). Hence, we aim to obtain a lower bound on the GND density, which

can accommodate the lattice incompatibility (Kysar et al., 2010). This issue has been ad-

dressed previously by imposing additional constraints in order to obtain the GND density,

for example, minimizing the dislocation line length or minimizing the total energy due to

dislocations. The minimization schemes can be broadly classified into L1 and L2 norms,

which are given by (Arsenlis and Parks, 1999; Kysar et al., 2010; Dunne et al., 2012):

L1 =
N∑
α=1

|wαραGND| and L2 =

√√√√ N∑
α=1

[
wαραGND

]2
(3.13)

where, wα are the weight factors and α is the slip system with GND density, ραGND, re-

spectively. Various weighting factors, such as wα = bα, wα = (bα)2 (minimizing the total

strain energy), wα = 1 (minimizing total GND density over all slip systems), etc. can be

used. Unlike the L1 norm, L2 minimization scheme is a purely mathematical construct and

it does not have any physical interpretation (Kysar et al., 2010). Here, we employ the L2

minimization scheme with wα = 1, which is also referred to as the least squares technique

(Dunne et al., 2012).

Followed by simple matrix manipulations, the expression for rate of change of GND density

can be rewritten as (Arsenlis and Parks, 1999; Kysar et al., 2007, 2010; Das et al., 2018):

ρ̇ξGND =
(
AT ·A

)−1 ·AT · Λ̇ (3.14)

This slip system level rate of change of GND density is computed from the current value of

F p, which in turn is computed using a finite difference approximation, i.e.,

Ḟ p =
F p
t − F p

t−∆t

∆t
(3.15)

where, t denotes the current time step, and ∆t is the time step increment. The rate of change

of Nye tensor is calculated from the spatial gradient of Ḟ p calculated above. Subsequent to

this, the rate of change of slip system level GND density is calculated using Equation 3.14.
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Finally, the slip system GND density at the current time step is calculated as:

ρξGND

∣∣∣
t

= ρξGND

∣∣∣
t−∆t

+ ρ̇ξGND∆t (3.16)

We also refer the reader to Patra et al. (2023b), where the detailed numerical algorithm for

the implicit time step integration for a similar, albeit J2 plasticity formulation, has been

provided.

Note that both screw and edge type GNDs are considered in the framework, leading to 18

distinct types of GNDs (12 edge and 6 screw GNDs), i.e., ξ = 18. The GND configurations

considered in the present work have been represented in Table 3.2.

Table 3.2: GND configurations considered for fcc crystals in the present work. mα
0

represents the slip direction and nα
0 represents the direction of slip plane normal (Evers

et al., 2004b).

Dislocation Dislocation mα
0 nα

0

density index density type

1 Edge 1√
2
[11̄0] 1√

3
[111]

2 Edge 1√
2
[101̄] 1√

3
[111]

3 Edge 1√
2
[011̄] 1√

3
[111]

4 Edge 1√
2
[1̄1̄0] 1√

3
[11̄1̄]

5 Edge 1√
2
[101] 1√

3
[11̄1̄]

6 Edge 1√
2
[011̄] 1√

3
[11̄1̄]

7 Edge 1√
2
[110] 1√

3
[1̄11̄]

8 Edge 1√
2
[1̄01] 1√

3
[1̄11̄]

9 Edge 1√
2
[01̄1̄] 1√

3
[1̄11̄]

10 Edge 1√
2
[11̄0] 1√

3
[1̄1̄1]

11 Edge 1√
2
[1̄01̄] 1√

3
[1̄1̄1]

12 Edge 1√
2
[011] 1√

3
[1̄1̄1]

13 Screw 1√
2
[110] 1√

3
[11̄1̄] or 1√

3
[1̄11̄]

14 Screw 1√
2
[101] 1√

3
[11̄1̄] or 1√

3
[1̄1̄1]

15 Screw 1√
2
[011] 1√

3
[1̄11̄] or 1√

3
[1̄1̄1]

16 Screw 1√
2
[1̄10] 1√

3
[111] or 1√

3
[1̄1̄1]

17 Screw 1√
2
[101̄] 1√

3
[111] or 1√

3
[1̄11̄]

18 Screw 1√
2
[01̄1] 1√

3
[111] or 1√

3
[11̄1̄]

Various models have been proposed in literature to account for the contribution of GND

density to kinematic hardening in SGCP frameworks. Geers and co-authors have proposed

the backstress as a function of spatial distribution of GND density (ταb ∝ (∂ραGND/∂x
α
j )mα

j )

(Evers et al., 2004a,b; Bayley et al., 2006) to account for the “long-range” stress fields due to

GNDs. Gerken and Dawson (2008) proposed a higher order continuum framework in which
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the backstress opposing the applied deformation is derived using the Volterra dislocation

theory. Work conjugate formulations were also proposed by Gurtin (2002). More recently,

Sangid and co-authors have considered a Taylor hardening type of formulation for back-

stress
(
τb ∝ Gb

√
ρGND

)
(Kapoor et al., 2018; Bandyopadhyay et al., 2021). Additionally,

there have been various local phenomenological and micromechanical models that account

for the effect of physically observed substructure evolution mechanisms on the backstress

(Armstrong et al., 1966; Chaboche and Nouailhas, 1989; Ohno and Wang, 1993; Zirkle et al.,

2021).

In the present work, we adopt the model proposed by Kapoor et al. (2018), where the

backstress is modeled using a Taylor hardening type of formulation. Accordingly, the slip

system-level backstress is given as a function of the square root of the GND density, i.e.,

ταb = kkhGb
√∣∣ραGND∣∣ sgn (ραGND) (3.17)

where, kkh is the hardening coefficient associated with kinematic hardening due to GNDs. In

the above equation, the signum function has been added to account for the directionality of

the signed GND density, which in turn influences the slip system-level backstress (Mayeur,

2011). Arsenlis (2001) have shown that GND density can be negative, depending on the

discrete basis chosen as reference. This is also important for cyclic deformations, where load

reversals can result in a significant variation in dislocation configurations (Laird et al., 1986).

The backstress on a slip system may be positive or negative, depending these dislocation

configurations. Further, we have implemented the backstress model in the rate form, i.e.,

τ̇αb = kkh
Gb

2
√∣∣ραGND∣∣ ρ̇αGND (3.18)

Physically, Equation (3.18) signifies that an accumulation of GND density on a slip system

α leads to development of a backstress ταb , which resists the dislocation glide on that slip

system. The rate form ensures that on changing the loading direction the contribution

of remnant backstress from the previous loading cycle is not diminished (cf. Patra et al.

(2023b)).

These constitutive equations have been implemented and integrated with the open-source

finite element library, Multiphysics Object Oriented Simulation Environment (MOOSE)

(Permann et al., 2020). For a given Gauss point, the deformation gradient tensor for the

current as well as previous timestep is provided to the material model by MOOSE. The

material model implicitly updates the stress, the tangent stiffness tensor and the internal

state variables, which are then passed back to MOOSE, for checking the global convergence.
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Only the displacement variables are considered as degrees of freedom for each of the Gauss

points. The spatial gradient terms (cf. Equation (3.11)), which take into account the defor-

mation behavior of neighboring Gauss points, are implemented using the auxiliary variable

interface in MOOSE. Finite element shape functions of appropriate order are assigned to

these auxiliary variables for computation of the spatial gradients. The auxiliary variable

interface in MOOSE facilitates the decoupling of a system of equations. It acts as an in-situ

post processing unit and enables the parallel calculation of spatially varying terms and then

feeds them back into the material model (Permann et al., 2020). Calculations involving

the auxiliary variables do not affect the computation of global Jacobian, thus leading to a

significant reduction in the computation costs.

3.2.3.3 SGCP Model Calibration

The SGCP model was calibrated to predict the stress-strain curve as obtained from the

uninterrupted tensile tests for Al – 6wt.% Mg alloy.

The experimental EBSD texture for the undeformed material (cf. Figure 3.5) is plotted in

the pole figure in Figure 3.1(a). The reduced texture shown in Figure 3.1(a), comprising of 64

randomly selected orientation points from the original texture, was used for the calibration

simulations. A cube shaped simulation domain, comprising of 64 cubic grains, with a grain

size of 100 µm, and 8 elements per grain, was deformed in uniaxial tension at a nominal

strain rate of 10−4 s−1.

The elastic constants (C11, C12, C44, G) for Al were used from literature (Alankar et al.,

2009). The parameters governing the shape of the enthalpy curve (p and q) should lie in

the regime 0 < p < 1 and 1 < q < 2 (Patra and McDowell, 2012). Accordingly, we have

chosen an estimate that best fits the simulated curve to the experimental response. Since the

material under consideration is annealed, a low initial value of SSD density (1×105 mm−2)

was assumed in our simulations. Further, the isotropic hardening coefficient due to SSDs and

the dislocation evolution parameters were calibrated based on fit to the experimental stress-

strain response. The most important model parameter governing the strength contribution

of GNDs is the kinematic hardening parameter, kkh. We have used a value of kkh = 0.87

for all our simulations. The rationale for the choice of this parameter value is given by

the demonstration of grain size effects in Section 3.2.3.4. Further, specimen size effects on

beam bending are demonstrated in the Section 3.2.3.5. Comparison of the model predictions

with the experimental stress-strain response is shown in Figure 3.1(b). As can be seen, a

reasonable fit is obtained. Further, the deformed texture predicted by the model is also in
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Figure 3.1: (a) Experimental and simulated texture, at 0% and 10% applied strain, shown
in terms of the (001) pole figure. Orientation data has been obtained from the EBSD maps
shown in Figure 3.5. (b) Comparison of the SGCP predicted stress-strain response with

the experimental response.

qualitative agreement with the experiments. The calibrated model parameters are given in

Table 3.3.

3.2.3.4 Model Prediction of Grain Size Effects

We have performed simulations of polycrystalline ensembles to verify the Hall-Petch effect.

Virtual microstructures with four different mean grain sizes (6 µm, 22 µm, 36 µm, 60 µm)

were tessellated and meshed in a simulation domain of 150× 150 µm using the open-source
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Table 3.3: Model parameters calibrated to the experimental stress-strain response.

Parameter Value Meaning

C11 108 GPa
Elastic constantsC12 61.3 GPa

C44 28.5 GPa
G 25 GPa Shear modulus
b 2.86 Å Burger’s vector magnitude
γ̇α0 4 × 102 s−1 Reference shear strain rate
∆F 0.45Gb3 Activation energy barrier
p 0.233 Shape parameter
q 2 Shape parameter
τ0 58.5 MPa Threshold slip resistance
Aαξ 0.055 if α ̸= ξ, else 1 Interaction matrix
sαt 130 MPa Thermal slip resistance
kmul 0.2 Dislocation multiplication constant
kdyn 32 Dynamic recovery constant
kih 0.4355 Isotropic hardening parameter due to SSDs
kkh 0.87 Kinematic hardening parameter due to GNDs
ρ0SSD 1 × 105 mm−2 Initial SSD density
ρ0GND 0 Initial GND density

Voronoi tessellation software Neper (Quey et al., 2011). The 2D microstructure was meshed

using triangular elements, with quadratic interpolation and a mesh size of ∼ 3 µm. Further,

a generalized plane strain assumption was used. Displacement controlled tensile loading was

applied on the top face of the simulation domain at a nominal strain rate of 10−4 s−1, up

to an effective strain, ε̄ = 0.015, while the side faces are traction free. The resulting stress-

strain response for the different grain sizes is shown in Figure 3.3(a). The corresponding

evolution of total GND density and the effective backstress, τ̄b, are shown in Figure 3.3(b)

and 3.3(c), respectively. It can be seen that the strength of the material increases as the

grain size decreases.

It is noted here that the macroscopic stress-strain curves in Figure 3.3(a) do not show ap-

preciable grain size effect, with respect to the initial yield stress (or 0.2% proof stress),

while it becomes much more pronounced at higher strains. This is primarily because the

strength contribution due to GNDs arises only after the commencement of plastic deforma-

tion (Λ = 0 for F p = δ (cf. Equation 3.10)). We note that there are other higher order

SGCP frameworks and Discrete Dislocation Dynamics informed crystal plasticity frame-

works which are able to predict such phenomena (Ohashi et al., 2007; Ohno and Okumura,

2007). While this is a shortcoming of our model, it is not expected to influence the pre-

diction of misorientations at larger strains. As will be seen later, both our simulations and
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experiments predict appreciable misorientations near the grain boundaries only at applied

strains > 5%.

As seen in Figure 3.3(b), higher GND density is predicted in the fine-grained microstructures

as compared to its coarse-grained counterparts. As the grain size decreases, regions with

incompatible deformation and strain gradients (in the vicinity of grain boundaries) increase,

which are accommodated by the GNDs. Trends similar to GNDs are observed for the

(effective) back stress profiles in Figure 3.3(c). Deformation contours for these simulations

are shown below.

Figure 3.2 shows the deformation contours for polycrystalline ensembles in terms of their

effective plastic strain, total GND density and the effective backstress contours at 1.5%

applied strain. These correspond to the aggregate properties presented in Figure 3.3. Note

that these simulations are different from the idealized simulation setups shown later for

the prediction of NBGZs, where only two grains were assigned different orientations. The

polycrystalline ensembles comprised of several grains with random initial crystallographic

orientations, resulting in a weak initial texture. The same can be observed in the IPF maps

in Figure 3.2. The effective plastic strain, ε̄p, contours indicate some sharp localizations in

the vicinity of the grain boundaries. Accumulation of GND density is severe in the fine-

grained microstructure (D̄ = 6 µm); its intensity gradually diminishes at higher grain sizes.

Similar trends are observed in the contours of effective backstress in Figure 3.2. Further,

it can be seen that there is generally a high GND density at the grain boundary triple

points and quadruple points. For larger grain sizes (D̄ = 36, 60 µm), the GND density and

backstress localizations are restricted to a region close to the grain boundary, whereas finer

grain sizes exhibit significant localizations even in the grain interior.

We next present an analysis showing that the model is indeed able to present the Hall-

Petch effect (Hall, 1951) using the chosen value of kkh. We only present a brief description

here and the reader is referred to Patra et al. (2023b) for a detailed discussion on this

topic. As described in Equation 3.17, GNDs contribute to the strengthening through the

backstress term, ταb . It has been shown in Patra et al. (2023b) that for small strains and

uniaxial loading, a 1D approximation can be used for estimating the size-dependent strength

contribution due to GNDs, i.e.,

σsize-dependent = kkhGb
√
ρGND ≈ τ̄b ≈

kHP√
D̄

(3.19)

where, ρGND is the total GND density across all slip systems, τ̄b is the effective back-

stress predicted by the model, kHP is the Hall-Petch coefficient and D̄ is the mean grain

size. This has been verified from our simulation data in Table 3.4 at 1.5% applied strain.
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Figure 3.2: Deformation contours shown in terms of the effective plastic strain, total
GND density and effective back stress at 1.5% applied strain for four different grain sizes.
GND density localizations are significantly higher in lower grain size microstructures (D̄ =

6, 22µm as compared to its coarse-grained counterparts (D̄ = 36, 60µm)

Based on the total GND density predicted from our simulations, we have first verified that

σsize−dependent ≈ τ̄b. Small deviations between σsize−dependent (estimated directly from the

total GND density) and τ̄b are due to the fact that 1D approximation may not hold in all

cases.

Table 3.4: Comparison of σsize−dependent with simulated values of τ̄b at 1.5% applied
strain for simulations with different mean grain sizes.

D̄(µm) ρGND(mm−2) σsize−dependent(MPa) τ̄b(MPa)

6 45.2 × 106 mm−2 43.82 45.04
22 26.2 × 106 mm−2 31.26 30.33
36 11.5 × 106 mm−2 22.95 26.29
60 0.82 × 106 mm−2 19.27 18.42

Using the above datapoints, we now estimate the grain size-dependent scaling relations. On
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fitting the effective back stress, τ̄b, to the mean grain size, D̄, using Equation (3.19), we

obtained a kHP ranging from 56− 112MPa
√
µm, at different applied strains (from 0.5% to

1.5%). This is also graphically shown in Figure 3.3(d). These values of model predicted Hall-

Petch coefficients are within the range of experimentally measured Hall-Petch coefficients

(60−110MPa
√
µm), commonly observed in literature for Al alloys (Armstrong et al., 1962;

Cordero et al., 2016; Hansen, 1977). Further, as shown in Patra et al. (2023b), the Hall-

Petch coefficient may be expected to evolve with applied strain (Ashby, 1970; Cordero et al.,

2016). Effect of the variation of kkh has also been discussed in Patra et al. (2023b). An

estimate of kkh = 0.87 is thus justified and used for all simulations discussed in the present

manuscript. Note that, at present, we do not have the experimental data for our material to

directly compare the model predicted grain size effects with the experimental counterparts.

Finally, we also note that grain size effects have recently been simulated using FFT-based

crystal plasticity models by (Berbenni et al., 2020; Haouala et al., 2020) as well.

3.2.3.5 Cantilever Beam Bending Simulations

Size effect during micro beam bending was initially observed by Stölken and Evans (1998).

They attributed this phenomenon to the development of sharper strain gradients in smaller

beams, which led to higher GND density accumulation and backstress. Such benchmark

tests have also been carried out by Arsenlis (2001) and Mayeur and McDowell (2011) in order

to investigate the effects of GND density on mechanical properties. We have performed the

same here.

The simulation setup and boundary conditions used for the present work are shown in Figure

3.4(a). The simulation domain was discretized using 8 noded brick elements of size 3 µm

each. Simulations were performed for different specimen size, while keeping a constant value

of L⁄H = 3. Here, L represents the micro-beam length, and H represents the height and

width of the micro-beam. The single crystal micro-beam was of the < 100 > orientation

(along the z-axis), and the simulation was performed at 298 K. Three micro-beams of

varying thickness (9 µm, 18 µm , 27 µm) were considered for our SGCP simulations. The

boundary conditions used for the simulations are schematically shown in Figure 3.4(a) and

are described below.

The bottom edge of the left face (nodes ranging from z = 0|x,y=0 to z = 0|x,y=0) was

restricted to move only in the Z direction. The left face of the micro beam is kept vertical

at all instants, but allowed to contract freely to accommodate the Poisson effect. The

node at x, y = 0 and z = H/2 (edge center) has been pinned, for preventing any rigid

body translation. The right face of the micro beam, is subjected to a deformation along the
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Figure 3.3: (a) Tensile stress-strain response predicted by the SGCP model for simulations
with different mean grain sizes. Evolution of (b) total GND density, and (c) effective back
stress, τ̄b, with applied strain for the different grain sizes. (d) τ̄b plotted as a function of
the mean grain size, D̄, at different applied strains. The legend in (d) is representative of

the best fit parameters to the Hall-Petch equation for each dataset.

negative Y direction, with an additional requirement being that all nodes should be collinear

at all instances. The remaining faces of the micro-beam are traction free. A constant strain

rate of ε̇ = 0.0001 s−1 has been applied for all the simulations irrespective of its size, up

to an effective strain of ε̄ = 2%. The constitutive model parameters used for the material

model are specified in Table 3.3.

The bending moment can be given by (Mayeur, 2011):

M =

∫ H
2

0
σxx(L, y)ydy (3.20)

where, the basis x, y and z have been shown in Figure 3.4 and L and H indicate the length

and height of the microbeam, respectively. Since the microbeam length varies significantly, it

is essential to quantify the deformation in terms of an independent variable, Mref (reference
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bending moment), given by (Mayeur, 2011):

Mref =
2

3
τ̄nuc

(
H

2

)2

(3.21)

where τ̄nuc is the critical stress for dislocation nucleation (Mayeur, 2011). τ̄nuc may be

written in terms of Schmid factor (m) and yield stress (σ̄y) as τ̄nuc = σ̄y. From the tensile

stress-strain curves shown in Figure 3.3(a), σ̄y can be seen to be ∼ 140 MPa, which gives

τ̄nuc = 57 MPa.

Figure 3.4(b) shows the evolution of the normalized bending moment with the imposed

rotation angle (Θ). It can be observed that the bending moment increases on decreasing

the beam width from H = 27 µm to H = 9 µm. Higher bending moment is observed for

the smaller microbeams. Further, the inset in Figure 3.4(b) shows the normalized bending

moment at Θ = 0.15 plotted as a function of H−0.5. As proposed by Arsenlis (2001), this

highlights a nearly linear relationship between the normalized bending moment and H−0.5,

akin to a Hall-Petch type size dependence (Hall, 1951). Further, the total GND density and

effective backstress were also found to increase with decreasing specimen size (see figure

3.4(c,d)). Simulating these effects is generally not possible by using a local crystal plasticity

finite element formulation. Our results provide qualitative validation of the model’s ability

to predict specimen size effects.

3.3 Results and Discussion

3.3.1 Microstructure Evolution During Interrupted Tensile Test

Figure 3.5 shows the microstructure evolution during progressive deformation in terms of the

Inverse Pole Figure (IPF), KAM and GND density maps. There is not much change in the

IPF maps, indicating the absence of grain fragmentation or significant deformation texture

evolution, although the KAM and GND density increase with progressive deformation.

However, not all the grains have deformed similarly. Certain grains exhibit higher values of

KAM and GND density, as compared to the others. This is possibly due to the orientation-

dependent deformation and spatial location of grains with respect to their neighbors; grains

which are oriented favorably undergo higher deformation than their counterparts. Further,

majority of the grains show higher KAM/GND pile-up in the vicinity of grain boundaries.

KAM has generally been found to correlate with the accumulation of GNDs (Calcagnotto

et al., 2010; Kundu and Field, 2016) and may be indicative of the development of orientation

and strain gradients. Thus, our results are indicative of heterogeneous deformation at the
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Figure 3.4: (a) Simulation setup and boundary conditions for the cantilever beam bending
simulations and (b) Normalized bending moment versus imposed rotation angle for beams
of different thicknesses. The inset represents the normalized bending moment at Θ = 0.15
plotted as a function of H−0.5. Evolution of (c) total GND density and (d) effective

backstress, τ̄b, with increasing beam rotation.

grain boundaries. Further, it is also observed that the severity of these accumulations

increases with increasing strain, especially at 7.5% and 10% applied strain.

Various grain clusters were then extracted from such microstructures (see Figure 3.6) to

study the characteristics of localized deformation near the grain boundaries. Each grain

cluster comprised of two neighboring grains with distinct orientations (∆θ > 5◦). Further,

multiple experiments were carried out in order to accumulate data for statistically significant

number of grains.
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Figure 3.5: Inverse Pole Figure (IPF) maps, Kernel Average Misorientation (KAM) maps
and GND density maps measured at different stages of progressive tensile deformation.
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3.3.2 Estimating the Length of Near Boundary Gradient Zones (NBGZs)

from Misorientation Data

For a polycrystalline material, with insignificant crystallographic texture, the microstructure

evolution and mechanical properties are expected to be relatively isotropic under uniaxial

deformation. However, these properties demonstrate orientation dependence at the grain

and sub-grain level, thus leading to a heterogeneous local deformation (Dai, 1997). Multiple

slip systems may be activated in the vicinity of a grain boundary, in order to accommodate

the constraints posed by the neighboring grains (Mishra et al., 2009; Rollett et al., 2012).

Further, GNDs are generated in order to accommodate the local lattice curvature resulting

from differential rotation (Tóth et al., 2010). These regions in the vicinity of grain bound-

aries, with higher localized deformation as compared to the grain interior, are the Near

Boundary Gradient Zones (NBGZs) and may be characterized in terms of their length,

LNBGZ . In the present work, we study the development of NBGZs primarily in terms of

the crystallographic orientation of the grain and its neighbor with which it shares the grain

boundary, and also its grain size. However, before moving further, we first describe the

method for estimating LNBGZ .

Consider a grain boundary between two grains, with different crystallographic orientations,

as shown in Figure 3.6(a). While localized deformation is observed near the grain boundaries

after 10% strain, the width of the localized region on either side of the grain boundary

is not identical (Figure 3.6(b, d)). Further, heterogeneity in deformation is visible even

along length of the grain boundary. Hence, in order to quantitatively measure LNBGZ ,

it is essential to evaluate the localizations developed along the entire length of the grain

boundary. This is accomplished using the procedure described below:

1. KAM values were extracted along sections perpendicular to the grain boundary at

regular intervals of 10 µm (Figure 3.6(a)). These extracted KAM values were aver-

aged over the entire length of the grain boundary. Further, they were normalized with

respect to the maximum KAM values, generally observed at the grain boundary for

the respective experiment or simulation, for 10% applied strain. This normalization

has also been performed since the same exact grain pairs were not used in the ex-

periments and simulations. The resulting mean KAM profile is calculated from these

measurements and is shown in Figure 3.6(c).

2. We denote LNBGZ as the normal distance from the grain boundary to the point

where the mean KAM profile approaches the average KAM value at the grain center

(KAMavg
center). This procedure was repeated for several grains extracted from the EBSD

scans and crystal plasticity simulations (described later).
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3. The mean GND density profiles were estimated in a similar fashion as shown in Figure

3.6(d, e), although they were not used to estimate LNBGZ . This is because there is

significantly more noise in the GND data as compared to the KAM data.

The GND noise floor, ρnf , is given as the mean GND density of the undeformed specimen.

As described in Genée et al. (2021), the uncertainty, δ, in orientation measurements can be

derived from the GND noise floor by δ = ρnfb∆x , where b is the Burgers vector magnitude

and ∆x is the measurement step size. For the present work, ρnf ∼ 9.26 × 106 mm−2 and

δ ∼ 0.076◦; these values are in range with those in the literature (Genée et al., 2021). At 10%

applied strain, the fraction of pixels with GND density below the noise floor, ρGND < ρnf

was found to be 5.2% and the fraction of pixels with KAM values below the uncertainty,

δ, was found to be 0.92% (KAMnf ∼ 0.21◦). Hence, it is perhaps better to compare the

NBGZs in terms of the average KAM profiles, instead of the GND densities. Moreover, most

of these pixels are expected to lie in the grain interior, rather than at the grain boundary,

and are not expected to influence the analysis of the results presented in the following

sections. Finally, it should also be noted that EBSD step size may also contribute to the

noise/fluctuations in the GND density measurements (Jiang et al., 2013b).

It should be noted here that any further reference to the term “KAM profile” or “GND

density profile” refers to the mean KAM or GND density profiles, i.e., the values averaged

over the entire length of the grain boundary. Further, since grain sizes vary between different

grains, we have plotted LNBGZ as a normalized value with respect to the grain size, D.

In order to study the effect of grain orientation on LNBGZ , it is important to understand

the deformation characteristics between different pairs of grains. Hence, we have classified

the grain orientations shown in the EBSD microstructure (Figure 3.5) into three regions

based on their initial grain-averaged Schmid factor, m. The reason for the choice of this as

a classification parameter is because we have verified that the grain averaged Schmid factor

does not vary significantly in the deformation range of interest (results are not presented

here for brevity). The three regions can be briefly summarized as follows:

1. Region A, with m < 0.35, comprises of hard grains unfavorably oriented for deforma-

tion.

2. Region B, with 0.35 < m < 0.45, represents grains with intermediate Schmid factors,

comprises of grains which are neither hard nor soft.

3. Region C, with m > 0.45, represents the soft grains that are favorably oriented for

deformation.
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Using the above classification, numerous grain clusters were considered, where a grain

boundary was shared between grains lying in either of the three distinct regions. Finally,

it was also ensured that the length of the grain boundary is sufficiently large (> 50 µm) to

minimize the effect of triple and quadruple junctions, if any. Note that all further references

to the term “Schmid factor” indicate the “initial grain average Schmid factor”, and not the

local instantaneous Schmid factor.

Further, the use of local micromechanical Schmid factors is avoided due to the use of vir-

tual microstructures over their experimental counterparts for our Strain Gradient Crystal

Plasticity (SGCP) simulations. In the undeformed condition (at ε = 0), our simulation

cell, though realistic does not account for the orientation gradients/residual strains in the

as-received material, thus leading to differences in the local Schmid factor values between

experiments and simulations. In order to mitigate such differences and have an identical

baseline, we have used grain-average Schmid factors for our analysis.

Finally, the Schmid factor is used over the Taylor factor, because the latter is generally used

to characterize ensemble averaged properties, while we are interested in the local properties.

3.3.3 SGCP Simulations of Polycrystalline Ensembles

Figure 3.7 shows the simulation setup used in the crystal plasticity simulations. This com-

prises of three domains with different crystallographic orientations. The two domains in the

interior are representative of a cluster of two grains with different orientations and sharing

a grain boundary where NBGZs are expected to develop. This grain cluster is embedded

in a domain which has a crystallographic orientation representative of the average Schmid

factor of the grain cluster.

The size of the simulation cell is 150× 150 µm and the average size of the embedded grains

is D̄sim ∼ 47µm. The microstructures were tessellated using the open-source software,

Neper (Quey et al., 2011) and meshed with six-noded triangular elements, with quadratic

interpolation, and an average element size ∼ 3±1 µm. Further, multiple such random

tessellations were generated, in order to accumulate data for statistically significant number

of grains. We have ensured the average grain size is similar for all the tessellations.

Loading and boundary conditions are similar to the simulations given Section 3.2.3.4. All

simulations were performed till 10% applied strain, as in the experiments. It is important

to note here that the experimental microstructures were not utilized directly as input to

our idealized SGCP simulations. This is primarily due to the presence of non-smooth grain

boundaries in pixel-based EBSD maps. These may result in erroneous prediction due to
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Figure 3.6: A grain cluster comprising of a shared grain boundary between grains of region
B-region C, shown before deformation (a) and after deformation (b), (d). The horizontal
dotted lines in (a,b,d) indicate the sections along which the KAM and GND density data
have been extracted. The corresponding mean profiles of KAM and GND density are shown
in (c) and (e), respectively. The method for estimating LNBGZ is also shown graphically

in (c).

artificial GND density and backstress pile-ups in the vicinity of the grain boundary. A

lower step/element size may smoothen the grain boundary pixelation, however, with higher

computational costs.

Further, the area of deformation considered in the simulations is also significantly smaller

than that studied in the experiments. This again is due to limitations in the computational

costs. A direct comparison of experimental and simulated microstructures is, of course, ideal.

However, our idealized microstructures have a grain pair embedded in a domain with mean

orientation, so as negate some of the effects of neighboring grains (stress concentrations and

localizations), while still representing realistic grain structures and orientations. In order

to obtain a representative behavior of NBGZs, we have utilized 9 such grain pairs (total 18

grains) for our idealized SGCP simulations.
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Figure 3.7: Simulation setup and boundary conditions for the SGCP model shown on a
virtual microstructure generated using Neper (Quey et al., 2011). The colors of the grains

in the simulation domain are indicative of the orientations shown on the IPF.

Before moving forward, it should be noted that the average grain size considered in the

simulations (D̄sim ∼ 47µm) is lower than those observed in the experimental microstructures

(cf. Figure 3.5, D̄exp ∼ 92µm). The choice of grain size and simulation domain size is

primarily influenced by the total number of elements in the simulation domain, while using

a reasonably fine mesh (3 µm) to predict orientation gradients in the regions of stress

concentration. A typical simulation domain has 4000 − 5000 elements and takes ∼ 150

hours to reach 10% applied strain when run on 96 parallel processors. Using a larger grain

size or simulation domain size would significantly increase the simulation time. However,

we have performed one set of parametric simulations by increasing the grain size and also

commented on the effect of grain size on the length of NBGZs in Section 3.3.5.2.

3.3.3.1 Representative Deformation Contours Obtained from Simulations

Figure 3.8 shows the contours of the simulated von Mises effective stress, σ̄, and effective

plastic strain, ε̄p, at 2.5%, 5%, 7.5% and 10% applied strain using the SGCP model for

the simulation setup shown in Figure 3.7. The corresponding results obtained using a local

crystal plasticity model (GND density and the kinematic hardening parameter, kkh, set to

zero) are also shown in Figure 3.8. Generally speaking, an increase in flow stress is observed

with increasing plastic strain. A higher effective stress is observed in the grain with lower

Schmid factor (m = 0.29). Since, the grain is unfavorably oriented for deformation, a

higher stress is needed to accommodate the imposed deformation. In contrast, the soft

grain (m = 0.49) undergoes plastic deformation readily, thus a higher effective plastic strain
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is observed for the same in Figure 3.8. The above trends are observed in both simulations,

with and without strain gradients. Stress localizations (refer markers 1, 4 in Figure 3.8)

and plastic strain localizations (refer markers 2, 5 in Figure 3.8) around triple junctions can

be seen in the material deformed to 2.5% and 5% strains; the localizations become intense

at higher strains (10%) (Chen et al., 2000).

The effective plastic strain contours show that the accommodated plastic strain varies be-

tween the grains, and even within the grains. Differential rotation is more evident in the

softer grain, as the grain core deforms preferentially. The resulting plastic strain gradients

arise primarily due to the effect of varying constraints acting on the grain (cf. Section

3.1). These plastic strain gradients result in the generation of GND density and the ensuing

backstress further opposes the applied deformation. Similar contours can be observed in

the σ̄ map on moving from the grain interior towards the grain boundary.

Comparison of deformation contours between the SGCP model and the local model clearly

shows that the SGCP model predicts sharper plastic strain concentrations and gradients

even in the grain interior (refer marker 3 in Figure 3.8), as compared to the local model

(refer marker 6 in Figure 3.8). These predictions by the SGCP model may be indicative

of the formation of slip lines commonly observed in metallic systems (Kang et al., 2006)

(also see the mesh convergence study in Figure 3.9). In contrast, deformation contours

predicted by the local model appear to be more homogeneous, with little or no evidence of

slip localizations in the grain interiors (refer marker 6 in Figure 3.8). These observations

indicate that the SGCP model is perhaps better suited for simulating localized deformation

in the regions of incompatible deformation.

As discussed previously, KAM and GND density may vary based on the consideration of

element size in finite element simulations or step size in the EBSD measurements (Subedi

et al., 2015). An ideal element size should be such that the KAM and GND density vary

minimally with change in the mesh/step size. In order to explore this effect, we deformed a

polycrystalline ensemble in 50 µm× 50 µm simulation domain, meshed with three different

element sizes, namely 1 µm, 3 µm and 5 µm, and identical grain structures and orientations.

Six noded triangular elements, with quadratic interpolation, were used for these simulations.

The top face of the simulation cell was subjected to uniaxial tensile deformation at a nominal

strain rate of 0.0001 s−1 up to an applied strain of 2%. The grain in the center of the

simulation cell was assigned a crystallographic orientation with Schmid factor of 0.49, while

the surrounding grains were assigned random orientations.

Figure 3.9(a) shows the KAM and effective plastic strain contours for different element

sizes at 2% applied strain. We have resorted to line profile analysis of the KAM in order
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Figure 3.8: Evolution of effective stress (σ̄ MPa) and effective plastic strain (ε̄p), with
increasing applied strain, simulated using the SGCP model and the local crystal plasticity
model. These deformation contours are for the virtual microstructure shown in Figure 3.7.
Markers 1− 6 indicate various regions of stress and strain concentrations, which have been

discussed in the text (Section 3.3.3.1).

to establish mesh convergence for our SGCP simulations. Figure 3.9(b) shows the KAM

profile extracted along the line highlighted in Figure 3.9(a). It can be clearly seen that

for the 5 µm mesh size simulation, the KAM values at the grain boundaries of the center

grain are lower than that obtained using a 3 µm and 1 µm mesh size. The KAM values

predicted using the 3 µm and 1 µm mesh size are similar (both at the grain boundaries and

towards the grain interiors), thus establishing “qualitative” mesh convergence. Some local

element-level fluctuations are, of course, observed in the mesh size 3 µm and 1 µm profiles

in Figure 3.9(b). This could be potentially due to random meshing and arrangement of the

triangular elements. However, these results indicate that a reasonable concurrence in the

KAM profiles has been achieved using mesh sizes of 3 µm or lower.

Further, the strain contours indicate the development of strain localizations due to slip

lines. For example, the markers shown in Figure 3.9(a) highlight that the slip lines can



Chapter 3. Grain boundary orientation gradients 61

be captured using finer element sizes in our simulations. It may be expected that the

localizations can be predicted, if the element size is of the same order as the underlying

deformation characteristic. Using a coarse mesh, these bands appear as diffuse localizations,

while using finer mesh sizes, these bands appear as slip lines in our SGCP simulations. From

a mechanistic standpoint, these slip lines are manifestations of the slip system resolved

strain localizations that can be observed at finer resolutions. Presumably, the element type

(triangular or quadrilateral) and their spatial arrangement during meshing could also play

a role in the nature of the predicted strain localization patterns and KAM fluctuations. For

example, Zhou et al. (2020) have shown that the strain contours (specifically, localizations)

appear pixelated when using quadrilateral elements.

Figure 3.10 shows the evolution of the total GND density, ρGND (summed up over all slip

systems), and the effective backstress, τ̄b, with applied strain for the same microstructure.

The simulated GND density varies from 106 − 108 mm−2, which is in the range of exper-

imentally observed values 3 × 106 − 3 × 108 mm−2. As reported previously (Evers et al.,

2004b; Liang and Dunne, 2009; Calcagnotto et al., 2010; Allain-Bonasso et al., 2012), GND

concentrations are observed at the grain boundaries. Generally speaking, the backstress

develops in the same regions where the GND pile-ups occur. The GND pile-up and back-

stress subsequently increases with increasing strain. At 10% applied strain, the peak value

of backstress is ∼ 180MPa, amounting to more than 50% of the flow stress in the regions

of stress concentrations. Based on analysis of experimental measurements for Al-Zn alloys

subjected to creep loading, such high values of long range internal stresses have indeed been

reported (Blum and Finkel, 1982).

This indicates the development of high local residual stresses and is expected to influence

the subsequent deformation and failure. Also note that not all grains have identical width

of these GND concentrations, i.e., the GND concentrations are not symmetric across the

grain boundary (refer makers 1,2 in Figure 3.10). The soft grain has a wider region with

higher GND density (refer marker 1 in Figure 3.10). The grain core for the hard grain has

remained intact (refer marker 3 in Figure 3.10) and the observed localizations are limited

to a small region close to the grain boundary. Finally, these quantities are not predicted by

the local crystal plasticity model and hence are not shown here.

Figure 3.11 shows the evolution of KAM at different applied strains for the SGCP model and

also compared with predictions from the local crystal plasticity model. The KAM, calculated

using the methodology discussed in Section 3.2.2, indicates a similar trend as observed in the

GND density maps in Figure 3.10. Generally speaking, the SGCP model tends to predict

higher values of KAM even in the grain interiors. In contrast, the local crystal plasticity

model only predicts some KAM in the immediate vicinity of grain boundaries, with little
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Figure 3.9: Mesh convergence study performed on the same polycrystalline domain with
three different element sizes, 1, 3 and 5 µm, showing (a) the KAM and effective plastic
strain, ε̄p, contours in the three microstructures at 2% applied strain. The KAM values
extracted along the dotted white line are plotted for the three different mesh sizes in (b).
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Figure 3.10: Evolution of total GND density,ρGND (mm−2), and effective backstress, τ̄b
(MPa), with increasing strain for the simulation setup shown in Figure 3.7. Markers 1 and
2 represent GND density pile-up within the NBGZ, while marker 3 represents low GND

density observed at the grain core.

or no KAM in the grain interiors. Some KAM localizations observed in the local model’s

predictions are primarily due to the stress/strain concentrations at the triple junctions (refer

markers 1,2 in Figure 3.11).

Figure 3.11: Evolution of KAM at different applied strains as predicted by the SGCP
model and the local crystal plasticity model. These contours are for the virtual microstruc-
ture shown in figure 3.7. The Markers 1 and 2 represent the KAM buildup at triple junctions

in the local CPFE model.

The following discussion is for predictions with the SGCP model. At lower applied strains,

the KAM is sparsely distributed in the grain interior as well as at the grain boundaries.
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However, with increasing strain (5% to 10%), the KAM tends to localize in the vicinity of the

grain boundaries. Further, this localization is more diffuse in the soft grain, as compared to

that in the hard grain, which shows a narrower localized region. This observation is similar

to the GND and backstress predictions in Figure 3.10. For a soft grain, multiple slip systems

are oriented favorably for slip, leading to significant deformation within the grain core, as

compared to the hard grain (Figure 3.8). As a result of this, the GND pile-up at the grain

boundary becomes diffuse, leading to a more diffuse NBGZ. It is important to note that the

magnitude of differential rotation between the grain core and grain boundaries may still be

large; it is only the spatial gradient of misorientation that becomes diffuse. In contrast, for

the hard grain, the grain core remains intact and a severe misorientation gradient develops

close to the grain boundary, leading to a sharper and shorter NBGZ. Note that similar

observations were also observed in the experimental contours in Figure 3.6.

While the present study mainly focuses on the evolution of NBGZ, some important obser-

vations have also been noted with respect to KAM/ρGND concentrations near the triple

junctions. Firstly, the localizations in the vicinity of triple junctions start developing much

earlier than those near the grain boundaries. With increasing deformation, these localiza-

tions propagate farther across the grain boundary. This can be noted from our deformed

experimental (cf. Figure 3.5) as well as simulated (cf. Figures 3.10 and 3.11) microstruc-

tures, where KAM/ρGND concentrations can be seen to originate near triple junctions even

at low applied strains (2.5%). Additionally, the deformation contours reveal that localiza-

tions developing at triple junctions primarily effect the soft and intermediate grains. The

hard grains are affected only at large applied strains (cf. Figures 3.10 and 3.10). Further,

the deformation contours in Figure 3.2 show that the localizations developing at triple junc-

tions are also influenced by the angle subtended between the boundaries forming the triple

junctions. The ρGND concentrations are seen to primarily develop within grains whose

boundaries subtend the lowest angle at the triple junction. However, this may also be influ-

enced by the crystallographic orientation of the grains/near-neighbors, and statistics from

a larger number of simulated microstructures would be needed to validate this observation.

Before moving further, we note that grain boundary migration and associated grain shape

change have not been considered in the constitutive model. While such effects may indeed

be present in the experiments, their effects may be neglected at the small strains considered

in the present study.
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3.3.3.2 Correlating Various Substructure Evolution Properties Related to Plas-

tic Deformation

It has been generally hypothesized and also shown from experimental observations that the

GND density correlates with KAM (Calcagnotto et al., 2010; Kubushiro et al., 2015; Rui

et al., 2019; Fu et al., 2022). We have extracted the mean KAM and the GND density

along the grain boundary and plotted the normalized values as a function of the normalized

distance from the grain boundary for the simulated microstructure in Figure 3.12. This

has been done using the methodology described in Section 3.3.2. It can be seen that the

normalized values of KAM and log(ρGND) correlate well with each other, not just in the

vicinity of the grain boundary, but also in the grain interior. In a recent study, Rui et al.

(2019) proposed that the total GND density includes the contribution from lattice curvatures

induced by buckling, in-surface bending, torsion, out of surface bending and an additional

lattice curvature component, which does not belong to any of the elastic strain modes.

Additionally, they showed that the misorientation measure, KAM, can be directly correlated

to the GND density. Although our simulations do not decompose the total GND density

into these individual components, the simulated (total) GND density does exhibit qualitative

correlation with KAM (see Figure 3.12).

Unlike GNDs, Statistically Stored Dislocations (SSDs) are generated due to dislocation

bowing, trapping and multiplication processes generally associated with homogeneous plas-

tic deformation (Ashby, 1970). Hence, the SSD density may be expected to correlate well

with the effective plastic strain (Brinckmann et al., 2006; Zhang and Aifantis, 2015; Lu

et al., 2020). A similar observation is reflected in the comparison of the average effective

plastic strain profile with the corresponding log(ρSSD) in Figure 3.12. The simulated SSD

density profile qualitatively correlate with the effective plastic strain profile. An additional

observation from Figure 3.12 is that the GND density/KAM profiles exhibit a significant

amount of noise in comparison to the SSD density/effective plastic strain profiles. The local

variability in the GND density and the resulting KAM could be due to the fact that the net

flux of signed dislocations at a material point (pixel/element) would depend on the size of

the corresponding pixel/element (Jiang et al., 2013b; Zhu et al., 2018).

It can also be seen from Figure 3.12 that the effective plastic strain profile has a rather steep

drop as we move from the grain boundary towards the grain core for the hard grain (m =

0.29). This indicates that for the hard grain, the grain core has not deformed significantly

and deformation is primarily restricted to the vicinity of the grain boundary. Such a sharp

plastic strain gradient results in a highly concentrated localization of GND density, which

in turn results in a sharp NBGZ for the hard grain. In contrast, the soft grain exhibits a
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Figure 3.12: Mean profile of the normalized GND density and KAM (top), and the
normalized SSD density and effective plastic strain (bottom) as a function of distance from
the grain boundary at an applied strain of 10%. These data points have been extracted for

the virtual microstructure shown in Figure 3.7.

low plastic strain gradient (Figure 3.12). This, in turn, may result in a diffuse NBGZ for

the soft grain.

3.3.4 Comparison of Experimental and Simulated NBGZs

3.3.4.1 Evolution of Kernel Average Misorientation (KAM) with Applied Strain

The experimental microstructures, an example shown in Figure 3.5, indicate that the average

KAM increases with applied strain. A similar trend is also observed from the simulated

KAM contours shown in Figure 3.11. Here we compare the evolution of KAM between the

experiments and simulations by looking at the line profiles. For this we consider a grain

cluster comprising of a grain boundary shared between the grains lying in region B (0.35 <
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m < 0.45) and region C (m > 0.45). The experimental and simulated microstructures are

shown in Figure 3.13 (a), (b), and (c). Figure 3.13(b) shows the deformation contour in

terms of KAM using a SGCP model, whereas Figure 3.13(c) shows the same using a local

CPFE model (cf. Section 3.3.3.1). As observed previously in Figure 3.11, the local CPFE

model does not predict any significant KAM buildup within the NBGZ. This proves that the

SGCP model predicts a more realistic deformation behavior as compared to the local CPFE

model. Figure 3.13 (d), (e), and (f) compares the normalized KAM profiles as a function of

the normalized distance from the grain boundary at different applied strains for experiments

and simulations. This was done using the methodology listed in Section 3.3.2. Note that

all KAM values have been normalized with respect to the maximum values observed in the

respective experiment or simulation. As discussed earlier, KAM (and also GND density) is

a geometry-dependent quantity and depends on the step size in EBSD measurements and

mesh size in simulations (Subedi et al., 2015). However, the extreme values are comparable

between the experiments and simulations. For example, the peak values of KAM were

observed to be 1.02◦ at 2.5%, 1.14◦ at 5%, 1.29◦ at 7.5% and 1.57◦ at 10% applied strain

respectively. For simulations, the peak KAM values predicted at the grain boundaries using

the SGCP model were: 0.92◦ at 2.5%, 1.32◦ at 5%, 1.46◦ at 7.5% and 2.32◦ at 10% applied

strain, respectively, in grains with similar orientations. Nonetheless, normalizing the KAM

allows qualitative comparison of the line profiles for dissimilar microstructures with distinct

grain morphologies.

The misorientation development predicted by the local CPFE model is generally negligible,

with some intermittent fluctuations, which are observed at the grain boundary as well as the

grain interior. However, the normalized KAM profiles are comparable between experiments

and our SGCP simulations. For example, a sharper KAM profile is observed for the relatively

harder grain (m = 0.41) for both experiments and SGCP simulations, as compared to the

soft grain (m = 0.49). Whereas the local CPFE model does not highlight such a pile-

up within the NBGZ. At low strains (2.5%), the misorientation development at the grain

boundaries is relatively small in our SGCP simulations, whereas some misorientation is

observed in experiments. At higher strains, the KAM concentrations at the grain boundaries

rise significantly, both in experiments and SGCP simulations. Note that similar trends were

also observed by comparing the GND density profiles; the data has not been presented here

for brevity.

It is noted here that the average profiles of experimental KAM saturate at higher strains,

whereas, the simulated KAM (using SGCP) does not exhibit a similar saturation. This

could be due to the presence of fewer number of grains present within the simulation do-

main. The imposed deformation is accommodated in these fewer grains in the simulation by
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Figure 3.13: Comparison of representative KAM profiles with progressive deformation
between experiments and simulations. The grain clusters considered for this analysis are
shown in (a),(b) and (c), while the normalized KAM plotted as function of distance from
the grain boundary at different applied strains is shown in (c),(d) and (e). KAM contour
(b) and its respective (average) profile (d) are predicted by the SGCP model, whereas
KAM contour (c) and its respective (average) profile (e) are predicted by the local CPFE

framework.

deformation both in the NBGZs and the grain interior, thus making them more compliant.

This may have contributed to the continuous KAM build up (and lack of saturation) in the

soft grain as observed in our SGCP simulations. Additionally, the localizations developing

at the triple junctions/sharp corners of the grain boundaries also contribute to higher KAM

values in our SGCP simulations.

Keskar et al. (2014) attributed the development of NBGZ to the presence of large, localized

Near Boundary Mesoscopic Shear (NBMS). With increasing strain, accommodation of the

imposed shape change leads to a rise in the NBMS, which further results in widening of the

NBGZ.

3.3.5 Comparison of KAM and GND Profiles for Different Grain Orien-

tations

The preceding section focused on analyzing the evolution of KAM localizations within the

NBGZ, with increasing strain, for a given grain cluster. Here, we analyze the buildup of

mean KAM and GND density between different combination of grain pairs, with different

grain orientations, at 10% applied strain and compare the same between experiments and

simulations. We chose a random grain pair from the experimental microstructure and
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a corresponding virtual grain pair. As mentioned earlier, normalized data was used for

comparison between simulations and model predictions.

Figure 3.14 shows the comparison between experimental and simulated normalized KAM

profiles, for representative individual grain pairs lying in each of the three regions A, B and C

(cf. Section 3.3.2). In each of these plots in Figure 3.14, the left-hand side represents KAM

profile for the softer grain (higher m), while the right-hand side represents the KAM profile

for the harder grain (lower m) for the grain pair under consideration. Lines connected

by symbols represent the mean values, while the scatter is represented by dotted lines.

The horizontal dashed line denotes the average KAM in the grain interior. Additionally,

the following abbreviations have been used: LhNBGZ : LNBGZ for the hard grain (region A);

LiNBGZ : LNBGZ for the grain with intermediate orientation (region B) and LsNBGZ : LNBGZ

for the soft grain (region C). The following key observations can be summarized from Figure

3.14.

The average line profiles and LNBGZ predicted by the model for each of the regions is

qualitatively similar to the experimental counterparts, except for the region B-A, where the

simulation underpredicts the LhNBGZ in the harder grain. This could be due to the essentially

2D nature of the simulations, where deformation beneath the surface is not accounted for.

In the experiments, there may be additional compatible deformation modes beneath the

surface of the specimens that can contribute to the widening of NBGZs. Also, presence of

neighboring grains along the third direction (normal to the surface) would introduce non-

uniform localizations at grain boundaries during deformation, which can further contribute

to the widening of NBGZs. On the other hand, the simulations only consider a generalized

plane strain assumption by introducing a scalar out-of-plane strain component (Li and Lim,

2005). This could play a role in the deformation of the harder grain, where the out-of-plane

strain may accommodate the imposed deformation (rather than the in-plane components)

and predict a wider NBGZ. Further, strain localizations from nearby triple junctions may

also be influencing this behavior. Generally speaking, harder grains (lower m) have a smaller

LNBGZ as compared to the softer grains (higher m). As discussed earlier, the grain core of

a softer grain (higher m) deforms readily, thus diffusing out the localizations developing in

the NBGZ, which leads to a higher LNBGZ . It can also be observed that the variation/noise

observed in the KAM profiles for each of the plots in Figure 3.14 is lower for the harder

grains (lower m) as compared to the softer grains (higher m). Presumably, this is because

of the activation of multiple slip systems in the grain core in the softer grains, resulting in

significant intragranular localizations, leading to a spatial scatter in the KAM data points.

Using a similar methodology, the GND density profiles have been plotted and compared

with their experimental counterparts in Figure 3.15. The mean GND density profiles in
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Figure 3.14: Comparison of representative normalized KAM profiles as a function of
normalized distance from the grain boundary between experiments and simulations. The
KAM profiles have been shown for representative, individual grain pairs (between the given
regions) from the actual microstructures, and a corresponding grain cluster from the virtual
microstructures. The lines connected by symbols represent the mean values and the dotted

lines represent the scatter.
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Figure 3.15 are qualitatively similar to the KAM profiles in Figure 3.14, with the exception

that the GND density exhibits considerable noise compared to the KAM. This could be due

to the fact that significantly less number of material points have KAM values below the

noise floor (as compared to the GND density) (cf. Section 3.3.2). Moreover, these GND

densities are estimated from an incomplete geometric dislocation tensor, due to lack of out

of plane derivatives, which can also lead to additional noise in the data (Sun et al., 2000;

Pantleon, 2008). The dependence of GND density on the window size could also contribute

to the local fluctuations (cf. Section 3.3.3.2).

Figure 3.15: Comparison of representative normalized GND density profiles as a function
of normalized distance from the grain boundary between experiments and simulations. The
same grain clusters, used in Figure 3.14, have been employed for the current analysis. The
lines connected by symbols represent the mean values and the dotted lines represent the

scatter. Note that the scales are different for each of the plots.
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3.3.5.1 Length of NBGZs

In this section, we compare the length of NBGZs obtained from the experiments and simu-

lations. Figure 3.16 shows the initial crystallographic orientation for all the grains studied

in the experimental and virtual microstructures, in a standard stereographic triangle. The

dotted lines separate the three regions (region A, B and C or hard, intermediate and soft

orientations) on the basis of their Schmid factors (m). A total of 24 grain pairs were studied

in the experiments and 9 grain pairs were studied in simulations; each grain pair consisting

of any of the two orientations highlighted in open circles in the figure below. Thus, the

overall NBGZ analysis comprised of 48 grains from experimental microstructures and 18

grains from the virtual microstructures. Further, all results presented in this section are for

individual grains, irrespective of their neighbors. While the number of grains considered in

the present work may not be statistically significant, we believe that the deformation char-

acteristics observed from these idealized grain pairs are representative. Finally, the length

of NBGZs, LNBGZ , is normalized with respect to their grain size, D.

Figure 3.16: The orientations of the selected grain clusters for NBGZ analysis. The dotted
lines divide the standard stereographic triangle into three regions (soft, intermediate and
hard) on the basis of their Schmid factors (m). Solid circles represent the experimentally
observed average grain orientations (from EBSD data for the undeformed specimens, cf.

Figure 3.5), while open circles denote the grain orientations used in simulations.

Figure 3.17(a) shows the plot of LNBGZ/D as a function of the initial grain-average Schmid

factor for all the grain orientations shown in the IPF in Figure 3.16. The analysis has been

carried out at an applied strain of 10%. The LNBGZ calculations were done using the KAM

profiles. This figure shows that the LNBGZ/D scatter in data points not only increases,

but also translates towards higher LNBGZ/D values with increasing Schmid factor. Figure

3.17(b) represent the average values of all data points lying in each of the regions shown
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in Figure 3.17(a), along with the respective scatter. Two main observations can be drawn

from these data.

Firstly, this indicates that the width (mean with deviation) of the distribution of LNBGZ/D

scales with the initial grain-average Schmid factor of the grains studied. A similar observa-

tion can be inferred from both the experimental and simulated data.

Secondly, our results suggest a possibly strong correlation between the length of the NBGZ,

LNBGZ , and the grain size, D. Given that the average grain size in the experiments (D̄exp ∼
92µm) is relatively higher than those in the simulations (D̄sim ∼ 47µm), there is a difference

in the actual values of LNBGZ observed in experiments and simulations. However, on

normalizing the LNBGZ with D, the mean value of LNBGZ/D appears to scale with the initial

grain-average Schmid factor. Further, the grain size could be the length scale parameter

governing the formation of such regions.

The effect of grain size is studied in more detail in the next section to understand this length

scale dependence further.

Figure 3.17: (a) Variation of the length of the NBGZ, LNBGZ , normalized with respect
to the grain size D, plotted as a function of the Schmid factor (m) for each of the grains
shown in Figure 3.16 at 10% applied strain. The corresponding average values of LNBGZ/D

has been plotted as a function of the average Schmid factor in (b).

3.3.5.2 Effect of Grain Size on the Length of NBGZ

In order to further explore the effect of grain size on the length of NBGZs, virtual microstruc-

tures with three different grain sizes (47 µm, 71 µm, 94 µm) were instantiated using Neper

(Quey et al., 2011) and deformed in tension up to an applied strain of 10%. Essentially, the
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tessellation was increased in size by a factor of 1.5 and 2, while keeping the grain orienta-

tions and boundary conditions identical. The average element size was also kept constant

(∼ 3 µm) for all three simulations, in order to preclude any mesh effects. Note that there

is no appreciable difference in the stress-strain response for simulations with the different

grain sizes (results not presented here). This is primarily because of the nature of the ide-

alized simulations, where only two grains are embedded in a matrix, whose crystallographic

orientation is representative of the average Schmid factor of the grain cluster. As a result,

not enough GNDs (and deformation heterogeneities) are present in the simulation domain

to contribute to the expected grain size strengthening on the macroscopic response in these

simulations. Generally speaking, the intrinsic grain size effects on the macroscopic response

can be observed only in polycrystalline aggregates, where a representative number of grains

are present in the domain to induce appropriate GND densities due to the intergranular

heterogeneities (cf. Section 3.2.3.4). Hence, the differences in mechanical properties and

microstructure evolution are only restricted to a region in the vicinity of a grain boundary

in our rather idealized simulations.

Figure 3.18(a) shows the KAM contours for the three microstructures after 10% applied

strain. The Schmid factors of the selected grain orientations have also been highlighted in

Figure 3.18(a). The grain pairs considered here lie in the Region B-A discussed earlier.

The 94 µm grain size used in our simulations here corresponds to the experimentally ob-

served mean grain size. A direct one-to-one comparison is not possible due to difference

in grain morphologies and arrangements between the experiments and the idealized sim-

ulations. If, however, one compares the simulated KAM profiles in Figure 3.18(b), with

the corresponding experimental KAM profiles for Region B-A in Figure 3.14, qualitative

similarities are observed. For example, there is a sharp drop in KAM as a function of dis-

tance from the grain boundary in the hard grain. Further, the ratio of the mean KAM in

the grain center (0.6◦) to that at the grain boundary (1.8◦) for the 94 µm simulation in

Figure 3.18(b) is qualitatively similar to the corresponding ratio of normalized KAM values

observed experimentally for a similar grain pair in Figure 3.14 (∼ 0.35).

Note that the KAM values have not been normalized (with respect to the peak value) here

in order to highlight the absolute variation of KAM. The absolute values of KAM at the

grain boundary are similar, irrespective of the grain size. For D̄sim = 71 µm, the peak value

of KAM is shifted inwards, i.e., towards the interior of the softer grain. Such a shift in the

mean KAM profile could be due to strain localizations initiated at grain corners and triple

junctions in the vicinity.
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More importantly, it can be seen from Figure 3.18(b) that the KAM concentrations at the

grain boundaries are spread over a wider region (LNBGZ/D higher) and are more diffuse for

the smaller grain sizes. This could possibly be due to the decrease in differential deformation

between the grain mantle and the grain core as the grain size decreases for the softer grains.

Strain localizations from neighboring grain corners and triple junctions may also contribute

towards increasing the KAM values of the smaller and softer grains. However, it should

be noted that the change in the apparent LNBGZ/D is not significant and there is no

appreciable difference in the KAM profiles (and the length of NBGZs) for the harder grain.

These are discussed further in the context of our experimental results below. Further, such

a comparison of KAM contours has not been done for the experimental data, since the grain

size cannot be parametrically varied, while keeping all other microstructural factors same

in the experiments.

Figure 3.18: (a) KAM contours for simulations with different grain sizes. (b) KAM
profiles as a function of distance from the grain boundary for three different grain sizes.

All datapoints are plotted for simulations deformed to 10% strain respectively.
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The experimental data points in Figure 3.17(a) were binned on the basis on their grain sizes,

and the distribution of LNBGZ/D plotted as a function of m is shown in Figure 3.19(a).

Further, model predictions from the limited simulations (cf. Figure 3.18) are also shown in

Figure 3.19(b). It can be observed from Figure 3.19(a) that smaller grains tend to have a

larger LNBGZ/D and vice-versa for soft grains with high Schmid factors. However, no clear

trends emerge from the experimental data for grains with intermediate and low Schmid

factors. Differences in grain morphology, crystallographic orientations of neighboring grains

and influence of strain localizations from the neighboring points of stress concentration could

be factors contributing to this.

As mentioned earlier, the model predictions presented in Figure 3.18 indicate that LNBGZ/D

decreases for the soft grain, but only to a small extent, as D increases. This is also evident

from Figure 3.19(b). This could be due to the fact that for smaller D, the area fraction

of grain mantle region is relatively smaller and is inadequate to accommodate the strain

localizations in the NBGZs. This forces the grain core to undergo plastic deformation

for accommodating the imposed deformation and results in lower differential deformation

between the grain mantle and core, and hence a wider LNBGZ/D. For larger grain sizes,

however, the area fraction of the grain mantle region may be sufficient to accommodate the

imposed strain, thus leading to a smaller LNBGZ/D.

Figure 3.19: Variation of LNBGZ/D as a function of m plotted by (a) binning the exper-
imental data (from Figure 3.17(a)) into different grain sizes, and (b) from the simulation

data in Figure 3.18

It should also be noted that the experimental data shows a much larger scatter in the

LNBGZ/D as compared to the simulation data. Since only a few specific instances were

considered in the simulations, statistics of the distribution of LNBGZ/D, similar to the

experimental data in Figure 3.19(a), have not been captured. Such a reduced simulation

data set was primarily due to the limitation of our computational resources. The simulation
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with D̄sim ∼ 94µm (≈ 14, 000 elements) took ∼ 300 hours to reach 10% applied strain when

run on 96 parallel processors. This imposes a constraint on generating additional data

points using virtual microstructures. Nonetheless, qualitative trends between experiments

and simulations are similar, i.e., LNBGZ/D decreases to a small extent with increase in

grain size for the soft grains.

Finally, the effect of grain size on LNBGZ/D is negligible for the harder grains (low m).

Since the grain core in a hard grain does not undergo deformation, the localizations remain

restricted to the grain mantle region only. Thus, no significant grain size effects are observed

for the harder grains, either from experiments or simulations.

The results presented in Figures 3.18 and 3.19 show that smaller grain sizes lead to a

diffused NBGZ, i.e., the differential deformation between the core and the mantle vanishes,

especially for softer orientations. Based on these observations, it can be deduced that the

NBGZs would not exist for ultrafine (≤ 1 µm) and nano (≤ 100 nm) grained materials. At

such fine length-scales, the imposed strains would necessitate that the entire grain deforms

plastically, and that the deformation is not restricted to a finite region in the vicinity of grain

boundaries. Hence, the concept of NBGZ would vanish for microstructures where NBGZ

width approaches the order of grain diameter. This can also be inferred from the SGCP

simulated deformation contours presented in Figure 3.2, where the NBGZs, visualized in

terms of the ρGND, are much more prominent in simulation domains with larger grain sizes

(D̄ ≥ 24 µm). Finally, in order to accurately predict the substructure evolution at such

fine length scales (for ultra and nano grained materials), it would be crucial to incorporate

additional mechanisms such as grain boundary sliding within the material model.

While the experiments and simulations performed in the present study point to a strong

correlation between the length of NBGZ and the grain size, this rather simplified analysis

has not considered the effect of factors such as the orientation of neighboring grains, grain

morphology, triple junctions, and the role played by activated slip systems, in the NBGZ and

the grain interior towards the development of such regions. Additionally, SGCP simulations

for predicting substructure developments during deformation of 3D microstructures have

also been reported in the existing literature (Liang and Dunne, 2009; Das et al., 2018;

Sharma et al., 2024). The orientation gradients are expected to be more diffuse in 3D

simulations as compared to our 2D simulations, due to lesser constraints and availability

of more deformation modes in 3D. These shortcomings shall be explored in detail in the

forthcoming studies.

Moreover, the grain size has not been varied significantly in our experiments to study

their influence on the length of the NBGZs. Presumably, these factors may be expected
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to contribute to the scatter observed in Figures 3.17(a) and 3.19(a). However, based on

the limited number of grains studied in the experiments and simulations, some interesting

correlations do emerge between the mean values of LNBGZ and the initial grain averaged

Schmid factor, as well as the mean grain sizes. In future work, we will perform parametric

studies to isolate the individual effects of these other factors mentioned above. Further,

statistics will also be collected from a larger number of grains to support the observations

presented here.

3.4 Conclusions

We have studied the microstructural factors contributing to the formation of Near Bound-

ary Gradient Zones (NBGZs) in an aluminum-magnesium alloy using combined experiments

and modeling in the present work. We note that there have been earlier attempts at imple-

menting strain gradient plasticity models using the MOOSE framework (see Barker et al.

(2013), for example). The present implementation of strain gradient crystal plasticity using

MOOSE is an advancement (compared to this previous implementation) in that the predic-

tion of size-dependent strengthening effects (both grain size- and specimen size-dependent

strengthening) and the development of misorientation gradients near grain boundaries has

been demonstrated using our model.

Based on the detailed analysis of the results, the following conclusions can be drawn from

our work:

1. The strain gradient crystal plasticity model is able to predict heterogeneous deforma-

tion in the vicinity of the grain boundaries. This is evident from the KAM localization

within the NBGZ, which is significantly higher as compared to the local model pre-

dictions.

2. A correlation between the SSD density and the effective plastic strain, and between

the GND density and KAM within the NBGZ is naturally observed from our SGCP

simulations.

3. Both experimental and simulation data indicated that the KAM values, plotted as a

function of distance from the grain boundary, increase with applied strain.

4. The width (mean with deviation) of the distribution of LNBGZ/D scales with the

initial grain-average Schmid factor of the grains studied.
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5. Our results also suggest a possibly strong correlation between the length of the NBGZ,

LNBGZ , and the grain size, D.

6. The limited data available from experiments and simulations indicate that LNBGZ/D

decreases to a small extent as D increases for the soft grains, while this effect is

negligible for the hard grains.



Chapter 4

Effect of Precipitates on the

Development of Near Boundary

Gradient Zones

4.1 Objectives of the Work

The study extends the conclusions drawn in Chapter 3 on the substructure developments

within the Near Boundary Gradient Zones (NBGZs) during plastic deformation, to a pre-

cipitation strengthened Aluminum-Copper (Al-Cu) alloy, which has Al2Cu precipitates at

a majority of the grain boundaries, in addition to traces of solute (Cu) segregation. While

Chapter 3 studied the NBGZ developments in a (relatively) homogeneous alloy, Chapter

4 focuses on examining the microstructural and mechanistic factors influencing the NBGZ

developments in the presence of precipitates and solute atoms. Such a study is of signif-

icant practical interest, as various grades of Al-Cu alloys are routinely employed in the

aerospace as well as automobile sectors, where they are subjected to complex thermome-

chanical treatments leading to the formation of additional phases/precipitates (Verlinden

et al., 2007; Prakash et al., 2019).

The study presents a combined experimental and modeling framework to examine the role

of precipitates and solute in the substructure evolution within the NBGZs in deformed

microstructures. The NBGZs have been quantified in terms of the (mis)orientation and

(mis)orientation gradients, across grain boundaries with and without the presence of pre-

cipitates. Following this, the Taylor hardening based Strain Gradient Crystal Plasticity

(SGCP) framework presented in Chapter 3 has been modified to account for the additional

80
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effects of solid solution strengthening during deformation. The Electron Backscatter Diffrac-

tion (EBSD) derived experimental microstructures, along with the information on the local

chemical composition derived from Energy Dispersive Spectroscopy (EDS) serve as input to

our SGCP framework. Finally, statistical correlations have been established between the ex-

perimental and simulated NBGZs and the local crystallographic orientations to understand

the hierarchy of factors influencing the NBGZs during the deformation of Al-Cu alloys.

4.2 Materials and Methods

4.2.1 Materials

This study uses a precipitation strengthened Aluminum-Copper (Al – 4wt.% Cu) alloy.

Its composition was determined using optical emission spectrometry and is given in Table

4.1. This alloy manifests Cu rich, or primarily Al2Cu precipitates, at most of the grain

boundaries (Bahl et al., 2022). The alloy was procured in a hot-forged and annealed state

in the form of cylindrical bars of 30 mm diameter and 100 mm length. As will be seen in the

subsequent sections, the as-received material shows a mean grain size of 168.06± 60.32 µm

(see Figure 4.2 later in the study) and a near random crystallographic texture (Texture

Index: 1.1) (see Figure 4.1(a) later in the study).

Table 4.1: Chemical composition of the Aluminum-Copper (Al – 4wt.% Cu) alloy used
in the present study.

Si Fe Cu Mn Mg Cr Zn Ti Al

Comp.(wt%) 0.5 0.5 ∼ 4.2 0.5 1.4 0.1 0.25 0.15 bal

4.2.2 Experimental Methodology

The as-received specimens were machined into cylindrical blocks of D = 10 mm diameter

and L = 15 mm length each. These were then subjected to compressive deformation

(single stroke) in a Gleeble 3800TM thermomechanical simulator at a constant strain rate

ε̇ = 0.001 s−1 up to nominal strains of −0.05, −0.10, −0.15 and −0.18, respectively. Three

such experiments were carried out for each of the cases, to ensure sufficient reproducibility

in the reported data. Note that an interrupted deformation study, as in Chapter 3, was

not attempted here, because the sample surfaces get degraded during compression; graphite

lubricant/sheets were used in between the cylinders and the specimen holder to minimize

friction during compressive loading. Moreover, compressive loading was used over tensile
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loading due to the fact that these specimens showed poor tensile ductility (total elongation<

5%).

Detailed microstructural characterizations were performed on the as-received and the de-

formed (half-cut, or at L
2 ) specimens (εzz = −0.05, −0.10, −0.15, −0.18). The samples

were prepared by standard metallographic polishing followed by sub-micron colloidal sil-

ica polishing. In order to identify/crystallographically index the Al2Cu precipitates often

reported in these Al-Cu alloys, the final round of polishing involved the use of ion milling

technique. In this regard, a GATANTM Precision Etching System (PES Model 682) was used

for argon ion milling (3 kV beam energy, ∼ 2 hours). Following this, the polished specimens

were characterized using Electron Backscatter Diffraction (EBSD) on an EDAXTM-Tridant

system, integrated with a FEITM Quanta-3D Field Emission Gun-Scanning Electron Micro-

scope (FEG-SEM). A fixed step size of 0.25 µm, accelerating voltage of 20 kV , a current of

16 nA, detector binning of 2 × 2 and a working distance of 13.5 mm were employed during

the EBSD data acquisition. The acquired orientation data was re-indexed using Neighbor

Pattern Averaging (NPAR), in order to improve the quality of EBSD patterns as well as

the subsequent indexing.

In addition to the orientation data, Pattern Region of Interest (PRIAS) maps were also

acquired for all the specimens, in order to analyze the topography/atomic number contrast.

Finally, the same region was characterized using TSL-EDXTM, in order to quantify the local

elemental composition. Note that the elemental composition maps were acquired from the

chi-scan (combined EBSD-EDS) and from the SEM-EDS configurations. As will be seen

later in the study, though the former subtends poor energy as well as spatial resolution due

to a lower dwell time, it can be utilized in assistance with the PRIAS data to identify the

Al2Cu precipitates. Impression from micro-hardness indents were used to identify similar

regions during the EBSD and SEM-EDS scans. Note that the Region of Interest (ROI) for

EBSD/PRIAS/EDS characterization was limited to smaller regions close to center of the

half-cut cylinder, to avoid edge effects. Finally, the scans were analyzed in an EDAXTM-

OIM Analysis software. A fixed confidence cut-off of 0.1 was used to ensure the removal

of any erroneous EBSD data. In addition to these focused ROIs, wide area EBSD scans

(1900 µm×2000 µm) were performed on the half-cut undeformed (εzz = 0.0) and deformed

(εzz = −0.18) specimens, to examine the bulk crystallographic texture. These were however,

performed at a relatively coarser step size of 0.75 µm and only indexed using the (bulk)

Aluminum phase.

In order to estimate the volume fraction of Al2Cu precipitates in the bulk specimen, Rietveld

analysis (Rietveld, 1969) was performed on X-ray Diffraction (XRD) based 2θ profiles. XRD

measurements were performed on a PanalyticalTM Empyrean XRD system, hosting a 3 kW
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sealed Copper tube and a K-β filter (Nickel) on the emission side, an Eulerian cradle having

a reproducibility of ∼ 0.01◦ and a 1-DerTM solid state linear (1D) detector with a soller

slit of 0.04 radian on the diffracted beam side. A spot size of 2 mm with an oscillation of

±2 mm was provided, in order to acquire data from a statistically representative volume.

A commercial software, XpertTM HighScore was used for the Rietveld analysis (Rietveld,

1969).

The Kernel Average Misorientation (KAM) and OIM-based Geometrically Necessary Dis-

location (GND) density were used to quantify the heterogeneous deformation taking place

within the NBGZ. The reader is referred to Chapter 3 for a detailed review of the mathe-

matical formulations involved in estimating the KAM and GND density (ρGND) from the

OIM data. Finally, note that these analyses on the development of NBGZs were limited

to the bulk Al phase only, since the relatively harder Al2Cu precipitates were expected to

deform elastically and not contribute towards accommodating the (imposed) shear.

4.2.3 Modeling Framework

A similar model as in Chapter 3 was used in this study to account for the role of Geo-

metrically Necessary Dislocations (GNDs) (and hence, the backstress) on the local as well

as aggregate properties of the Al matrix, with additional consideration for solid solution

strengthening. The relevant constitutive equations are briefly summarized in Table 4.2.

The reader is referred to Chapter 3 for a detailed understanding on the terminologies used

in Table 4.2.

As a first order approximation, we assume that the Al2Cu precipitates, which possess a much

higher elastic stiffness (Liu et al., 2020b) and yield stress (Bahl et al., 2022) in comparison

to the Al matrix, only deform elastically and accommodate the applied load. However,

note that the EBSD derived crystallographic orientation along with appropriate anisotropic

elastic constants (see Table 4.4) have been employed for the Al2Cu precipitates, to account

for their anisotropic elastic deformation.

Although the present study used a precipitation strengthened Al-Cu alloy, minor traces of

Cu segregation were noted at the grain boundaries from the SEM-EDS based elemental

composition data (shown later in Figure 4.2). The presence of these solute atoms in the

crystalline lattice have often been attributed to increase the frictional resistance for dislo-

cation glide (Labusch, 1972; Nabarro, 1977). In order to we account for these effects, we

modify the short range thermal slip resistance based on a formalism proposed by Zander
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Table 4.2: Constitutive Equations used in our Strain Gradient Crystal Plasticity (SGCP)
formulation (cf. Chapter 3).

Constitutive Equation Description

Crystallographic shearing rate due to dislocation

glide: γ̇α = γ̇0 exp

{
−∆F
kT

(
1 −

(
|τα−ταb |−sαa

sαt

)p)q}
sgn (τα − ταb ); |τα − ταb | > sαa

α ∝ 1, 2..., 12: slip sys-
tem, τα: resolved shear stress,
ταb : slip system-level (direc-
tional) backstress, sαa : (non-
directional) athermal slip re-
sistance, sαt : (non-directional)
thermal slip resistance, ∆F :
activation energy for dislo-
cation glide in the absence
of external stress, p and q:
shape parameters, k: Boltz-
mann constant, T : absolute
temperature.

Resolved shear stress: τα = mα · σ · nα mα: slip direction, nα: slip
plane normal, tα = nα ×mα

Athermal slip resistance:

sαa = τ0 + kihGb
√∑Ns

ξ=1A
αξρξSSD τ0: threshold slip resistance,

kih: hardening coefficient as-
sociated with isotropic hard-
ening due to Statistically
Stored Dislocations (SSDs),
Aαξ: interaction matrix, ac-
counting for hardening due
to junctions formed between
dislocations gliding on slip
systems α and ξ (α, ξ =
1, 2, ..., Ns), G: shear modu-
lus, b: Burgers vector, Ns:
total number of slip systems,
i.e., 12.

Evolution of SSD density:

ρ̇αSSD = kmul
b

√
ραSSD + ραGND |γ̇α| − kdynρ

α
SSD |γ̇α| kmul: parameter accounting

for dislocation multiplication
at the existing junctions, kdyn:
parameter accounting for an-
nihilation of dislocations due
to dynamic recovery.

Evolution of Nye tensor: Λ̇ = −
(
∇× Ḟ pT

)T
F p: plastic deformation gra-
dient tensor.

Evolution of GND density:

ρ̇ξGND =
(
AT ·A

)−1 ·AT · Λ̇ A =
∑

ξ b
ξmξ

0 ⊗ tξ0
Slip-system level backstress:

τ̇αb = kkh
Gb

2
√
|ραGND|

ρ̇αGND kkh: hardening coefficient ac-
counting for the (directional)
kinematic hardening.
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et al. (2007) as,

sαt = s0t +
∑
i

kln(ε
4/3
b )i c

2/3
i (4.1)

where, s0t and kln are numerical constants and εb accounts for the misfit strain associated

with the solute atoms of element i in the Al matrix.

The above equations (Table 4.2 and Equation 4.1) have been implemented and interfaced

with an open source finite element library, Multiphysics Object Oriented Simulation Envi-

ronment (MOOSE) (Permann et al., 2020). We refer the reader to Chapter 3 for further

description on the model implementation involved in development of the above-mentioned

SGCP framework.

4.2.4 SGCP Model Calibration

A 512 grain cube shaped domain, with 8 elements per grain and a grain size of 100 µm

was generated using an in-house algorithm. Normal displacements were constrained on the

left, x, bottom, y, and back, z, faces of the simulation domain during deformation. The

domain was then deformed quasi-statically in uniaxial compression along the front, z, face,

at a nominal strain rate of 10−3 s−1.

Rietveld analysis (Rietveld, 1969) on the XRD measured 2θ profiles showed that the vol-

ume fraction of Al2Cu precipitates was ∼ 0.0247. Further, the precipitate volume fraction

reported here is the average of the data measured from XRD scans on 3 randomly chosen

(as-received) specimens. Based on this, 13 out of the 512 discrete grains in the cubic domain

were (randomly) chosen to correspond to the Al2Cu phase, to approximately represent the

volume fraction of the precipitates in the simulation domain.

The input crystallographic texture for the Al matrix acquired from the wide-area EBSD

scans was reduced to 499 discrete orientations using an open-source software, MTEX (Bach-

mann et al., 2010). Figure 4.1(a) shows the EBSD-measured experimental texture, in terms

of the (001), (110) and (111) pole figures. The reduced texture used for the simulations

is also shown in Figure 4.1(a). As can be seen, the reduced pole figures are qualitatively

comparable with their experimental counterparts. This was also verified by estimating the

Texture Indices (TI) (Verlinden et al., 2007; Bachmann et al., 2010). The TI was found to

be 1.01 for the experimental texture and 1.08 for the reduced texture. This reduced texture

was then input (randomly) to the grains corresponding to the Al phase in the simulation

domain. An approximate random texture was assigned to the Al2Cu precipitates.
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The Al matrix has a Face Centered Cubic (FCC) crystal structure, which permits dislocation

glide on the 12 {111} < 110 > (octahedral) slip systems. The SSDs were assumed to be

composed of only edge type of dislocations, thus leading to 12 distinct SSD configurations,

whereas both edge and screw type of GNDs were considered, thus resulting in 18 distinct

GND configurations (Evers et al., 2004b). These have been summarized in Table 3.2 of

Chapter 3.

The anisotropic elastic constants for the FCC Al (Fm3̄m) and tetragonal (I4/mcm) Al2Cu

phases were adopted from Chapter 3 and from Liu et al. (2020b). The parameters p and q,

which control the shape of the enthalpy curve, ∆F , the reference shear strain rate, γ̇0, and

the threshold slip resistance, s0t , were chosen so as to obtain a best fit simulated yield stress

with the experimental value. Since the as-received material was procured in a hot forged and

annealed state, a low value of initial slip system level SSD density, ρ0SSD = 105 mm−2 was

chosen. The parameters kM , kD and kih, which govern the substructure evolution and Taylor

hardening contribution were obtained by calibrating the model to the hardening response

of the material. The parameter governing the kinematic hardening contribution of GNDs,

kkh, has been adopted from Chapter 3, where it was used to predict the deformation of an

Al-Mg alloy. Since kkh is sensitive to the mesh size used in the simulations, we have ensured

that the initial microstructures imported from the EBSD data too have a mesh size identical

to those used in Chapter 3, where it was shown that kkh = 0.87 sufficiently reproduced the

Hall-Petch coefficient values reported in the existing literature for Al alloys. As mentioned

earlier in Section 4.2.3, the Al matrix was assumed to deform plastically, while only elastic

deformation was allowed in the Al2Cu precipitates. Such an approximation was primarily

motivated by the fact that the elastic stiffness (Liu et al., 2020b) and yield stress (Bahl

et al., 2022) of Al2Cu precipitates were sufficiently higher, in comparison to the relatively

softer Al matrix. The calibrated model parameters have been summarized in Tables 4.3 and

4.4.

4.3 Results

4.3.1 Mechanical Response and Bulk Texture

Figure 4.1(b) presents a comparison of the SGCP predicted aggregate mechanical response

with their experimental counterparts. As can be seen, a reasonable match is observed

between the two entities. Further, Figure 4.1(c) presents the comparison of the predicted

deformed textures with the measured deformed texture for the Al phase, at |εzz| = 0.18, in

terms of the (001), (110) and (111) pole figures. The corresponding Loading Direction (LD,
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Figure 4.1: (a) The experimentally measured and reduced crystallographic texture of
the as-received specimen, shown in terms of the (001), (110) and (111) pole figures along
with their respective texture indices. The Loading Direction (LD) has been marked on the
(001) pole figure. Comparison of the experimental and SGCP predicted (b) mechanical
response and (c) deformed crystallographic texture (|εzz| = 0.18, measured on the half-cut
specimen). Note that the mechanical response has been presented in terms of absolute

magnitudes of σzz and εzz, for better visualization of the data.
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Table 4.3: Model parameters calibrated to the experimental mechanical response.

Parameter Value Meaning

C11 108 GPa
Elastic constants for AlC12 61.3 GPa

C44 28.5 GPa

G

√
(C11−C12)C44

2 GPa Shear modulus

b 2.86 Å Burger’s vector magnitude
γ̇0 4 × 102 s−1 Reference shear strain rate

∆F 0.45Gb3 Activation energy barrier
p 0.5 Shape parameter
q 1.7 Shape parameter
τ0 34.8 MPa Threshold slip resistance
Aαξ 0.055 if α ̸= ξ, else 1 Interaction matrix
s0t 0 MPa

Numerical constants associated with sαtkln 246 MPa
kmul 0.05 Dislocation multiplication constant
kdyn 32 Dynamic recovery constant
kih 0.23 Isotropic hardening parameter (due to SSDs)
kkh 0.87 Kinematic hardening parameter (due to GNDs)
ρ0SSD 1 × 105 mm−2 Initial SSD density
ρ0GND 0 Initial GND density

Table 4.4: Elastic constants for the Al2Cu precipitates.

Parameter Value Meaning

C11 175.6 GPa

Elastic constants for Al2Cu

C12 64.8 GPa
C13 59.3 GPa
C33 167.2 GPa
C44 31.7 GPa
C66 64.5 GPa

z) has been marked on the (001) pole figure (cf. Figure 4.1(c)). A qualitative match can be

observed between the pole figure contours. The predicted texture index of 1.31 also compares

reasonably with the measured texture index of 1.22. We do note here that some minor

differences exist between the predictions and experiments, for example, at (α, β) ∼ (40, 179)

in the deformed (001) pole figure. This might be due to the fact that relatively less number

of grains were considered in our simulation domain. Nonetheless, qualitative trends have

been reasonably predicted by our SGCP simulations, for example, increasing pole figure

intensity around the ∼ {011} grain family at |εzz| = 0.18 in comparison to their undeformed

counterparts.
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4.3.2 Microstructure Characterization

Figure 4.2(a) presents results from the microstructural characterization carried out on the

half-cut (at L
2 ) undeformed specimen, shown in terms of the PRIAS image, EDS counts

acquired from chi-scan (combined EBSD-EDS mapping), Inverse Pole Figure (IPF) and

Kernel Average Misorientation (KAM) map. The PRIAS image clearly shows that a ma-

jority of the grain boundaries have been decorated by the Al2Cu precipitates (see yellow

markers in Figure 4.2(a)). Note here that the phase identification for these precipitates was

carried out using Rietveld analysis on the XRD-measured 2θ profiles (cf. Section 4.2). The

chi-scan data, indicative of the local chemical composition, also convey that these precipi-

tates are rich in Cu. Finally, since the as-received specimens were obtained in a hot-forged

and annealed condition, low magnitudes of KAM can be noted in Figure 4.2(a). Moreover,

the IPF maps do not display any large intragranular orientation gradients. Note here that

Figure 4.2(a) was indexed only using the Al phase, hence a large fraction of unindexed points

(black regions) are seen in the vicinity of grain boundaries and triple junctions. The iden-

tification as well as indexing of the Al2Cu precipitates through EBSD has been explained

in the subsequent paragraphs.

Figure 4.2(b) presents the elemental composition maps derived from SEM-EDS, along with

a line profile analysis of the SEM-EDS counts across two different types of grain boundaries,

with (marker A) and without (marker B) the presence of precipitates. Note that the scans

shown in Figure 4.2(b) and thereafter, have been carried out on a cross-section parallel to

the Loading Direction (LD) of the half-cut specimen (at L
2 ), since they have been directly

utilized as input to our SGCP framework. As can be seen, the grain boundaries decorated

by the precipitates display a significantly higher Cu concentration (maximum∼ 0.32 wt.%)

as compared to those without precipitates. Further, we have also characterized the Cu

segregation at the grain boundaries which did not show evidence of Al2Cu precipitates, using

high magnification (focused area) SEM-EDS scans. The inset presented within the Cu SEM-

EDS counts in Figure 4.2(b) shows the Cu segregation at one such grain boundary. However,

since the Al-Cu alloys belong to the family of precipitation strengthened Al alloys, only few

grain boundaries (which were not decorated by the Al2Cu precipitates) display evidences of

Cu segregation. These may be attributed to the limited solubility and insufficient time for

precipitation kinetics during the thermomechanical processing.

Finally, Figure 4.2(c) presents the IPF maps for the Al matrix and Al2Cu precipitates.

Note that the Rietveld analysis was first used to identify the presence of Al2Cu precipitates.

Following this, the dynamic pattern simulations using OIM-MatrixTM in TSL-OIMTM, pre-

sented for two representative pixels in Figure 4.2(c), were generated and used to validate the
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presence/indexing of Al2Cu precipitates. The micron sized grain boundary Al2Cu precipi-

tates displayed a tetragonal (I4/mcm) crystal structure and formed an incoherent interface

with the surrounding matrix. As can be seen in Figure 4.2(b, c), the morphology of these

precipitates varied significantly based on the shape of the grain boundary, with the average

(horizontal) intercept size typically of the order of ∼ 2.2 µm and an aspect ratio of ∼ 1.7.

The highlighted plane traces on the Kikuchi patterns in Figure 4.2(c) also show a reasonable

similarity between the experimental and simulated patterns for the Al2Cu precipitates. An

average confidence index of ∼ 0.4 was noted while indexing the Al2Cu precipitates. Finally,

Neighboring Pattern Averaging (NPAR) was used to improve the quality of indexing of the

EBSD patterns.

4.3.3 Experimental Measurements of LNBGZ

As discussed previously, the as-received specimens were deformed in compression up to a

maximum applied strain of |εzz| = 0.18 (cf. Section 4.2). Similarly, note that the microstruc-

tural characterizations to examine the substructure evolution within the NBGZ have been

performed on a cross-section parallel to the loading direction of the half-cut (at L
2 ) deformed

specimen. To begin with, the acquired EBSD and SEM-EDS datasets were categorized into

two separate classes, grains boundaries with and without Al2Cu precipitates. Since, only a

fraction of the grain boundaries which did not have Al2Cu precipitates showed traces of Cu

segregation, they were not categorized separately and were accounted in the latter class.

Following this, an analysis determining the length of the NBGZ, LNBGZ , similar to the

one reported in Chapter 3 was carried out for the hard (A: m ≤ 0.35), intermediate (B:

0.35 < m ≤ 0.45) and soft (C: m > 0.45) oriented grains based on the line profiles of

KAM and GND density, ρGND, across grain boundaries. This exercise was carried out for

50 grains having Al2Cu precipitates at the grain boundaries and 10 grains which did not

show evidence of any such precipitates. Note that a fewer number of data points for the

latter were primarily due to the fact that only few of the grain boundaries did not show

any precipitates. This can also be confirmed from the PRIAS map as well as chi-scan

based EDS counts shown in Figure 4.2(a). The corresponding KAM profiles for a few grain

boundaries, with and without the Al2Cu precipitates, have been presented in Figure 4.3(a)

and Figure 4.3(b), respectively. Finally, to correlate these substructure developments with

the local crystallographic orientation, their corresponding Schmid factor contours have also

been attached (cf. Figure 4.3).

Further, note that the statistical correlations established in this study between the LNBGZ

and the crystallographic orientation, represented in terms of the Schmid factor, m, are with



Chapter 4. NBGZs in an Al-Cu alloy 91

Figure 4.2: Schematic showing the specimen geometry, with region of interest marked in
red and its corresponding microstructure, in terms of the PRIAS image, chi-scan (combined
EBSD-EDS mapping) derived EDS counts, IPF and KAM maps. (b) SEM-EDS line profile
analysis along with the spatial distribution of Al and Cu elements, along a grain boundary
with and without the Al2Cu precipitates. Note that the inset presents the SEM-EDS
data acquired from high magnification scans along a grain boundary without precipitates,
carried out to examine the presence of local Cu segregation, if any. (c) Identification of
Al and Al2Cu phases in EBSD using dynamically simulated Kikuchi patterns, generated
using OIM-MatrixTM. Three (random) plane traces have also been marked to indicate the

similarity between the experimental and simulated patterns.
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respect to the current or the deformed grain-average orientations, unlike those reported in

Chapter 3, which employed the initial grain-average orientations. Acquiring the initial grain-

average orientations necessitates the tracking of ROIs during deformation, which is only

possible during interrupted, albeit progressive deformation experiments. Such an exercise

could not be carried out in the present case due to constraints associated with compression

experiments.

Figure 4.3 presents a comparison of the NBGZ development near grain boundaries with and

without the presence of Al2Cu precipitates, in terms of the GND density, ρGND, and KAM

contours. The corresponding Schmid factor maps have also been shown. To begin with,

Figure 4.3 shows localized deformation in the vicinity of grain boundaries for both classes,

those with (Figure 4.3(a)) and those without (Figure 4.3(b)) the Al2Cu precipitates. As can

be seen in Figure 4.3(b), the (plastically) softer grain develops a much wider LNBGZ over

its intermediate and hard counterpart, for grain boundaries which are not decorated by the

Al2Cu precipitates. The hierarchy of NBGZ width in the absence of Al2Cu precipitates can

hence be stated as: soft (C: m > 0.45) > intermediate (B: 0.35 < m ≤ 0.45) > hard (A:

m ≤0.35). These trends are qualitatively similar to those reported in Chapter 3.

Following the method used in Chapter 3, the LNBGZ analysis presented in Figure 4.3 relied

on the use of KAM over ρGND. This is because only a marginal fraction of data points had

their KAM magnitudes lower than the noise floor (KAMnf ∼ 0.38◦) (Genée et al., 2021).

Further, an interesting trend can be observed for grain boundaries decorated by the Al2Cu

precipitates (cf. Figure 4.3(a)). Over here, the the (plastically) harder and the intermediate

oriented grains manifest a nearly similar LNBGZ . As can be seen in Figure 4.3(b), the

presence of precipitates accentuates the development of NBGZs, i.e., harder grains show

higher LNBGZ in the presence of Al2Cu precipitates. The softer grain, still shows a relatively

wider LNBGZ in comparison to the hard and intermediate oriented grains.

The presence of Al2Cu precipitates results in additional constraints for the deformation in

the vicinity of grain boundaries. This leads to a significant (local) heterogeneity in the de-

formation within the NBGZ, necessitating the generation of ρGND. As can be seen in Figure

4.3(a), large ρGND concentrations are evident near the grain boundaries manifesting Al2Cu

precipitates. In addition to the crystallographic mismatch at the grain boundaries, the

dislocation pileups and orientation gradients arising during deformation are enhanced due

to the presence of harder, non-deforming second phase precipitates. The above-mentioned

analysis is then repeated over multiple such grain boundaries, in order to obtain statistical

correlations between the LNBGZ
D and m.
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Figure 4.3: (a) EBSD derived Schmid Factor, m, total GND density, ρGND, and KAM
contour maps for the specimen deformed up to |εzz| = 0.18. The NBGZ, in terms of
KAM, across hard (A)-intermediate(B) and intermediate(B)–soft(C) grains having Al2Cu
precipitates has also been shown. (b) The NBGZ development, across a grain boundary
between A-C and B-C type grains without Al2Cu precipitates. Note that (Cu) solute
segregation was observed across the A-C type grains shown in (b), while no such segregation

was noted across B-C type grains.
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4.3.4 Model Predictions of LNBGZ

Figure 4.4(a) presents a representative focused-area EBSD microstructure, in terms of the

phase map, which has been used as input for our SGCP framework. The colors in Fig-

ure 4.4(a) are indicative of the Al and Al2Cu phases, respectively. These EBSD derived

microstructures were meshed using 3D hexahedral elements of size 2 µm and with linear

interpolation. Since the parameter kkh is sensitive to the element/mesh size (Kapoor et al.,

2018; Patra et al., 2023b), it has been kept identical to those in Chapter 3. Further, the

simulation cell comprises of a single element along the thickness or out-of-plane direction

(Patra et al., 2023a). We do note here that the addition of elements along the out-of-plane

direction have been shown to improve the strain field predictions (Lim et al., 2014; Hestrof-

fer et al., 2022). However, the computational costs associated with such large simulation

domains/number of elements is substantial. In addition, employing a non-local framework

that accounts for the deformation behavior of neighboring material points would limit the

application of such large simulation domains to small deformations, in contrast to the strain

magnitudes (|εzz| = 0.18) used for the present study. Further, similar to Chaudhary et al.

(2023), axisymmetric boundary conditions, i.e., constraints on displacements normal to the

left, bottom and back faces were applied. As can be seen in Figure 4.4(a), the microstructure

was loaded in uniaxial compression along the top face at a nominal strain rate of 10−3 s−1.

The remaining faces were kept traction free.

In addition to the simulation domain shown in Figure 4.4(a), two additional EBSD-acquired

microstructures were deformed virtually to obtain a statistically representative dataset on

the substructure evolution within NBGZ, in particular, across grain boundaries with and

without the Al2Cu precipitates. Their corresponding grain-average crystallographic orien-

tations in the initial or undeformed configuration have been marked on an inverse pole

figure projection in Figure 4.4(b). As can be seen, the chosen crystallographic orienta-

tions span across the entire inverse pole figure, thus providing a sufficient number of data

points for examining the NBGZ buildup across the hard (A: m ≤ 0.35), intermediate (B:

0.35 < m ≤ 0.45) and soft (C: m > 0.45) oriented grains.

Figure 4.4(c) presents the SGCP predicted deformed microstructure, shown in terms of the

grain-average Schmid factor, m, total GND density, ρGND, Kernal Average Misorientation

(KAM), effective plastic strain, ε̄p, and the local residual strains, transverse, εTD, and

parallel, εLD, to the loading direction at an applied strain of |εzz| = 0.18 and in the deformed

configuration. Note that the loading direction has been kept identical to their experimental

counterparts shown in Figure 4.2(b). As can be seen, the ρGND, and KAM accumulations are

visible primarily in the vicinity of grain boundaries. Further, two important inferences can
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Figure 4.4: (a) Schematic of the simulation set-up and boundary conditions employed
for deformation of EBSD microstructures. The colors are indicative of the Al and Al2Cu
phases, respectively. (b) Crystallographic (grain-average) orientations, plotted on an inverse
pole figure, of the grains considered for analyzing the NBGZ development using SGCP.
(c) Deformation contours, represented in terms of the grain-average Schmid factor, m,
total GND density, ρGND, Kernel Average Misorientation (KAM), effective plastic strain,
ε̄p, transverse, εTD, and longitudinal, εLD, local residual strains at an applied strain of
|εzz| = 0.18. The black and white markers denote regions showing large magnitudes of local
(residual) strains and ρGND, respectively. The markers A, B and C denote the hard (m ≤

0.35), intermediate (0.35 < m ≤ 0.45) and soft (m > 0.45) oriented grains, respectively.
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be clearly noted from these deformation contours. Firstly, for grain boundaries decorated by

Al2Cu precipitates, the NBGZs are significantly wider in comparison to their counterparts

without precipitates. More importantly, the grains belonging to hard (A) and intermediate

(B) orientations display nearly similar LNBGZ (see white markers in Figure 4.4(c)) in the

presence of Al2Cu precipitates, with the former even showing wider LNBGZ for certain grain

boundaries.

The softer or C type grains on the other hand, display a wider LNBGZ compared to the

hard as well as intermediate grains, with or without the presence of Al2Cu precipitates.

The former, grain boundaries with Al2Cu precipitates, however, shows a substantially wider

LNBGZ as compared to the ones without precipitates. This is similar to our observations for

their experimental counterparts in Figure 4.3. Additionally, Figure 4.4(c) shows significant

residual strain hotspots in the vicinity of grain boundaries manifesting Al2Cu precipitates.

The local lattice incompatibilities arising due to the presence of Al2Cu precipitates during

deformation necessitates the presence of GNDs. The resulting local stress fields arising

due to these GNDs are not fully relaxed upon the removal of external load, thus resulting

in large magnitudes of local residual (elastic) strains. Since heterogeneous deformation is

much more prominent at the phase boundaries in comparison to the grain boundaries, the

resulting local strains are also higher for the former over the latter (cf. black markers in

Figure 4.4(c)).

Finally, statistical correlations between substructure developments within the NBGZ and

the grain average Schmid factors, from experimental as well as SGCP predictions have been

discussed in detail in the subsequent Section (Section 4.4).

4.4 Discussion: Comparison of Experimental and Simulated

Predictions of LNBGZ

Figure 4.5 presents a statistical analysis of the LNBGZ
D development as a function of the

grain-average Schmid factor, obtained from experimental measurements (Figure 4.5(a,c))

and SGCP predictions (Figure 4.5(b,d)). As explained earlier, the EBSD-acquired datasets

have been categorized into two broad classes, namely, the grain boundaries with and without

the presence of Al2Cu precipitates. Additionally, note that a few of the grain boundaries

belonging to the latter class did show traces of Cu solute segregation. However, since they

were few in numbers, they have not been categorized as a separate entity.

To begin with, the LNBGZ
D is always wider for cases where grain boundaries are decorated

by Al2Cu precipitates, in comparison to those without precipitates. This trend becomes
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clearly visible in the case of soft grains, where the NBGZ development has even spread

up to the grain center, or LNBGZ
D ∼ 0.5. This might be due to the fact that localizations

developing as a result of the incompatible deformation between the matrix and precipitates

gets diffused out much easily in the softer grains, which has slip systems readily available for

deformation. This diffusing out of localizations near grain boundaries leads to the formation

of a wider LNBGZ
D . In addition, the readily available slip systems in the soft grains leads to

the easy deformation of the grain core as well, especially at such large imposed strains. This

capability of the grain core to accommodate the shear further diffuses the localizations at

the grain boundaries, thus widening the NBGZ. On the other hand, the grains belonging to

the hard orientations do not have such slip systems readily available, and hence deformation

is relatively localized to a smaller region near the grain boundary.

Generally speaking, the hard grains should develop a much smaller LNBGZ
D in comparison

to grains belonging to intermediate orientations, as noted in Chapter 3 and visible in our

data for grain boundaries without the Al2Cu precipitates (cf. Figure 4.5). However, the

presence of Al2Cu precipitates results in the development of pronounced strain localizations

near the grain boundaries, even for the hard grains. These heterogeneities, and their result-

ing compatibility constraints causes (localized) lattice rotations, thus activating additional

slip systems and widening the LNBGZ
D for hard grains. This results in a nearly comparable

LNBGZ
D for the hard as well as intermediate grains. The soft grains on the other hand,

continuing manifesting a wider LNBGZ
D even in the presence of precipitates. Such a trend is

clearly observed in the mean values of LNBGZ
D shown in Figure 4.5(c,d). Another interesting

difference is in the spread (deviation from the mean) of LNBGZ
D , which is significantly larger

for grain boundaries with Al2Cu precipitates. This indicates that the local heterogeneity,

and hence the ρGND and εLD/TD, are much more prominent in the vicinity of phase bound-

aries than the grain boundaries. Such trends are captured by our SGCP predictions as well,

see Figure 4.4(d). More importantly, this states the crystallographic orientation is not the

sole factor governing the NBGZ development in these alloys.

Similar trends can also be observed in our virtually deformed microstructures, see Figure

4.5(b,d). However, note that the our SGCP predictions manifested a significant noise in the

dataset. This could be due to the presence of a fewer number of grains in the undeformed

simulation cell, thus elevating the edge/boundary effects of a voxel-based mesh. However,

a qualitative concurrence does exist between the experimental and simulated dataset. This

can also be confirmed from Figure 4.5(c,d), which presents a qualitative match between

the experimental (cf. Figure 4.5(c)) and simulated (cf. Figure 4.5(d)) mean and standard

deviation of LNBGZ
D .
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Based on these results, two of the key observations from experiments, i.e., (i) wider LNBGZ
D

in the presence of Al2Cu precipitates in comparison to those without precipitates, and (ii)

similar LNBGZ
D in the hard and intermediate oriented grains, while much larger LNBGZ

D in the

softer grain in the presence of precipitates, have been qualitatively predicted by our SGCP

simulations (cf. Figure 4.5(b,d)).

The available dataset, though limited, suggests that the Cu solute segregation does not alter

or deviate the dependence of LNBGZ
D on m. This might be because the Al matrix displays

a very low solid solubility for Cu (Verlinden et al., 2007), unlike the Al-Mg alloys used in

Chapter 3. Hence solute segregation is not spontaneous, especially at room temperature

and mesoscale, in these alloys. Moreover, the thermomechanical treatments for Al-Cu alloys

are primarily designed to optimize the precipitate size, volume fraction and morphology, in

order to attain the desired mechanical properties (Verlinden et al., 2007; Prakash et al.,

2019; Bahl et al., 2022). As the solute segregation is limited to small regions in the vicinity

of grain boundaries, it does not significantly affect the local substructure evolution during

deformation (cf. Figure 4.2(b) and 4.3(b)).

Finally, as discussed in Section 4.3.2, the EBSD scan parameters as well as the post-

processing techniques employed here resulted in the Al2Cu precipitates being indexed with

a confidence index of ∼ 0.4. Additionally, the step size used in our EBSD scans were chosen

so as to accurately capture the NBGZ and therefore did not involve sufficient number of

pixels within the Al2Cu precipitates to accurately capture the intragranular deformation

occurring within them. Hence, we have not focused on exploring the deformation evolution

within the Al2Cu precipitates in this study.

4.5 Conclusions

The present study explored the local substructure developments within the NBGZ, specifi-

cally in terms of KAM and ρGND, in a precipitation strengthened Aluminum-Copper (Al-

Cu) alloy using combined experiments and modeling. XRD as well as combined SEM-EBSD-

EDS characterization showed that the Al2Cu precipitates decorated a majority of the grain

boundaries in the as-received specimen. These were then subjected to compressive loading

at room temperatures up to a nominal strain of |εzz| = 0.18. The entire EBSD derived

dataset was categorized into two classes, namely, the grain boundaries with and without

the Al2Cu precipitates. Following this, line profiles of KAM and ρGND were extracted from

the EBSD data on deformed microstructures as also described in Chapter 3. The NBGZ
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Figure 4.5: (a) Normalized length of the Near Boundary Gradient Zone, LNBGZ

D , at
|εzz| = 0.18, as estimated from the (a) experimental dataset and (b) SGCP predictions.
The (c) experimental and (d) SGCP predicted mean and standard deviation in LNBGZ

D , for
the hard (A: m ≤ 0.35), intermediate (B: 0.35 < m ≤ 0.45) and soft (C: m > 0.45) oriented

grains at an applied strain of |εzz| = 0.18.

development was quantified in terms of the width of KAM accumulations and their correla-

tion with the grain-average Schmid factor. In parallel, a Strain Gradient Crystal Plasticity

(SGCP) model was developed and implemented in an open source finite element solver

MOOSE (Permann et al., 2020). A similar line profile analysis of KAM/ρGND was carried

out on the SGCP-predicted deformed microstructures as well.

Following are the key takeaways that can be drawn from the present study:

1. The SGCP framework qualitatively predicted the heterogeneous deformation trends

in the vicinity of grain boundaries. The predicted KAM and ρGND localizations near

the grain boundaries for a representative microstructure were qualitatively similar to

those observed for their experimental counterparts (cf. Figure 4.3 and 4.4).

2. Our line profile analysis showed that the presence of Al2Cu precipitates at the grain

boundaries resulted in significant KAM and ρGND accumulation and a much wider

NBGZ for all grains, in comparison to its counterparts (without Al2Cu precipitates).
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3. The plastically hard (A: m ≤ 0.35) and intermediate (B: 0.35 < m ≤ 0.45) grains

displayed a similar distribution in the width of length of NBGZ, LNBGZ
D , while the

softer (C: m > 0.45) grains showed significantly larger LNBGZ
D , in cases where Al2Cu

precipitates decorated the grain boundaries.

4. For grain boundaries which did not manifest any Al2Cu precipitates, an orientation

dependence similar to those reported in Chapter 3, where the LNBGZ
D increases with

increasing m was observed.

5. The hierarchy of LNBGZ
D as a function of the grain-average orientation can hence be

given by: soft > intermediate ∼ hard in the presence of Al2Cu precipitates and soft

> intermediate > hard without precipitates.

6. The presence of grain boundary precipitates or second phase (agglomerates) plays a

larger role than the crystallographic orientation in influencing the substructure devel-

opments within the NBGZ.

7. The solute segregation, though limited to only a few of the grain boundaries, does not

manifest any notable deviation on the dependence of NBGZ width on the crystallo-

graphic orientation.



Chapter 5

Microstructural Factors Influencing

the Tension-Compression

Asymmetry of Rapidly Solidified

Alloys

5.1 Introduction

Additive Manufacturing (AM) of metallic systems can be used for fabrication of complex

geometries via incremental deposition of the rapidly solidified melt to conform to the desired

geometry, thus reducing the need for post-deposition machining of the AM-ed parts (Murr

et al., 2012; Gao et al., 2015; Herzog et al., 2016; DebRoy et al., 2018). However, this

manufacturing technique is generally associated with high solidification (and cooling) rates

(> 103 K/s) (Farshidianfar et al., 2016; Prasad et al., 2020) and severe thermal gradients

(104 − 106 K/m) (Bertoli et al., 2019; Pinomaa et al., 2020a), which may result in non-

equilibrium microstructures, with significant defect densities (Gao et al., 2015; Du Plessis

et al., 2020; Sanaei and Fatemi, 2021). These defects range from the nanoscale, such as

dislocation entrapments at the chemical cell walls (Chen et al., 2019; Zhang et al., 2022),

to the macroscale, such as fusion defects and porosities (Beretta and Romano, 2017; Sanaei

and Fatemi, 2021). Further, this may also result in an incomplete solute partitioning at

the solid-liquid interface, especially in steels containing a significant concentration of solute

elements. This phenomenon of solute trapping leads to the segregation of solute atoms

1

Significant parts of this Chapter have been published in (Pai et al., 2024b)

101



Chapter 5. Rapidly Solidified Fe-Cr Alloys: Tension-Compression Asymmetry 102

as well as precipitates along the cell walls and geometrically necessary boundaries, thus

promoting dislocation pinning (Bertsch et al., 2020; Voisin et al., 2021) and increasing

the material’s strength, without sacrificing the tensile ductility (Liu et al., 2018a; Wang

et al., 2018). Such a superior strength-ductility combination has been attributed to the

development of hierarchically heterogeneous microstructures in AM materials (Wang et al.,

2018).

Understanding these dislocation substructures is hence essential for developing AM mi-

crostructures exhibiting superior mechanical properties. Various mechanisms have been

identified for the development of such heterogeneous dislocation substructures (Saeidi et al.,

2015; Liu et al., 2018a; Yoo et al., 2018; Birnbaum et al., 2019; Bertsch et al., 2020; Voisin

et al., 2021; Zhang et al., 2021b). For example, Saeidi et al. (2015) reported the accommo-

dation of distortion induced by the solute enriched sub-grain and inter-dendritic boundaries

via dislocation networks and substructures in AM austenitic Stainless Steel (SS 316L). The

formation of cell boundaries in AM Inconel 718 has also been attributed to a combination

of solute supersaturation at the solid-liquid interface and subsequent dislocation generation

to accommodate the lattice incompatibilities (Yoo et al., 2018). The Geometrically Nec-

essary Dislocations (GNDs), which originate during solidification for accommodating the

inter-dendritic misorientations, further act as a scaffold for the mobile dislocations (Bertsch

et al., 2020). Ramirez et al. (2011) attributed the presence of fine cuprite precipitates,

along the inter-dendritic as well as grain boundary regions, for the development of complex

precipitate-dislocation networks in AM copper components. An alternative mechanism sug-

gests that the thermal distortion occurring due to rapid solidification (and cooling) results

in the formation of cellular structures, which then act as sinks for the solute and precipitate

atoms in AM SS 316L (Birnbaum et al., 2019). In addition, the boundary constraints sur-

rounding the molten pool too play a role in deciding the dislocation substructures during

rapid solidification (Bertsch et al., 2020). In summary, the printing induced stresses, solute

atoms, precipitates and the local inter-dendritic misorientation play an important role in

the formation of the observed dislocation cells during rapid solidification.

In terms of the mechanical properties, rapid solidification leads to the development of in-

ternal (residual) stresses, which govern the ensuing deformation behavior of AM-ed parts

(Wu et al., 2014; Brown et al., 2017, 2019; Chen et al., 2019). Briefly, these can be divided

into macroscale (bulk or type-I) and microscale (type-II and type-III) residual stresses. The

former are mainly attributed to the specimen geometry, AM process parameters, scanning

strategy, clamping constraints, etc. (Ding et al., 2011; Wu et al., 2014; Kumar and Naga-

mani Jaya, 2023), and can be reduced by optimizing the process parameters or relaxed by
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subsequent annealing. The latter can be further classified into two categories: intergranu-

lar (type-II) and intragranular (type-III) internal stresses (Chen et al., 2019; Zhang et al.,

2022). The intergranular internal stresses are a consequence of the compatibility conditions

arising at the grain boundaries, and self-equilibrate over the length scale of a few grains

(Zhang et al., 2022). The type-III stresses are primarily due to the printing-induced dislo-

cation substructures, specifically the GND components of these dislocation clusters (Zhang

et al., 2022). The heterogeneous distribution of GNDs thus gives rise to backstresses, and are

hypothesized to be responsible for the anisotropic mechanical properties, including Tension-

Compression (TC) asymmetry in rapidly solidified alloys (Chen et al., 2019; Zhang et al.,

2022; Wang et al., 2023). Further, the as-printed dislocation substructures act as forest ob-

stacles to dislocation slip, and influence the associated mechanical properties (Wang et al.,

2018; Bean et al., 2022). For example, AM austenitic steels (SS 316L) exhibit a signifi-

cantly higher yield strength and total elongation to failure, in comparison to the as-cast

and wrought counterparts (Sun et al., 2018; Wang et al., 2018). The substructure develop-

ment is generally dependent on the local thermal history, which is governed by the imposed

thermal gradient and the pulling velocity during AM (Pinomaa et al., 2020a; Lindroos et al.,

2022).

Much work has been done on modeling the mechanical properties of AM metals post-

solidification by accounting for the effect of microstructure and residual stresses (Kapoor

et al., 2018; Chen et al., 2019; Pokharel et al., 2019; Zhang et al., 2022; Wang et al., 2023).

Further, multiscale models coupled with the phase field method (Azizi et al., 2021; Hu et al.,

2022; Lindroos et al., 2022; Pinomaa et al., 2022) have been developed for simulating the

solidification and grain growth processes as well. Macroscale finite element methods have

been used to mimic the temperature profiles of various AM processes, for example, Selective

Electron Beam Melting (SEBM) and Laser Powder Bed Fusion Process (LPBF), which then

served as an input to a temperature-dependent phase field model (Liu et al., 2018b, 2020a;

Azizi et al., 2021). Moreover, the preferred growth direction and crystallographic orientation

based anisotropy were also accounted for by altering the gradient energy coefficients (Liu

et al., 2018b). Several studies have utilized mechanics coupled phase field models to analyze

the effect of solidification parameters (and consequent thermal profiles) on the microseg-

regation, Primary and Secondary Dendrite Arm Spacing (PDAS/SDAS), grain nucleation

and growth and interface morphologies in rapidly solidified microstructures (Farzadi et al.,

2008; Yu et al., 2018; Lingda et al., 2021).

These frameworks have also been coupled with crystal plasticity models, to study the mi-

crosegregation, grain-level residual stresses and dislocation structure developments during

AM (Pinomaa et al., 2020b; Lindroos et al., 2022; Hu et al., 2022, 2023). Pinomaa et al.
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(2020a); Lindroos et al. (2022) have used a phase field-crystal plasticity model to simulate

the microstructure evolution (dislocation structure and solute segregation) during solidifi-

cation and the subsequent mechanical properties. Hu et al. (2022) also utilized such an

approach and observed significant plastic deformation in (a few) elongated grains along the

laser track, as a result of the imposed thermal and geometric constraints. Homogenization of

these plastic strains lead to reduction in the residual stresses in the AM microstructure (Hu

et al., 2022). Further, Hu et al. (2023) have used the temperature as well as microstructure

histories that act as input to a 3D Continuum Dislocation Dynamics (CDD) model to study

the local evolution of dislocation structures during a laser-based AM process. However,

these models do not account for the strain gradient plasticity induced backstresses, and its

subsequent influence on the anisotropic mechanical properties. In this regard, (Chen et al.,

2019; Zhang et al., 2022) have shown that by phenomenologically introducing a constant

value of printing-induced backstress in their crystal plasticity model, the experimentally

observed TC asymmetry of rapidly solidified microstructures can be predicted. However,

their models did not simulate the in-situ development of printing induced backstress. In the

present work, we try to address these gaps in the literature by developing a unified mod-

eling framework for the predicting the development of GND-induced backstress in rapidly

solidified microstructures and the ensuing anisotropic mechanical properties.

This manuscript proposes a coupled phase field (PF) - strain gradient plasticity (SGP)

framework, for simulating microstructure evolution due to dislocation substructures and

(micro) segregation, and predicting the Tension-Compression (TC) asymmetry in rapidly so-

lidified iron-chromium (Fe-Cr) alloys. Essential features of the framework include considera-

tion for solute segregation, anisotropic elastic and plastic deformation, GND and backstress

evolution during solidification, multi-grain interaction effects, as well as thermally-induced

residual stress development and their accommodation via plastic deformation during solidi-

fication. Simulations are performed for a range of solidification conditions, representative of

AM conditions, to identify the microstructural origins of TC asymmetry in rapidly solidified

Fe-Cr alloys. Finally, an analysis of the modeling framework itself is performed to identify

the essential features of the model necessary for predicting the TC asymmetry.

5.2 Model Description

This work uses a combined phase field (PF)-strain gradient plasticity (SGP) modeling

approach for studying the factors contributing to the development of microscale residual

stresses in rapidly solidified microstructures and their effect on the mechanical properties

of iron-chromium (Fe-Cr) alloys. The phase field model is used to simulate solidification in
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idealized 2D polycrystalline microstructures, along with consideration for the solute (Cr)

segregation during solidification. Further, the phase field model is coupled with a J2 SGP

model that allows consideration for the directional, GND-induced backstresses in the so-

lidified phase. These backstresses are expected to be induced while accommodating the

thermal Eigen strains during solidification and cooling and also the residual stresses due to

Cr segregation during solidification. Solid solution strengthening due to the Cr atoms is

also considered. The solidified microstructures are then virtually deformed using the SGP

model to study the anisotropy of mechanical properties, more specifically, the Tension-

Compression (TC) asymmetry along the build and transverse directions in these rapidly

solidified microstructures.

The PF model and the SGP model are loosely coupled in the sense that the dissipation of

work due to plastic deformation in the solidified phase is not considered in the free energy

minimization of the PF model. Similar assumption has also been made in prior studies

(Pinomaa et al., 2020a; Hu et al., 2022; Lindroos et al., 2022). Further, the use of a J2

SGP model, instead of a strain gradient crystal plasticity model, is necessitated by the

feasibility of running these coupled phase field-plasticity simulations, which are computa-

tionally intensive. We note that there are more advanced strain gradient crystal plasticity

models (Evers et al., 2004a) and thermo-mechanical crystal plasticity models (Chen et al.,

2019; Pokharel et al., 2019) in the literature, for example. However, coupling these crystal

plasticity models with the PF models led to a significant increase in the computational

costs and meaningful results could not be realized for the problem of interest here. This is

also the reason that idealized 2D microstructures have been simulated here, instead of 3D

polycrystalline microstructures. The following sections provide details on the development

and implementation of our coupled PF-SGP model.

5.2.1 Phase Field Model

The phase field method is a versatile technique for simulating the mesoscale microstructure

evolution during solidification, grain growth and phase transformation phenomena that

models the evolution of the order parameter, representative of the transformation from one

phase/state to another, by minimizing the free energy of the system (Kobayashi, 1993; Yeon

et al., 2001; Militzer, 2011; Permann et al., 2016; Acharya et al., 2017; Biswas et al., 2022).

In the present phase field model, the microstructural features are modeled in terms of a set

of continuous variables that evolve in the spatial as well as temporal coordinates:
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1. The non-conserved order parameters, ϕi (0 ≤ ϕi ≤ 1 and i ∈ 1, 2, . . . .N), which

describe the microstructure in terms of the phase (i.e., liquid, ϕi = 0, or solid, ϕi = 1)

for the N grains, with unique crystal orientations, considered in the simulation.

2. The conserved variable, cCr, representing the concentration of the solute (Cr) in the

Fe system.

5.2.1.1 Evolution of the Order Parameter, ϕi

We adopt the formulation given by Kobayashi (1993) to describe the evolution of our order

parameter/phase field variable, ϕi, and further modify it to account for the interaction

between ith and jth grain of the solid phase (Pinomaa et al., 2020b; Biswas et al., 2022).

This is given as:

τ
∂ϕi
∂t

= − ∂

∂x

(
WW ′ ∂ϕi

∂y

)
+

∂

∂y

(
WW ′ ∂ϕi

∂x

)
+∇·

(
W 2∇ϕi

)
+ϕi (1− ϕi)

(
ϕi −

1

2
+m

)
+2ϕi

∑
i

∑
j

γsijϕ
2
j

(5.1)

where, τ and W represent the interface relaxation time and the anisotropic interface layer

width, respectively. W
′

denotes the first derivative of W with respect to ψ, the angle

subtended between the interface normal and the global X direction. Mathematically, this

can be written as (Kobayashi, 1993):

ψ = tan−1

(
∂ϕi/∂y

∂ϕi/∂x

)
(5.2)

Further, γsij is representative of the interfacial energy, γs, between the ith and jth grain

(Pinomaa et al., 2020b; Biswas et al., 2022). The thermodynamic driving force for mi-

crostructure evolution is written in terms of the parameter, m, as (Kobayashi, 1993):

m =
β

π
tan−1 (Γ (θe − θr)) (5.3)

where, β and Γ are material constants and θe is the non-dimensional equilibrium tempera-

ture, which has been set to unity. Further, θr is the non-dimensional temperature ranging

from 0 to 1 and can be written as a function of the local temperature, θ, as:

θr =
θm − θ

θm − θref
(5.4)

where, θm and θref denote the melting point and reference temperature, respectively. The

local temperature in absolute units, θ, which evolves spatially and temporally, has been

non-dimensionalized here to θr, such that θr = 1 indicates a fully solidified melt and θr =

0 indicates a fully liquid region (Kobayashi, 1993). The thermodynamic driving force is
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directly proportional to the degree of undercooling, θe−θr, i.e., higher undercooling results in

a rapid evolution of ϕi fields across the liquid region. The evolution of the local temperature

θ is governed by the imposed thermal gradient G during directional solidification. This has

been discussed later in Section 5.2.3.

Using the law of conservation of enthalpy, we can write (Kobayashi, 1993; Acharya et al.,

2017):

∂θr
∂t

= ∇2θr +K
N∑
i=1

∂ϕi
∂t

(5.5)

where, K is the dimensionless latent heat, which varies directly with the latent heat, L, and

inversely with the specific heat, Cp, i.e., K = f(L/Cp) (Kobayashi, 1993; Acharya et al.,

2017). The moving heat source term, K
∑N

i=1 ∂ϕi/∂t, is only present at the interface where

the phase field variable, ϕi, transitions from zero to unity and is zero elsewhere (Kobayashi,

1993).

Prior studies have shown that the anisotropy in thermal conductivity, elastic modulus and

surface energy of a grain can inherently determine its preferred growth direction (Lee et al.,

1997). More importantly, these properties influence the favored growth direction by mini-

mizing the strain and the crystal/liquid interface energy. In the present work, the interface

layer width, W , has been modified to take into account the inherent anisotropy as a function

of the growth direction (Kobayashi, 1993; Acharya et al., 2017), as:

W = W̄ (1 + ςi cos(Ωψ)) (5.6)

where, W̄ is the mean value of the interface width W , ςi is the anisotropy strength of the

ith grain and Ω is the anisotropy mode number. Liu et al. (2018b) accounted for anisotropic

grain growth by altering the gradient energy coefficients, such that the grains with < 001 >

axis oriented closer to the thermal gradient have a competitive advantage during grain

growth. Accordingly, the anisotropy strength, ςi, has been rewritten as a function of the

crystallographic orientation of the grain i as (Liu et al., 2018b):

ςi = ς̄ |cos∠ (< 001 >axis ,∇T )| (5.7)

where, ς̄ is a numerical constant, signifying the average anisotropic strength. Physically, the

above equation indicates that grains having < 001 > axis oriented closer to the direction

of thermal gradient have a higher ςi, thus exhibiting a stronger preference during the grain

growth.



Chapter 5. Rapidly Solidified Fe-Cr Alloys: Tension-Compression Asymmetry 108

The interface between two grains i and j is given by a smooth variation of the order param-

eter ϕi from 1 to 0 and vice-versa for ϕj (cf. Equation 5.1). This is in contrast to the sharp

interface models, that inherently assume that the grain/phase interfaces are infinitely sharp,

i.e., the properties exhibit a sudden discontinuity at these interfaces (Liu and Kirchheim,

2004; Detor and Schuh, 2007). On the other hand, the diffuse interface models are defined

by a set of variables that are continuous functions of space and time (Cha et al., 2002; Kim

et al., 2016b; Zhou, 2020).

5.2.1.2 Evolution of Cr Concentration, cCr

Chemically, the system is considered to be a single phase, i.e., the chemical activity of all

grains in the system is denoted by a single (continuous) conserved parameter representing

the Cr concentration, cCr, as opposed to the non-conserved order parameters, ϕi, which are

considered for individual grains (Pinomaa et al., 2020b).

We use a regular solution model to predict the evolution of the conserved variable, cCr. In

this context, an idealized pseudo binary Fe-Cr alloy has been assumed, with the Cr solute

randomly distributed in the Fe solvent. This is motivated from prior studies (Bertsch et al.,

2020; Voisin et al., 2021) that have reported Cr as the primary segregating element in AM

stainless steels. Accordingly, the chemical free energy of the system can be written as:

Fchem = G0
liq (1 − ϕi) +ϕi(G

0
FecFe +G0

CrcCr +GEm +RT (cFe ln (cFe) + cCr ln (cCr))) (5.8)

where, cCr and cFe represents the concentration of Cr (solute) and Fe (solvent) atoms, re-

spectively. The terms accounting for the free energy contributions from pure components

(G0
Cr, G

0
Fe), liquid melt (G0

liq) and the heat of mixing (GEm) are obtained from thermody-

namic databases of equilibrium phase diagrams (Dinsdale, 1991; Miettinen, 1999; Koyama

and Onodera, 2004; Kim et al., 2021). Here, R is the gas constant. Further, by substituting

cFe = 1 − cCr, the individual terms in Equation 5.8 can be written as:

G0
Cr = −8856.9+157.48θ−26.908θ ln(θ)+0.00189θ2−1.477×10−6θ3+

139250

θ
J/mol (5.9)

G0
Fe = −236.7+132.416θ−24.66θ ln(θ)−0.003757θ2−5.86×10−8θ3+

77358.5

θ
J/mol (5.10)

G0
liq = −180383.83 + 291302θ − 46.01θ ln(θ)J/mol (5.11)

GEm = ((10833 − 7.477) − 1410 (1 − 2cCr)) (1 − cCr)cCrJ/mol (5.12)
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The solute diffusivity in the solid is expected to be significantly lower than that in the

liquid (Lindroos et al., 2022). Moreover, increasing the interface thickness results in a

magnification of the solute trapping effect (Echebarria et al., 2004; Ghosh et al., 2017). In

order to restore the local equilibrium at the interface, an additional solute back current is

introduced that pushes the solute out of the solidified region. This back current is referred to

as the anti-trapping current (Plapp, 2011; Biswas et al., 2022). The modified Cahn-Hilliard

equations governing the evolution of solute concentration can then be written as (Pinomaa

et al., 2020a; Lindroos et al., 2022; Pinomaa et al., 2022):

∂cCr
∂t

= ∇ ·

[
M∇∂Fchem

∂cCr
+W0 (1 − ke)

cCr
ceqCr

∑
i

a′t
∂ϕi
∂t

∇ϕi
|∇ϕi|

]
(5.13)

where, ceqCr can be derived using the equilibrium partition coefficient, ke, as ceqCr = 1+ke−(1−ke)h
2 ,

where h = N − 1 + Σiϕi (Pinomaa et al., 2020b). Further, W0 is the magnitude of interface

width and a
′
t represents the modified anti-trapping coefficient, given by (Pinomaa et al.,

2020a; Lindroos et al., 2022; Pinomaa et al., 2022):

a′t =
1

2
√

2

(
1 −A

(
1 − ϕ2i

))
(5.14)

Here, A represents the solute trapping parameter. Further, using the approach given by

Koyama and Onodera (2004), the interface mobility, M , is written as:

M =
[
cCr(1 − cCr)D

∗
Fe + (1 − cCr)

2D∗
Cr

] ( c

Rθ

)
(5.15)

where, D∗
Fe and D∗

Cr denote the self-diffusion constant of the solvent and the solute, respec-

tively.

We have used the open-source finite element library, Multiphysics Object Oriented Sim-

ulation Environment (MOOSE) (Permann et al., 2020) for the phase field and plastic-

ity simulations. A Kobayashi formulation-based single crystal dendritic growth framework

(Kobayashi, 1993) is already implemented in MOOSE (Zhou, 2020). The existing PF models

in MOOSE have been modified from their existing form to those given in Equations 5.1-5.7

and Equations 5.8-5.15, respectively. Specifically, we have modified the existing formulation

to account for the multigrain interaction effects (5th term in Equation 5.1) and the crys-

tallographic orientation-based anisotropy during grain growth (Equation 5.7). In addition,

we have modified the existing Cahn-Hilliard model to account for the regular solution free

energy given in Equation 5.8.
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5.2.1.3 Parameters for the Phase Field Model

The model parameters used to study the evolution of the above-mentioned phase field

variables are summarized in Table 5.1. The constants β and Γ, which define the double-well

potential curve, the numerical constant τ , governing the interface attachment timescale and

the dimensionless latent heat, L have been taken directly from Kobayashi’s work (Kobayashi,

1993). The average anisotropic strength, ε̄, and the mode number, Ω, were obtained from

Zhou (2020).The interfacial energy constant was taken from Pinomaa et al. (2020b) .The

equilibrium Cr concentration c0Cr and melting temperature and θm were taken from McGuire

(2008), while the parameters ke and A were adopted from Lindroos et al. (2022), which also

modeled a similar Fe-Cr alloy system. The average interface width, W̄ , was selected such

that sufficient number of mesh elements existed within the interface, to achieve a continuous

transition from liquid to the solid phase. The self-diffusion constants for Fe and Cr were

taken from Koyama and Onodera (2004).

Table 5.1: Phase field model parameters for a representative pseudo binary Fe-Cr alloy.

Parameter Description Value

β,Γ Constants governing the slope of double well potential (Kobayashi, 1993) 0.9, 10
τ Numerical constant (Kobayashi, 1993) 0.0003

γsij∀ i, j Interfacial energy constant (Pinomaa et al., 2020b) 20
ς̄ Average anisotropic strength (Kobayashi, 1993; Zhou, 2020) 0.04
Ω Mode number 4
W̄ Average interface width (µm) 0.14
K Dimensionless latent heat (Kobayashi, 1993) 1.20
θm Melting temperature (K) (McGuire, 2008) 1789
ke Equilibrium partition coefficient (Lindroos et al., 2022) 0.79
c0Cr Equilibrium Cr concentration (wt. fraction) (McGuire, 2008) 0.21
A Solute trapping parameter (Lindroos et al., 2022) 0.88

D∗
Fe Self-diffusion constant for Fe (m2/s) (Koyama and Onodera, 2004) 1× 10−4 exp

(
− 294×103

RT

)
D∗
Cr Self-diffusion constant for Cr (m2/s) (Koyama and Onodera, 2004) 2× 10−5 exp

(
− 308×103

RT

)

5.2.2 Strain Gradient Plasticity (SGP) Model

The finite deformation J2 plasticity model is adapted from Patra et al. (2023b), and is based

on the multiplicative decomposition of the deformation gradient, F , into the elastic, F e,

plastic, F p, and thermal, F θ, parts (Musinski and McDowell, 2015; Pokharel et al., 2019),

i.e.,

F = F e · F p · F θ (5.16)

Here, F e accounts for the elastic deformation, F p accounts for the shear due to plastic

deformation, and F θ accounts for the Eigen strain due to thermal expansion/contraction
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(see Figure 5.3). Assuming isotropic thermal expansion/contraction, F θ can be written as

(Musinski and McDowell, 2015):

F θ =
√

1 + 2αθ∆θ δ (5.17)

where, αθ is the thermal expansion coefficient, which is a function of the temperature, θ,

i.e., ∆θ = θref − θ represents the deviation from the stress-free temperature, θref , and δ

is the second rank identity tensor. The resulting “stress-free” Eigen strains can thus be

written as:

Eθ =
1

2

(
F θT · F θ − δ

)
= αθ∆θ δ (5.18)

The evolution of the plastic deformation gradient, F p, can be written in terms of the plastic

part of the spatial velocity gradient, Lp, as Ḟ p = Lp ·F p. In this J2 plasticity model, Lp is

simply given by (Patra et al., 2023b):

Lp =

√
3

2
˙̄εpNp (5.19)

where, ˙̄εp is the effective plastic strain rate and Np is the unit tensor along the direction

of plastic flow. Np can be further written in terms of the deviatoric stress, S, and the

backstress tensor, χ, as (Patra et al., 2023b):

Np =

√
3

2

S − χ

σ̄∗
(5.20)

Here, σ̄∗ describes the modified effective stress, which is given by: σ̄∗ =
√

3
2(S − χ) : (S − χ).

Generally speaking, Lp can be additively decomposed into a symmetric part, D
p

= sym
[
Ḟ p · F p−1

]
,

which is representative of the plastic strain rate and an anti-symmetric part, W
p

= ant
[
Ḟ p · F p−1

]
,

representative of the plastic spin or the substructure rotation (Hashiguchi, 2020; Weber and

Anand, 1990). The formulations presented in Equations 5.19-5.20 for Lp have been adopted

from Weber and Anand (1990), where it was assumed that D
p

= sym
[
Ḟ p · F p−1

]
=√

3
2

˙̄εpNp and W
p

= ant
[
Ḟ p · F p−1

]
= 0, thus neglecting the anti-symmetric part of Lp

for isotropic plasticity. As a first order approximation, we have also not considered the

rotation of the substructure in our anisotropic model. While the effect of plastic spin may

be negligible for small deformations, we note that such an approximation may not hold for

large plastic strains and appropriate modifications can be made in future work (see Dafalias

(1985), for example).

The effective plastic strain rate is modeled using a Kocks-type thermally activated flow rule
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that can account for temperature- and strain rate-dependent effects (Kocks et al., 1975),

i.e.,

˙̄εp = ˙̄εp0 exp

{
−∆Fg
kθ

(
1 −

(
σ̄∗ − sa
st

)p)q}
; σ̄∗ > sa (5.21)

where, ˙̄εp0 denotes the reference strain rate, ∆Fg is the activation energy for dislocation

glide, the athermal slip resistance, sa, accounts for slip resistance due to long range stress

fields of dislocation junctions, and the thermal slip resistance, st, accounts for slip resistance

due to short range barriers. k denotes the Boltzmann constant and θ denotes the absolute

temperature, respectively. Further, p and q are parameters governing the shape of the

activation enthalpy curve.

The athermal slip resistance, sa, is represented using a typical Taylor-type hardening model

as (Taylor, 1934):

sa = a (τ0 + kihGb
√
ρSSD) (5.22)

where, τ0 is the threshold resistance, kih is the (isotropic) Taylor hardening coefficient due

to the Statistically Stored Dislocation (SSD) densities, ρSSD, G is the shear modulus, and

b is the Burgers vector magnitude.

The SGP model is by definition isotropic, i.e., it does not take into account the anisotropy

induced by the crystallographic orientation or texture of a microstructure. However, this

assumption may not be appropriate in the present work, where we intend to simulate so-

lidification in polycrystalline microstructures. As described earlier, the phase field model

accounts for the growth of grains with different crystal orientations. Hence, in order to in-

corporate the effect of anisotropy (due to crystallographic orientation) on the yield surface,

the above equation is multiplied by an anisotropy factor, a, which is representative of the

Taylor factor. Inspired from Patra et al. (2023b), the factor a is modeled as the inverse

of the maximum Schmid factor over all possible slip systems of the crystal structure under

consideration, i.e.,

a =
1

max (mα)
;α = 1, 2, . . . , Ns (5.23)

where, mα represents the Schmid factor associated with the αth slip system of the crystal

with Ns possible slip systems. Here, sα and nα, denote the unit slip and slip plane normal

directions, respectively. Further, mα is defined as:

mα =
σ

∥σ∥
: sα ⊗ nα (5.24)

where, σ is the Cauchy stress. mα may be considered as the equivalent of the Schmid factor

commonly used in crystal plasticity models. Essentially, the factor, a, introduces anisotropy

along the slip system with the maximum Schmid factor under the assumption of single slip
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in our J2 plasticity model. Further, the slip system information is only used to compute

the anisotropy factor in this otherwise “macro-plasticity” model. We note that such an

assumption may not be valid at large plastic strains, when multiple slip is to be expected.

Anisotropic yield has generally been incorporated in macro-plasticity models using the Hill’s

stress potential (Hill, 1948) and the associated anisotropic material constants can be de-

rived by testing bulk specimens (sizes greater than a few mm) along different orienta-

tions. Given that we do not have much experimental data regarding orientation-dependent

yield anisotropy for the idealized Fe-Cr alloy under study, we resort to a crystal plasticity-

motivated model, by introducing the anisotropy factor, a, which accounts for the orientation-

dependence of the slip resistance. The emphasis in the present work is on predicting the

anisotropic elastic and plastic deformation in smaller microstructures (less than 100 µm

size) at the single crystal and polycrystal level using a macro-plasticity model. Predictions

from verification simulations are also presented in Section 5.2.2.2, which demonstrate the

model’s ability to predict the crystalline anisotropy-induced deformation at small strains in

single crystals. Additionally, it should be noted that a crystal plasticity model naturally

accounts for the orientation effect in terms of the resolved shear stress, rather than alter-

ing the slip resistance. In our SGP framework, the stress potential is based on the second

invariant, J2, of the deviatoric stress tensor minus the backstress tensor and resembles a

von Mises yield criterion (cf. Equation 5.20). Without altering this stress potential, we

introduce crystalline anisotropy in the model by proposing the anisotropy factor, a, which

modifies the slip resistance based on the crystal orientation.

Similar to crystal plasticity models, elastic anisotropy has also been considered in our model

as:

C = R ·R ·C0 ·RT ·RT (5.25)

where, C and C0 denote the fourth rank elasticity tensor in the sample and crystal reference

frame, respectively, and R is the rotation tensor that transforms the elasticity tensor from

the crystal frame to the sample frame.

Note that although we consider the elastic anisotropy and the anisotropy factor, a, here,

unlike crystal plasticity models, their respective evolutions are not considered in the J2

plasticity model. This approximation may not be valid at large plastic strains, where the

grain/crystal may rotate significantly.

The solid solution strengthening due to alloying elements may contribute to the short range

barriers to dislocation glide. In order to account for such effects, the thermal slip resistance
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has been formulated as (Sieurin et al., 2006; Lindgren et al., 2017):

st = a

(
s0t + kln ε

4
3
b c

2
3
Cr

)
(5.26)

where, a is the anisotropy factor described earlier (cf. Equation 5.23), εb accounts for the

misfit strain due to solute (Cr) atoms with concentration cCr and s0t and kln are associated

constants. In the coupled phase field-plasticity simulations, the spatially resolved local

solute concentrations are used to the solid solution strengthening model.

The evolution of the SSD density is modeled using a Kocks-Meckings type hardening equa-

tion (Kocks and Mecking, 2003), which has been modified to account for the GND density

(see Chapters 3 and 4 and Evers et al. (2004a); Patra et al. (2023b)), as given below:

ρ̇SSD =
kmul
b

√
ρSSD + ρGND ˙̄εp − krecρ

α
SSD

˙̄εp (5.27)

where, the first term on the RHS accounts for the dislocation evolution at forest obstacles

and pre-existing junctions, while the second term accounts for the dislocation annihilation

due to recovery. Here, ρGND represents the GND density, and kmul and krec are material

parameters associated with the SSD density evolution.

The Nye tensor, Λ, can be derived from the curvature of the plastic deformation gradient

(Nye, 1953; Dai, 1997; Arsenlis and Parks, 1999; Arsenlis et al., 2004). We have used the

same here in the rate form as (Patra et al., 2023b):

Λ̇ = −
(
∇× Ḟ pT

)T
(5.28)

The corresponding rate of evolution of GND density is given as:

ρ̇GND =
1

b
||Λ̇|| (5.29)

where, ||Λ̇|| denotes the L2 norm of Λ̇. The rate of evolution of backstress due to the GND

density is given as (Patra et al., 2023b):

χ̇ = a kkhGb
ρ̇GND

2
√
ρGND

Np (5.30)

where, kkh is the kinematic hardening coefficient. The incremental form of the backstress

model allows development of backstress due to GNDs along the direction of plastic flow,

while also capturing the history of backstress evolution upon load reversals (Patra et al.,



Chapter 5. Rapidly Solidified Fe-Cr Alloys: Tension-Compression Asymmetry 115

2023b). The reader is referred to Chapter 3 and Patra et al. (2023b) for a detailed description

of the backstress model and physical implications of the kkh parameter.

In summary, we have developed a J2 SGP model that can also account for the effect of

crystalline anisotropy on the elastic and plastic deformation in the limit of small strains.

Numerical integration of the SGP model is described in Patra et al. (2023b). The SGP

model has been implemented as a material model and interfaced with the open source finite

element solver, MOOSE (Permann et al., 2020).

5.2.2.1 Parameters for the SGP Model

This work primarily focuses on the rapid solidification and deformation of a model Fe-

Cr alloy. In this regard, the SGP model was first calibrated to nominally predict the

temperature-dependent yield stress of a representative austenitic steel (Nikulin et al., 2010)

and the representative flow stress at room temperature (Brown et al., 2017). A three

dimensional (3D) cube-shaped simulation domain, comprised of 512 randomly oriented cubic

grains, was generated using an in-house algorithm. These 3D ensembles were meshed using

hexahedral elements of 50 µm size, with linear interpolation and full integration. The

ensembles were deformed quasi-statically in tension at a fixed strain rate of 2 × 10−4s−1.

Note that while the SGP constitutive model was calibrated to the experimental response

using 3D simulations, the coupled PF-SGP simulations shown later have been performed in

2D, with a generalized plane strain assumption.

Flow parameters, primarily the reference strain rate, ˙̄εp0, activation energy for dislocation

glide, ∆Fg, the shape parameters, p and q, and the threshold slip resistance, τ0, were

calibrated to predict the experimentally observed yield stress as a function of tempera-

ture. Since this work involves simulating processing-induced thermomechanical deformation

across a wide range of temperatures, temperature-dependence of the elastic constants needs

to be considered as well. Temperature dependence of the anisotropic elastic constants in

the range 278−1473 K was taken from Neuhaus et al. (2014); Magagnosc et al. (2021). The

temperature dependent thermal expansion coefficient, αθ, was taken from Pokharel et al.

(2019). As a first order approximation, we have extrapolated these values for temperatures

beyond the specified limits. FCC crystallography, with twelve 111 < 110 > slip systems,

was considered for the calculation of the anisotropy factor, a.

Model predictions of the temperature-dependent yield stress from the standalone SGP model

as compared with the experimental counterparts is shown in Figure 5.1(a). Experimental

data for the temperature-dependent yield stress for SS 304L alloy were obtained from Nikulin
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et al. (2010). Following this, the strain rate-dependent response of our SGP model was

predicted by deforming the 3D ensembles at various strain rates ranging from ε̇ = 2×10−4s−1

to ε̇ = 2s−1. The 0.2% offset yield strength obtained for each of the simulations, was

normalized with the value obtained at the lowest strain rate, i.e., at ε̇ = 2×10−4s−1. These

results, along with the experimental values for two different steels (i.e., low carbon steel:

0.035 wt. % C and micro-alloyed steel: 0.062 wt. % C) (Paul et al., 2014), have been

shown in Figure 5.1(b). The model predicted strain rate sensitivity is in the same range

as these representative experimental values. The hardening and substructure evolution

parameters were estimated by fitting the Room Temperature (RT) stress-strain response

to the experimental data for an AM SS304L deformed in tension (Brown et al., 2017).

Analytical estimates of the initial SSD density, ρ0SSD, and Taylor hardening coefficient

for isotropic hardening, kih, were directly taken from Brown et al. (2017), whereas the

dislocation multiplication constant, kmul, and the dynamic recovery constant, krec, were

estimated by fitting to the experimental RT stress-strain response. This is shown in Figure

5.1(c).

Subsequent to identifying the flow and isotropic hardening parameters, the kinematic hard-

ening parameters were identified using a separate set of simulations in 2D polygrain ensem-

bles. This is necessitated as the model predicted size-dependent strengthening from our first

order SGP model is expected to be mesh size-dependent (cf. Chapter 3). The GND density

was assumed to be negligible at the start of the calibration simulations, i.e., ρ0GND = 0.

The kinematic hardening coefficient, kkh, was determined using the methodology discussed

in Chapter 3 to nominally predict the Hall-Petch coefficients in the range of experimental

observed values. In this regard, 2D microstructure ensembles of 100×100 µm with different

mean grain sizes, D, were first instantiated using an open source tessellation and meshing

software Neper (Quey et al., 2011). These microstructures were then meshed using 8 node

square-shaped elements, with quadratic interpolation and 0.5 µm mesh size. The model-

predicted Hall-Petch coefficients were well within the range of experimental values reported

in the literature (∼ 320 MPa µm−0.5) (Astafurov et al., 2019). This has been shown in

Figure 5.1(d) at different values of applied strain. Values of the SGP model parameters are

given in Table 5.2.

5.2.2.2 Strain Gradient Plasticity Model Predictions of Single Crystal Defor-

mation

Figure 5.2 shows the uniaxial stress-strain behavior for single crystal simulations performed

in 3D (Figure 5.2(a)) and in 2D-plane strain (Figure 5.2(b)), with crystals oriented along
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Figure 5.1: (a) SGP model prediction of the temperature-dependent yield stress as com-
pared with representative experimental data from Nikulin et al. (2010). (b) SGP model
prediction of the normalized strain rate-dependent yield stress as compared with the rep-
resentative experimental data for similar steels from Paul et al. (2014). (c) Comparison of
SGP predicted room temperature stress-strain response with the experimental data from
Brown et al. (2017). (d) Prediction of grain size effect shown in terms of σ̄ versus 1/

√
D for

different values of applied strain. Here, D represents the mean grain size in the randomly
instantiated microstructures.

the < 001 >, < 011 > and < 111 > directions, respectively. A comparison of the predicted

elastic modulus and yield strength with their corresponding analytical estimates has been

provided in Table 5.3. For a three dimensional domain, the analytical elastic modulus

(Dieter and Bacon, 1976) and yield strength (Patra et al., 2023b) is given by:

1

Ehkl
= S11 − 2

[
(S11 − S12) −

1

2
S44

] (
l2m2 +m2n2 + l2n2

)
(5.31)

σ̄y ≈ χ̄+ a (τ0 + kihGb
√
ρSSD) + a

(
s0t + klnε

4
3
b c

2
3
Cr

)(
1 −

(
kT

∆Fg
log

(
ε̇p0
ε̄p

)) 1
q

) 1
p

(5.32)
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Table 5.2: SGP model parameters for a representative Fe-Cr alloy.

Parameter Description Value

C11 Temperature dependent elastic constants (GPa) (266.36− 0.0677θ)
C12 (169.6− 0.0196θ)
C44 (97.7− 0.00604θ)
G Shear modulus (GPa) (97.7− 0.00604θ)
α Thermal expansion coefficient (K−1) 9.472× 10−6 + 2.062× 10−8 θ − 8.934−12 θ2

b Burgers vector magnitude (nm) 0.258
˙̄εp0 Reference shear strain rate (s−1) 1.73× 10−1

p, q Activation energy shape parameters 0.35, 1.95
τ0 Threshold slip resistance (MPa) 32

∆Fg Activation energy barrier 0.5Gb3

s0t Thermal slip resistance (MPa) 62.048
εb Misfit parameter 0.031
kln Self-diffusion constant for Cr (MPa) 18× 103

kmul Dislocation multiplication constant 0.14
krec Dynamic recovery constant 6
kih Isotropic hardening coefficient due to SSDs 0.19
kkh Kinematic hardening coefficient due to GNDs 0.8

ρ0GND Initial GND density (mm−2) 0.0
ρ0SSD Initial SSD density (mm−2) 2.4× 108

where, Sij are the components of the compliance tensor, S, and l,m,n are the direction

cosines for the crystal orientation under consideration. Equation 5.32 is obtained by invert-

ing the flow rule given in Equation 5.21 and the reader is referred to Patra et al. (2023b) for

further description. Note that the value of χ̄ has been directly added from our simulations.

For the 2D simulations, we rotate the elastic tensor to a plane strain coordinate system

(Shishvan et al., 2011). The resulting plane strain elastic modulus E∗ can be analytically

estimated as (Shishvan et al., 2011):

E∗ =

[
S′
11 cos4 ϕ+ 2

(
S′
12 + 2S′

66

)
cos2 ϕ sin2 ϕ+ S′

22 sin4 ϕ−
(
S′
13 cos2 ϕ+ S′

12 sin2 ϕ
)2

S′
33

]−1

(5.33)

where, S
′
ij denotes the components of the compliance tensor in the plane strain coordinate

system, and ϕ is the angle between X axis of the global and the plane strain coordinate

system. Further, the methodology for estimating yield strength for a 2D domain is identical

to that explained for its 3D counterpart.

Table 5.3 shows that the SGP predicted elastic moduli and yield stresses are in concurrence

with the analytical values for all orientations. Generally speaking, the < 111 > orientation

is elastically stiffer (Brown et al., 2017) and also has a lower Schmid factor (max(mα)), in

comparison to the < 011 > and < 001 > oriented single crystals. Similar observations have

been noted for the 2D plane strain simulations, see Table 5.3. In summary, these results
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Figure 5.2: Model Predictions of mechanical response of < 001 >, < 011 > and < 111 >
oriented single crystals obtained from (a) 3D and (b) 2D (plane strain) SGP simulations.

indicate that the proposed SGP model demonstrates the capabilities to predict the crystal

anisotropy induced deformations similar to a crystal plasticity model, at least for small

strains, but at much lower computational costs in comparison to a crystal plasticity model.

Table 5.3: Comparison of the elastic modulus, E, and yield stress, σy, values between the
single crystal SGP simulations and analytical calculations.

Simulation domain Property Crystal orientation J2 SGP predictions Analytical calculations

3D

E
(GPa)

< 001 > 116.51 115.22
< 011 > 192.81 191.81
< 111 > 247.67 246.45

σy
(MPa)

< 001 > 303.51 317.91
< 011 > 320.65 318.92
< 111 > 528.81 507.36

2D

E
(GPa)

< 001 > 157.80 156.93
< 011 > 194.24 191.83
< 111 > 266.18 263.10

σy
(MPa)

< 001 > 326.30 326.10
< 011 > 333.60 326.34
< 111 > 495.89 516.32

5.2.3 Coupled Phase Field and Strain Gradient Plasticity Simulations

Figure 5.3 schematically describes our coupled PF-SGP framework. The solidification and

deformation simulations have been performed in three stages:

1. The first stage involved simulation of the phase transformation due to solidification,

up to the point of complete solidification, i.e., ϕi = 1 in the entire simulation domain,

using the coupled PF-SGP model. Consideration for SGP allows the development of

dislocation substructures and residual stresses during solidification.
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2. Following complete solidification, the simulation domains are allowed to cool down to

RT using only the SGP model. The PF model is turned off during this stage to save

computational costs. This assumption is justified based on the limited diffusivity of Cr

in solid Fe in these rapidly solidified microstructures (Lindroos et al., 2022), such that

the Cr concentration may not evolve significantly. Moreover, the primary purpose of

this stage of the simulation is to allow the development of thermally-induced residual

stresses (cf. Pokharel et al. (2019)).

3. After cooling to RT, the microstructures are deformed using the SGP model, with

the “residual” state of stresses, deformation gradients, SSD and GND densities, and

backstresses.

Figure 5.3: Schematic of the coupled phase field-strain gradient plasticity framework and
its application in simulating solidification as well as post-solidification Tension-Compression

asymmetry in rapidly solidified microstructures.
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The simulation domain of 18 × 18 µm was meshed using square-shaped finite elements,

with linear interpolation and full integration. This relatively small domain size was con-

sidered primarily to mitigate computational costs (also see Section 5.4). An initial mesh

size of 0.125 µm was used at the start of the first time step. Following this, adaptive mesh

refinement was employed to efficiently resolve the growing interface (Biswas et al., 2022).

The mesh was allowed to selectively refine around regions depicting the largest error (of all

variables, conserved as well as non-conserved). Such high error values are typical for the

solid-liquid interfaces, inter-dendritic regions and for regions in the vicinity of grain bound-

aries. This resulted in the element size varying from 0.5 µm (maximum) up to 0.015 µm

(minimum) within the simulation domain. Since the SGP model is a non-local formulation,

the element size does affect the predicted strength contribution via the kinematic hardening

coefficient, kkh (see Chapter 3 and Patra et al. (2023b)). As a first order approximation, we

assume that the kkh remains constant (kkh = 0.8) over all element sizes (0.015 − 0.5 µm)

lying within the simulation domain. Following the approach of Pinomaa, Lindroos and co-

authors (Pinomaa et al., 2020a; Lindroos et al., 2022), six equally spaced nuclei, with an

initial radius of 0.07 µm and an interface width of 0.14µm, were initialized at the bottom

edge of the simulation domain. Of the six nuclei, four have random crystallographic orienta-

tions (see orientations 1, 2, 3 and 4 in the Inverse Pole Figure (IPF) in Figure 5.3), whereas

the remaining two nuclei are assumed to have an orientation identical to their neighbors

(cf. nuclei 5 and 6 in Figure 5.3). Such an instantiation was deliberate, in order to analyze

the solute behavior near Low Angle (LAGBs) or identical grain boundaries and the High

Angle Grain Boundaries (HAGBs) during rapid solidification. Additionally, grains 1 and 2

represent the so-called intermediate orientations, having a Schmid factor m = 0.42, whereas

grain 3 represents the hard orientation, having a m = 0.31. The grain 4 represents the soft

orientation, having a Schmid factor of m = 0.48, respectively.

For the seed nuclei, we have assumed an initial SSD density (ρ0SSD) of 102mm−2 and an

initial GND density (ρ0GND) of 102mm−2. Note that these magnitudes vary from those used

in our calibration simulations reported in Section 5.2.2.1. This is because the seed nuclei are

instantiated in a liquid melt pool, i.e., at θ ∼ θm, when dislocation densities are expected

to be low. However, the remaining parameters of the SGP model have been kept identical

to those mentioned in Table 5.2. The anisotropic strength, ςi (i ∈ [1, 4]), was varied to

incorporate the effect of crystallographic orientation on the growth morphology. A crystal

with < 001 > axis lying closer to the thermal gradient would always have a higher ςi, thus

exhibiting a stronger preference for growth (cf. Equation 5.7). In a similar manner, based

on the crystallographic orientation allotted to the seed nuclei (see standard IPF triangle

in Figure 5.3), ςi calculations were performed for each of the four grains considered in this

study. These values have been summarized in Table 5.4.
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Table 5.4: Anisotropic strength values, ςi, assigned to each of the grains using Equation
5.6.

Grain number Crystal Orientation (Axis) Value

1 < 0 0 1 > 0.04
2 < 0 1 1 > 0.029
3 < 1 1 1 > 0.024
4 < 0 4 11 > 0.035

The Cr concentration, cCr, was initialized to be 0.13 (in wt. fraction) within the domain of

the initial nuclei, while it was 0.21 (in wt. fraction) inside the liquid. The Cr concentration

was intentionally kept lower within the initial nuclei, to mimic realistic conditions, where

initial nuclei formation results in solute rejection into the liquid (Spittle and Brown, 1989).

During the solidification step, the temperature of the top edge of the simulation cell was kept

equal to the melting temperature, θm, whereas the temperature at the bottom edge varied

depending on the applied thermal gradient, G, and according to the following equation:

θ(y) = θm −G(H − y) ∀x (5.34)

Here, H = 18µm is the height of the simulation domain and y represents the spatial coor-

dinate along the solidification direction (y ∈ [0, 18] µm). The thermal gradient, G, varied

from 105 K/m to 107 K/m in our simulations.

As described earlier, the phase field model operates in terms of the reduced temperature,

θr, while the deformation model operates in terms of the absolute temperature, θ. In

order to scale this variable, the reference temperature, θref , used in Equation 5.4 to non-

dimensionalize the absolute temperature, θ, was kept equal to the minimum (imposed)

temperature among all solidification simulations used in the present study, i.e., θref =

θm − 107 H = 1609 K. For the solidification simulations, the bottom left corner was

fixed in all directions to prevent rigid body translation. Periodic boundary conditions were

imposed on the left and right edges in all degrees of freedom, while the top and bottom faces

were kept traction free. These non-linear partial differential equations were solved using the

preconditioned Jacobian-free Newton–Krylov (PJFNK) solver in the MOOSE finite element

framework (Permann et al., 2020). The solver parameters and tolerances were adapted from

Biswas et al. (2022).

Post the completion of the solidification step, i.e., ϕi = 1 in the entire domain, the PF model

was turned off and the mesh was regularized to a uniform mesh size of 0.5 µm, while ensuring

smooth interpolation of the phase field variables, deformation gradient, stress tensor, SSD,

GND, and the backstress tensor, from the adaptively refined mesh to the uniform mesh.

Subsequent simulations were performed with the standalone SGP model for cooling the
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microstructures to room temperature. The microstructure solidified with the largest thermal

gradient (G = 107 K/m), was subjected to a cooling rate of 3 × 105 K/s, whereas the

microstructure solidified with intermediate (G = 106 K/m) and low (G = 105 K/m) thermal

gradients were cooled at 3 × 104 K/s and 3 × 103 K/s to room temperature, respectively.

Such large thermal gradients, and corresponding cooling rates, were chosen to mimic realistic

solidification environments which are typical in an AM process (Farshidianfar et al., 2016;

Prasad et al., 2020). Finally, the solidified and cooled microstructures were then subjected

to tensile and compressive deformations up to a nominal strain of 0.02 to obtain their

mechanical properties.

5.3 Model Predictions

In the present study, solidification simulations have been performed for three different ther-

mal gradients, namely, 105 K/m, 106 K/m, and 107 K/m. We first present model predictions

of microstructure evolution during solidification, followed by the mechanical properties.

5.3.1 Evolution of the Conserved Parameter, cCr

Figure 5.4 shows the distribution of Cr solute, cCr (in wt. fraction), after ∼ 50% solidifica-

tion for three different thermal gradients. The crystallographic orientation of the individual

grains has been highlighted in the corresponding standard inverse pole figure (IPF) key.

Two important observations emerge from these contours. Firstly, a transition from cellular

to dendritic grain morphology can be seen with increasing values of G from 105 K/m to

107 K/m. Such grain morphologies are typical in welded structures, where a sharp thermal

gradient, G, leads to a planar-cellular-dendritic transition on moving from the base metal

towards the weld region (Zhu et al., 2021b; Fisher et al., 2023). Further, the solidification

front is non-uniform, i.e., grains oriented favorably tend to grow faster than their neigh-

bors. The anisotropy strength, ςi, plays a key role here. Grains with < 001 > axis oriented

closer to the thermal gradient direction have a higher value of anisotropy strength, thus

giving them a competitive advantage over their neighbors (Liu et al., 2018b). However, it

is important to note that this heterogeneity in grain morphology is observed only for large

thermal gradients. Lower thermal gradients provide a diminished driving force for grain

growth, thus reducing the competitive advantage of favorably oriented grains and resulting

in a cellular front.

Identical grain boundaries (same orientations between the grains) are marked as ‘A’, while

the HAGBs are marked as ‘B’ in Figure 5.4. It is observed that the Cr segregation at ‘A’ type
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Figure 5.4: Cr concentration, cCr, in the ∼ 50% solidified microstructure for three differ-
ent thermal gradients, G. The crystallographic orientations of the grains have been marked
in the standard inverse pole figure (IPF) key. The boundaries at the grain interfaces have
been added during post-processing. The markers “A” and “B” refer to identical (same
orientation between grains) and high angle grain boundaries, respectively. (b) Effect of the
imposed thermal gradient, G, on the radius and Cr solute segregation at the dendrite tip.

boundaries is quite prominent for the largestG, i.e., 107 K/m. However, such a prominent Cr

segregation does not develop at the ‘A’ type boundaries for G = 105 K/m and G = 106 K/m.

This is primarily because the lower thermal gradients associated with lower cooling rates

provide sufficient time and thermal activation for the Cr solute for diffusion, thus leading

to segregation at only ‘B’ type grain boundaries (Mun et al., 2012; Li et al., 2022). For the

microstructures solidifying at thermal gradients of G = 105 K/m and G = 106 K/m, the

temperatures in these microstructures remains close to the melting point (θm = 1789 K)

even after complete solidification. Hence, no significant solute segregation can be seen at ‘A’

as well ‘B’ type boundaries in Figure 5.4. Another observation from the contours shown in

Figure 5.4(a) is the variation in the Cr solute distribution within the solidified grains (along

the direction of thermal gradient), specifically at low and intermediate thermal gradients.

Such a behavior can arise by neglecting the effects of interface velocity on the partition

coefficient (Pinomaa et al., 2020a), thus altering the evolution of (spatial as well temporal)

Cr solute distribution (see Equation 5.13).



Chapter 5. Rapidly Solidified Fe-Cr Alloys: Tension-Compression Asymmetry 125

In order to further explore the effect of cooling rates on the microstructure evolution, the

dendrite tip radius was estimated for the ∼ 50% solidified microstructures. Figure 5.4(b)

shows a decrease in the dendrite tip radius with increasing cooling rate. The observed

scatter is primarily due to the anisotropy associated with the randomly assigned crystallo-

graphic orientation of the growing nuclei. The dendrite tip radius provides an alternative

indication of the wavelength of instability at the solid-liquid interface (Fisher et al., 2023).

Moreover, large thermal gradients, associated with high cooling rates result in a significant

undercooling at the solid-liquid interface. This is due to the imposed temperature boundary

conditions that alter the local temperature as well as composition equilibrium from the cal-

culated solidus temperature, and are primarily responsible for the complex non-equilibrium

microstructures observed in rapidly solidified microstructures (Zhu et al., 2021b).

Further, the Cr diffusivity in the solid phase is significantly lower as compared to the liquid

phase. This, in conjunction with the higher undercooling and enhanced boundary layer

thickness, leads to a higher ∆Cr at the solid-liquid interface for simulations with large

thermal gradients (and hence higher cooling rates). This phenomenon has been quantified

in Figure 5.4(b), by extracting the Cr concentration from the line profiles at the solid-liquid

interface from the ∼ 50% solidified microstructure.

The results presented in this section highlight the effect of thermal gradients on solute

(Cr) partitioning to the grain boundaries. Presumably, these may be expected to affect the

deformation behavior and mechanical properties as well. In order to account for such effects,

the thermal slip resistance in our SGP model accounts for solid solution strengthening due

to the local Cr concentration (cf. Equation 5.26). Based on the local Cr concentration, the

local thermal slip resistance is also allowed to vary during solidification.

5.3.2 Evolution of GND Density and Backstress

Figure 5.5 shows the evolution of the GND density, ρGND, and the effective backstress,

χ̄, in the ∼ 50% and the fully solidified microstructures under three different (imposed)

thermal gradients. Corresponding line profiles for ρGND and χ̄ obtained at H/2 for the fully

solidified microstructures are shown in Figures 5.6(a) and 5.6(b), respectively. In addition,

the contour plots and the corresponding line profiles at H/2 for the SSD density, ρSSD,

have been shown in Figure 5.7(a) and 5.7(b). Localizations of ρGND, and the corresponding

χ̄ are evident along the primary as well as secondary dendrite arms for the microstructure

solidified at G = 107 K/m. Insufficient supply of liquid metal to fill the empty gaps between

the dendritic arms results in the development of significant strain gradients within these

regions. The Cr solute segregation, especially at larger imposed thermal gradients, in the
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Figure 5.5: Contours of the GND density, ρGND, and effective backstress, χ̄, in the ∼ 50%
and the fully solidified microstructures for three different thermal gradients.

dendrite arms adds up to the local microstructural heterogeneity as well (cf. Figure 5.4).

This leads to the development of geometrically necessary dislocations in these regions.

An important observation from Figure 5.5 and 5.6(b) is the development of backstress along

the ‘A’ type boundaries. Especially, the microstructure solidified under the largest thermal

gradient shows a significant backstress accumulation (Figure 5.5) and solute segregation (cf.

Figure 5.4) along the ‘A’ type boundaries. At lower thermal gradients, the microstructure

tends to homogenize, thus diffusing out the ρGND (Figure 5.6(a)) and backstress (Figure

5.6(b)) accumulations. This indicates that the development of local GNDs and backstress is

also dependent on the underlying solute segregation. Generally speaking, the grain bound-

ary energy associated with identical grain boundaries is significantly lower than their HAGB

counterparts (Humphreys and Hatherly, 2012). Hence, the heterogeneities developed across

‘A’ type boundaries depict a much lower magnitude than the ones developed across HAGBs

(see Figure 5.5). With decrease in G, no significant GND density and backstress accumu-

lations were observed along the ‘A’ type boundaries for the intermediate and low thermal
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Figure 5.6: Line profiles of (a) GND density, ρGND, and (b) effective backstress, χ̄,
in the fully solidified microstructures at H/2 for simulations with three different thermal

gradients.

gradients (cf. Figure 5.6).

It can be seen from Figure 5.6 that the GND density increases by ∼ 1−2 orders of magnitude

and the effective backstress increases by about an order of magnitude per order of magnitude

increase in G. While the value of backstress is still insignificant (< 6 MPa) for thermal

gradients of 106 K/m and lower, the values increase to ∼ 30 MPa for a thermal gradient of

107 K/m, which is typical of AM processes. Bertsch et al. (2020) measured the dislocation

density in TEM lamellae of AM SS316L, where the cooling rate were derived from the

corresponding SDAS spacing. Similar to the present work, they have observed a net rise
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in the total dislocation density by ∼ 2 orders of magnitude with increase in the cooling

rate from 3 × 103 K/s to 7 × 104 K/s. Additionally, similar magnitudes of total dislocation

density have also been reported by Hu et al. (2023) at the end of the cooling stage using

their multi-scale modeling framework of laser-based AM process. Yoo et al. (2018) calculated

High Resolution- Electron Back Scattered Diffraction (HR-EBSD) based GND densities in

an AM Inconel 718, and reported GND localizations similar to those shown in Figure 5.5

in the inter-dendritic regions. Godec et al. (2020) reported an average GND density of

1.34×107 mm−2 in their AM SS316L from the EBSD based Kernel Average Misorientation

(KAM) data. Similar magnitudes of GND densities can also be seen in Figure 5.5 for the

specimen solidifying with the highest G. Small and Taheri (2021) reported a rise in EBSD

based average GND densities from 2.2 × 107 mm−2 to 1.2 × 108 mm−2 on moving from

Binder Jet 3D Printing (BJ3P), with low thermal gradient, to Direct Metal Laser Sintered

(DMLS), with higher thermal gradient for AM Inconel 625. Such an effect of the imposed

thermal gradient can be clearly observed in Figure 5.5 and 5.6(a). The above observations

provide validation of the model predicted dislocation densities near the inter-dendritic and

grain boundaries.

The ρSSD contours and corresponding line profiles shown in Figure 5.7(a) and 5.7(b) do not

show any notable variation for the lower and intermediate G, with their average magnitude

being close to that of the initial SSD density, 102 mm−2. Variations are somewhat visible

at ‘A’ as well as ‘B’ type boundaries for the microstructure solidified under G = 106 K/m,

however the subtended magnitudes are not that significant. On the other hand, the mi-

crostructure solidified under G = 107 K/m does indicate a notable rise in the ρSSD, al-

though the average magnitude is still two orders lower than its ρGND counterpart. It is

important to note here that the exponential rise in ρGND with increasing G also influences

the ρSSD evolution through Equation 5.27. The sudden in rise in ρSSD for microstructure

solidified under G = 107 K/m, and similarity in contour plots shown in Figure 5.5 and

5.7(a) do conform the above conclusion. This is interesting, considering that although our

SGP model is rate-sensitive (cf. Figure 5.1(b)), the SSD density, which is a function of the

plastic strain, does not vary significantly for the different thermal gradients. Given that

the GND density is much higher than the SSD density for the highest G, the dislocation

structures could be expected to be primarily of GND type. These results also indicate that

the thermal gradient induced GND density and backstress could not be predicted by local

plasticity models that do not account for the effect of strain gradients. Non-local strain

gradient plasticity formulations are required to simulate the heterogeneous microstructure

and residual stress developments during rapid solidification.
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Figure 5.7: (a) Contours of the SSD density, ρSSD, in the ∼ 50% and the fully solidified
microstructures for three different thermal gradients. (b) Line profiles of the SSD density
in the fully solidified microstructures at H/2 for simulations with three different thermal

gradients.
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5.3.3 Uniaxial Deformation of Solidified Microstructures

The solidified microstructures were first cooled to room temperature and then loaded in

uniaxial tension and compression along the build (BD) and transverse (TD) directions at a

quasi-static strain rate of 2 × 10−4 s−1 up to 0.02 nominal strain. As explained earlier, the

microstructure solidified with the largest thermal gradient (G = 107 K/m) was cooled to

RT with a cooling rate of 3 × 105 K/s, whereas its lower (G = 105 K/m) and intermediate

(G = 106 K/m) counterparts were subjected to a cooling rate of G = 3 × 103 K/s and

G = 3×104 K/s. As shown in Figure 5.3, the bottom and left faces were subjected to roller

boundary conditions, whereas the bottom left corner was fixed in all dimensions to avoid

rigid body motion. The remaining surfaces were kept traction free. As discussed previously

in Section 5.2.3, the PF model was turned off and only the SGP model was employed for

these deformation simulations.

Figure 5.8 shows the predicted mechanical response when loaded in both tension and com-

pression, and separately along the BD and TD, for the microstructures solidified (and further

cooled) with different thermal gradients. Generally speaking, the flow stress is higher during

compression loading as compared to tension loading for the microstructures loaded along

the TD and vice-versa for those loaded along the BD. Moreover, the observed difference

in flow stress between tension and compression increases with increase in the (imposed)

thermal gradient G. For G = 105 K/m, this effect is almost negligible. With a thermal

gradient of 106 K/m, this effect increased somewhat, but is still very small. However, under

large thermal gradients (G = 107 K/m), the anisotropy in predicted mechanical response

is clearly visible. This behavior could be attributed to the significant ρGND and back-

stress localizations developing in the microstructure, as seen in Figure 5.5 and is discussed

later. Further, no appreciable difference is observed in the work-hardening regime for the

different microstructures. This could possibly be due to the observation that ρSSD spa-

tial distribution was nearly homogeneous, and did not display any significant localizations

for the different thermal gradients (cf. Figure 5.7(a)) used in this study. The contours

of |σ22| (for BD loading) and |σ11| (for TD loading), shown as inset in Figure 5.8, show

an appreciable difference in the magnitude as well as distribution between the tensile and

compressive deformations for the highest G. This is observed for the BD as well as TD

loaded microstructures. While this effect is still present at lower G, the difference in the

stress magnitudes between the two loadings are relatively lower. Additionally, the Cauchy

stress contours for the different solidified and cooled microstructures are presented below to

verify the self-equilibration of the residual stresses.
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Figure 5.8: Stress-strain responses of the microstructures solidified and cooled under
three different thermal gradients, loaded in uniaxial tension and compression along the
build direction (BD) and the transverse direction (TD). The |σ22| (for BD loading) and
|σ11| (for TD loading) deformation contours at a nominal strain of 0.02 have been added

as an inset for each of the thermal gradients, respectively.

In the absence of any external loads, the residual Cauchy stresses within a simulation domain

should self-equilibrate (Kapoor et al., 2018; Bandyopadhyay et al., 2024), i.e., the net sum of

the stress components should be equal to zero over the simulation domain. To verify this, the

σ̄, σ11 and σ22 contours were plotted for the fully solidified and cooled microstructures for the

three different thermal gradients (prior to deformation) in Figure 5.9. Further, the element

area-weighted sum of the individual Cauchy stress components over the entire domain, i.e.,

⟨σij⟩ =
∑ Ak

Atotal
σij , are also shown in Figure 5.9. It can be seen that |⟨σij⟩| ≤ 1 MPa for

all three thermal gradients, thus verifying self-equilibration of residual stresses along the

BD and TD. It can also be seen that the residual stresses are high in the regions where
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the backstress is high (see hotspots for G = 107 K/m in Figure 5.5 and the corresponding

regions in Figure 5.9, for example).

Figure 5.9: σ̄, σ11 and σ22 contours in the fully solidified and cooled microstructures for
the three different thermal gradients. Note that the scales (in MPa) are different in all

three cases.

In addition, the hard grain (m = 0.31, grain 3 in Figure 5.3) displays significantly large

stress magnitudes as compared to the intermediate grains (m = 0.42, orientation 1 and 2 in

Figure 5.3), which in turn, accommodate higher stresses when compared to the softer grain

(m = 0.49, orientation 4 in Figure 5.3). Such an effect is much more prominent when loaded

along the BD than along the TD. Similar correlations between the accommodated residual

stresses and (grain average) orientations have been noted by employing a thermo-mechanical

crystal plasticity model during LPBF-based solidification of a fully austenitic SS316L by

(Kuna et al., 2023). These results further indicate that the proposed SGP model has the

ability to capture orientation-based anisotropy in directionally solidified microstructures at

a computational cost significantly lower than its CPFE counterpart.

To further understand the role played by printing-induced backstresses on the anisotropy in

mechanical response, the average values of individual backstress components, i.e., χ11, χ22

and χ33, were analyzed at the end of the cooling regime. This is described schematically
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in terms of the translation of the von-Mises yield surface in Figure 5.10. The tabulated

(average) backstress magnitudes show a clear increase with increase in thermal gradients,

irrespective of the component under consideration. Using a two dimensional approximation

of 3D yield surface, we now try to explain the effect of these (directional) backstress com-

ponents on the subsequent yield surface. Assuming an initially negligible backstress (which

is conventionally assumed to be the center of the yield surface), the initial yield surface

(schematically shown using the dotted black line in Figure 5.10) is centered at the origin, A.

Dislocation substructure and backstress evolution during solidification leads to the trans-

lation of the center of the yield surface to the point B, which also varies as a function of

the thermal gradient. The negative values of χ11 leads to a leftward translation of the yield

surface along direction 1 (TD) (see Figure 5.1), along with a upward translation along di-

rection 2 (BD) due to a positive χ22. The post-solidification yield surface is schematically

shown using the dotted red line in Figure 5.10. On subjecting to uniaxial deformation, the

resulting yield stress is thus higher in compression as compared to tension for TD loading,

and vice-versa for BD loading. This explains the mechanistic origin of TC asymmetry in

rapidly solidified Fe-Cr alloys due to the GND-induced directional backstress.

Given that a generalized plane strain assumption was used in our mechanics model, χ33

is also predicted in our essentially 2D simulations (which is similar in magnitude to χ11).

However, the qualitative arguments regarding the translation of the yield surface due to the

printing-induced directional backstress would not change under the assumption of different

boundary conditions, such as plane stress or full 3D.

Figure 5.10: Schematic showing the effect of the backstress tensor, χ, on the translation
of the yield surface due to dislocation substructure development during solidification. The
table on the right gives the values of the individual components of the backstress tensor,
χ11, χ22 and χ33, at the end of solidification and cooling for the microstructures with three

different thermal gradients.
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In order to quantify the predicted TC asymmetry, we have adopted the metric of Strength

Differential, SD, as given by (Bassani and Racherla, 2011; Patra et al., 2014):

SD =
|σty| − |σcy|(

|σty| + |σcy|
)
/2

(5.35)

where, σty and σcy denote the yield strength in tension and compression, respectively. Figure

5.11 shows a direct comparison of the SD obtained under BD and TD loading for the

various thermal gradients simulated in this study. The SD values indicate that the TC

asymmetry gets enhanced with increase in the thermal gradients. Available SD data from

the literature for similar Fe-Cr alloys (under TD loading) have also been plotted in Figure

5.11. It can be seen that the predicted SD values, under TD loading, are qualitatively

comparable to the experimental SD values reported in literature, thus validating our model

predictions. It should be noted that the present study used only six initial seeds with (four)

random crystallographic orientations (see Figure 5.3), for the (directional) solidification

simulations. The number of seeds used, their orientations, the imposed thermal gradient

and the volume of the ensemble may also effect the ensuing mechanical properties, and hence

the SD magnitudes. Further, it should also be noted that our model was not calibrated to

any specific material data and hence only qualitative trends should be inferred from our

predictions.

Figure 5.11: Strength Differential (SD) values for the three thermal gradients under BD
and TD loading, in comparison with the available experimental data. The markers [A], [B]
and [C] refer to the literature values from Wang et al. (2023), Jeon et al. (2019), and Chen

et al. (2019), respectively.

Two important observations can be further derived over here. Firstly, the microstructures
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solidified (and further cooled) under the intermediate and largest thermal gradients have

predicted a non-negligible TC asymmetry, with the simulated SD values being qualitatively

similar to those reported in the literature (Chen et al., 2019; Jeon et al., 2019; Wang et al.,

2023). For the TD loading of the microstructure with G = 107 K/m, the yield stress

values in tension were 293.1 MPa and compression were 305.1 MPa, respectively. This

resulted in a SD of −0.0401. Note here that the difference between the yield stresses in

compression and tension (∼ 12.0 MPa) roughly correspond to twice of the mean effective

(average) backstress accumulated in the microstructure (∼ 7.4 MPa). Chen et al. (2019) also

reported similar observations from their deformation studies on AM SS 316L. An identical

analysis for the microstructure with G = 106 K/m reveals that the difference between the

yield stress in compression and tension (∼ 4.0 MPa) follows a similar relationship with the

effective (average) backstress (∼ 1.7 MPa). Moreover, with increasing thermal gradients,

the SD values display an exponential increase, as seen in Figure 5.11 for BD as well as TD

loading scenarios. This could be attributed to the order of magnitude increase in backstress

values (due to the printing-induced GND density) as described in Figure 5.10. Presumably,

local solute segregation may also play a role in the TC asymmetry of rapidly solidified

microstructures. Individual contributions of these competing mechanisms are delineated in

Section 5.4.

5.4 Discussion

It has been previously reported that the microscale intragranular residual stresses, an out-

come of printing induced dislocation substructures, are primarily responsible for the TC

asymmetry observed in rapidly solidified metals (Chen et al., 2019; Zhang et al., 2022). The

present work developed a coupled PF – SGP framework to simulate these microscale resid-

ual stresses and their effect on the anisotropic mechanical properties, specifically the TC

asymmetry. The prior studies (Chen et al., 2019; Zhang et al., 2022), assumed a constant

initial value of backstress during the deformation simulations to predict this TC asymme-

try. In our work, the backstress, due to the GND densities, were allowed to develop in

situ during the solidification. While Pinomaa, Lindroos and co-authors (Pinomaa et al.,

2020b,a; Lindroos et al., 2022) have previously used coupled phase field-crystal plasticity

models to predict the dislocation structures and also predicted the mechanical properties of

rapidly solidified microstructures, they did not explicitly model the directional backstress

due to these dislocation structures and did not attempt to predict the anisotropic mechani-

cal properties of rapidly solidified microstructures. Consideration for the said effects in our
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coupled PF-SGP modeling framework to predict the TC asymmetry of rapidly solidified

microstructures represents an advancement over these prior modeling studies.

We further delineate the role played by the two potentially competing mechanisms on the

TC asymmetry: (a) the thermal distortion induced GNDs (and directional backstress), and

(b) local Cr solute segregation at the solid-liquid interface, which necessitates the presence

of GNDs to accommodate the ensuing lattice incompatibilities. As discussed in (Yoo et al.,

2018; Bertsch et al., 2020), these solute segregation-induced GNDs then interact with the

moving dislocations and contribute to additional hardening. In this regard, the solidification

simulations for G = 107 K/m were re-run, albeit with two modifications. In one case, the

backstress tensor, χ, was forced to be equal to zero, i.e., suppressing the contribution of

GNDs to the directional residual stresses. In the second case, a uniform solute concentration

was artificially imposed by setting the Cr concentration equal to the equilibrium concen-

tration of c0Cr = 0.21, i.e., suppressing solute segregation and its contribution to the GND

development and backstress. Post-solidification, these simulations were cooled (at a cooling

rate of 3×105 K/s) and subsequently deformed in tension and compression along the BD as

well as TD directions, respectively. Figure 5.12(a) shows the mechanical response in terms

of the stress-strain curves and Figure 5.12(b) shows the predicted values of SD for these two

cases, as compared with the predictions from a fully coupled PF-SGP model. These results

clearly point out that the contribution of GND-induced backstress to the SD is higher than

that due to solute segregation. Such an observation can be seen for the microstructrures

loaded along both BD and TD. Modeling frameworks for predicting the anisotropic me-

chanical response of rapidly solidified microstructures therefore need to consider both these

effects. In experiments, both the mechanisms are expected to act concurrently during rapid

solidification, although the dominant mechanism may vary based on the microstructural

factors and the boundary conditions imposed on the specimen.

Further, the PF-SGP framework proposed here has been used to study cellular microstruc-

tures which are expected to develop at the subgrain level. While the model can be applied for

larger polycrystalline structures, the computational expenses involved would be substantial.

We note that strain gradient crystal plasticity models (instead of J2 plasticity models)

could be better suited for predicting heterogeneous substructure development at the slip-

system level during rapid solidification. However, these simulations become significantly

computationally intensive when coupled with PF due to the fact that adaptive remeshing

at the solidification front in our coupled simulations lead to over 300, 000 finite elements

in the simulation domain during the solidification process. A representative solidification

and cooling simulation takes ≈ 250 hours on 200 processors in parallel. A crystal plasticity

simulation would take at least an order of magnitude longer time to run. Nonetheless, our J2
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Figure 5.12: (a) Predicted stress-strain responses along the BD and TD, and (b) Strength
Differential, SD, values for microstructures solidified under G = 107 K/m and then cooled
with a cooling rate of 3×105 K/s using the fully coupled PF-SGP model (with solute segre-
gation and directional backstress), and those without consideration for solute segregation,

and backstress, respectively.
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SGP model has consideration for anisotropic elasticity and the crystallographic orientation

based anisotropic factor, which are expected to influence to heterogeneous microstructure

development and mechanical properties. As has been shown in Figures 5.4 - 5.12, our model

is able predict these heterogeneous microstructural attributes and anisotropic mechanical

properties. We also note that a generalized plane strain was used in our 2D simulations. This

implies that the microstructure is scalar along the third direction, 3, and is a deviation from

realistic rapid solidification. Presumably, the heterogeneity of microstructure development

and mechanical properties would be further enhanced on consideration of 3D simulations.

This will be explored in future work. Additionally, the inherent crystallographic texture of

rapidly solidified microstructures has also been shown to be one of the factors contributing

to the anisotropy in mechanical response (Geiger et al., 2016; Jeon et al., 2019), but in

this work we have focused primarily on the role of microscale residual stresses on the TC

asymmetry effect. The combined role of texture and microscale residual stresses on the TC

asymmetry of AM microstructures may be explored in future work.

5.5 Conclusions

We propose a coupled phase field-strain gradient plasticity (PF-SGP) framework, to predict

the TC asymmetry in rapidly solidified Fe-Cr alloys. The numerical framework, summa-

rized in Equations 5.1-5.30, accounts for multi-grain interaction effects, solute segregation,

anisotropy of elastic and plastic deformation, GND density, directional backstress, local so-

lute strengthening and thermally induced residual stress development in the microstructures

during rapid solidification. The model was implemented in an open source finite element

framework, MOOSE (Permann et al., 2020), using a two-step scheme: firstly, the coupled

PF-SGP framework was used to predict the microstructure evolution in terms of solute

segregation, dislocation substructures and backstresses during rapid solidification of the liq-

uid melt, under three different thermal gradients (G = 105 K/m, 106 K/m and 107 K/m).

Following this, only the SGP model was employed while cooling the microstructures (to

RT) (with a cooling rate of 3 × 103 K/s, 3 × 104 K/s and 3 × 105 K/s), and subsequently

deforming them in tension and compression along the build and the transverse directions

separately.

The coupled framework successfully captured the development of several microstructural

features, such as Cr solute segregation, GND localizations and backstress evolution, during

the rapid solidification of Fe-Cr alloys under different (imposed) thermal gradients. The

significant model predictions can be summarized as follows:
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1. Inter-dendritic regions or HAGBs accumulated large magnitudes of ρGND. Solute seg-

regation introduced additional local lattice incompatibilities, further enhancing these

ρGND localizations.

2. A rise in ρGND by ∼ 1 − 2 orders of magnitude, and by an order of magnitude in χ̄

was observed per order of magnitude increase in G (cf. Figures 5.7(a,b)).

3. Post solidification and cooling, the room temperature mechanical response of these

rapidly solidified microstructures, indicated that the predicted TC asymmetry, quan-

tified in terms of the Strength Differential (SD), is in the range of reported experi-

mental data (cf. Figure 5.11). Additionally, the SD values showed a rise with increase

in the thermal gradient.

4. The observed TC asymmetry could be explained in terms of the negative (average)

backstress component along the transverse direction and a positive (average) back-

stress component along the build direction (cf. Figure 5.10).

5. Simulations without solute segregation and those without backstress indicate that the

thermal distortion induced GNDs (and hence backstresses) play a primary role in the

observed TC asymmetry, although the TC contribution due to solute segregation is

not negligible either (cf. Figure 5.12).

The novelty of this modeling framework lies in its ability to predict the in situ development

of dislocation substructures and backstresses during rapid solidification that influence its

post-solidification anisotropic mechanical properties. The modeling tools and analysis of

model predictions in this study could be used to develop process-microstructure-mechanical

property correlations in rapidly solidified microstructures and inform the appropriate choice

of AM process parameters. The modeling framework will be extended in future work to

simulate post-solidification heat treatments and their effects on the mechanical properties.



Chapter 6

Diffraction-Based Multiscale

Residual Strain Measurements

6.1 Introduction

Residual strains, and corresponding elastic stresses, develop when a specimen is subjected to

non-uniform elastic-plastic strain gradients (Verlinden et al., 2007; Lodh et al., 2018; Thool

et al., 2020). The latter may be imposed from a variety of processes (Osgood, 1954; Cullity,

1956; Almen and Black, 1963; Noyan and Cohen, 2013; Lodh et al., 2017, 2018; Thool

et al., 2020). In a crystalline material, the residual strains represent lattice distortions or

changes in the unit cells (Verlinden et al., 2007). Corresponding non-equilibrium structures

are retained by defects, such as dislocations and dislocation boundaries. Based on the

scale, the strains and stresses differ (Lodh et al., 2017, 2018; Thool et al., 2020). They

are referred as macro (type I) to meso (type II) and micro (type III) (Verlinden et al.,

2007). To a designer, the macroscopic residual stresses are important (Wang and Gong,

2002; Kumar et al., 2016), but micro and mesoscopic stresses and strains are also emerging

as an important aspect in any microstructural investigation (Lodh et al., 2017, 2018, 2019;

Thool et al., 2020). Information on local lattice distortions is a critical but often invisible

component of the overall microstructure (Verlinden et al., 2007). This is the subject of

multiscale residual strain measurements, the focus of the present study.

Traditional residual strain measurements include techniques ranging from dimensional changes

(mechanical) to property alterations (Osgood, 1954; Withers and Bhadeshia, 2001; Verlin-

den et al., 2007). However, only diffraction based measurements can bring out the full

1

Significant parts of this Chapter have been published in (Pai et al., 2024a)
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strain matrix, which may then be converted with appropriate continuum elasticity model(s)

to residual stress values (Van Houtte and De Buyser, 1993). Further, modern analytical

tools, from micro-focus X-Ray Diffraction (XRD) to electron microscopy based microtex-

ture determination, hold tremendous potential for multiscale diffraction based residual strain

measurements (Wilkinson et al., 2006; Ghamarian et al., 2014; Lodh et al., 2019; Yu et al.,

2019; Prakash et al., 2023). Among these techniques, micro-Laue based single-crystal resid-

ual stress measurement (Lodh et al., 2017, 2018, 2019; Thool et al., 2020) is non-trivial to

implement in a laboratory XRD setup. However, this can be effectively used to measure

grain-by-grain residual strain(s) with progressive plastic deformation or annealing (Lodh

et al., 2017; Thool et al., 2020). The limitation of this technique is in the X-ray micro-

focus, which is ∼ 50 micron based on the spot size achievable in our laboratory setup. The

XRD approach estimates relative strain from changes in the interplanar spacing (∆d/d),

which is also a traditional estimate of lattice distortion (He, 2003; Lodh et al., 2017).

Similar to XRD, neutron diffraction also quantifies the changes in (∆d/d). This has been

routinely employed for measurement of residual strains (Krawitz and Holden, 1990), and

for estimating diffraction-based elastic constants (Baczmanski et al., 1993) and differential

scattering (Soper, 2011) experiments. The key advantage lies in the greater penetration

depth of neutrons. Alternatively, µ-Raman spectroscopy, with a reported strain precision of

10−4, relies on the Raman peak shifts and quantifies the local (hydrostatic) stresses (Mehtani

et al., 2020). This technique has excellent application potentials (Senez et al., 2003; Choi

and Griffin, 2016; Srinivasan et al., 2018; Mehtani et al., 2020) and can be used to measure

residual strains in sub-micron scale (Mehtani et al., 2020). However, typical measurements

are “restricted” mostly to ceramics and oxides, and numerical conversion of Raman peak

shift to residual stress values require high pressure data of the corresponding system.

This study, in particular, focuses on the use of laboratory scale micro-Laue single crystal

XRD technique for measurement of residual strains within a single grain (Lodh et al.,

2018, 2019). Other notable techniques, used in this study, are the related methods of High

Resolution Electron Backscatter Diffraction (HR-EBSD) (Wilkinson et al., 2006; Fullwood

et al., 2015) and High Resolution Transmission Kikuchi Diffraction (HR-TKD) (Yu et al.,

2019). Both involve the same algorithm of the so-called cross-correlation, and are sensitive to

changes in interplanar angle (∆θ/θ). Their spatial resolution is determined by the electron-

atom interaction volume (Goodhew and Humphreys, 2000); and is arguably ∼ 20 nm in

EBSD (Zaefferer, 2007; Schwarzer et al., 2009; Ruggles et al., 2016) and even smaller in

TKD performed on thin foils (Humphreys et al., 1999; Trimby, 2012; Ghamarian et al.,

2014; Sneddon et al., 2016).
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The technique of Transmission Electron Microscope (TEM) based Precession Electron Diffrac-

tion (PED) (Rauch et al., 2010) has originally been proposed ∼ 2009. This is based on

measurements of interplanar spacing, (∆d/d), from the diffraction spots (Ghamarian et al.,

2014; Ghamarian, 2017). The method has the potential of providing spatial resolution of be-

low 2 nm but is restricted by the sensitivity of the respective diffraction vectors (Ghamarian

et al., 2014). The key advantage of TEM lies is in its adaptability, as the same instrument

can be utilized to measure strains adopting different strain mapping techniques. Béché et al.

(2013) provides a comparison between five such TEM-based residual strain measurement

techniques. They all offer below 5 nm spatial resolution. These include the Convergent and

Nano Beam Electron Diffraction (CBED and NBED), High Resolution TEM (HR-TEM)

and High Resolution Scanning TEM (HR-STEM) and the Dark Field Electron Holography

(DFEH). These deliver different strain precision, ranging from 2×10−4 (for CBED) to 10−3

(for HR-STEM) (Armigliato et al., 2006; Hüe et al., 2008; Béché et al., 2013) and varied

spatial resolution. Further, they have (Béché et al., 2013) also accounted for sample specifi-

cations (thickness and geometry), data analysis time and associated computational resources

(ranging from 1 day (for CBED) to < 1 minute (for HR-TEM and DFEH)) together with

the selection of reference frame.

In brief, TEM based strain mapping depends on the selection of an appropriate technique

suitable for the problem in-hand (Béché et al., 2013). For example, the nano-scale strain

distributions on strained Germanium (Ge) microdisks have been studied using the PED

technique in STEM (Bashir et al., 2019). The corresponding experimental strain contours

showed reasonable agreement with three-dimensional finite element simulations. Further,

utilizing the scanning NBED with direct electron detectors in combination with efficient

(diffraction) pattern recognition algorithms have enabled mapping of strains with relatively

large field of view (∼ 1 µm) even in the microstructures with large defect concentrations

(Ozdol et al., 2015).

In summary, a range of micro to nanoscale diffraction techniques presently exist for effective

strain mapping. Each of these possesses their own merits and demerits. The selection of a

technique is hence based on the research objectives, length scale and material. The present

study explores a few of them, namely the micro-Laue XRD, HR-EBSD, HR-TKD and TEM-

PED. Each of these multiscale diffraction-based technique subtends a different scale and

resolution. More importantly, their measurements are sensitive to two different aspects of

lattice distortion, (∆θ/θ) (for HR-EBSD and HR-TKD) versus (∆d/d) (for micro-Laue and

TEM-PED). It is hence essential to examine the numerical convergence/similarity between

the strain magnitudes estimated by each of these techniques, and in particular, determine

a (numerical) scaling factor between them. Addressing these gaps along with a general
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comparison of the strengths and weaknesses of each of the techniques were the motivations

behind this study.

6.2 Experimental Details

This study used fully recrystallized interstitial free (Body Centered Cubic or BCC) steel of

∼ 130 µm micron average grain size. For details on the prior processing and chemistry, the

reader may refer to Manda et al. (2023). In particular, sub-size micro-tensile specimen(s)

(for dimensions refer to Figure 6.1) were fabricated by electro discharge machining. The

gauge regions were prepared by a combination of mechanical polishing, followed by elec-

tropolishing. The latter involved an electrolyte of 80 : 20 methanol and perchloric acid,

and 18 volts dc at 253 K. As in Figure 6.1, EBSD scans were performed with interrupted

but progressive tensile deformations. These were conducted with a DebenTM 1 kN stage

operated at 10−3 s−1, and a maximum strain of 0.15 was imposed. It is to be noted that

this stage was compatible with both our XRD and Scanning Electron Microscope (SEM).

This enabled us to conduct multiscale diffraction based residual strain measurements on

the same progressively deformed tensile specimens. In particular, we have used XRD based

micro-Laue diffraction and SEM based HR-EBSD. Further, we have also performed post-

deformation characterizations with TKD in the SEM and TEM based PED.

Micro-Laue diffraction was conducted in a BrukerTM D8 Discover XRD system. The critical

components were a X-ray micro-source with MontelTM multi-layer focusing mirrors, laser

plus video tracking, and VantecTM area detector. The reader may refer to Lodh et al. (2017,

2018, 2019) and Section 6.3, for a detailed description of this setup and associated algorithm.

A FEITM Quanta 3D-FEG (Field Emission Gun) SEM equipped with an EDAXTM Velocity-

plus EBSD system was used for HR-EBSD (0.5 µm step size) as well as HR-TKD (10 nm

step size) measurements. Patterns were acquired at an accelerating voltage of 20 kV , current

of 16 nA and a working distance of 12.5 mm, with a sample tilt of 70◦ (for HR-EBSD).

16-bit Kikuchi patterns with a 2 × 2 binning size (each image comprising of 230 × 230

pixels), were acquired and stored for all points within the region of interest for further

offline post-processing. All measurements involved identical beam plus detector conditions.

Additionally, all experimentally measured (HR-EBSD) residual elastic strains reported in

the present work are averaged out over a 70 µm×70 µm region near the geometric center of

the grains. Such a scheme was followed to avoid erroneous strain measurements, primarily

due to large orientation gradients occurring near the grain boundaries (see Figure 6.10 later

in this Chapter).
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Figure 6.1: Schematic of a micro-tensile specimen used in this study. The Electron
Backscattered Diffraction (EBSD) Image Quality (IQ) and Inverse Pole Figure (IPF) maps

of the highlighted gauge region, with progressive tensile deformation.

TEM thin foils, used in HR-TKD as well as PED, were prepared from 3 mm discs us-

ing a StruersTM Tenupol-5 twin-jet electropolisher. A sample tilt of −20◦ was used for

the (off-axis) HR-TKD measurements. The TEM-PED residual strain measurements were

conducted on a NanoMegasTM system within a ThermofisherTM Themis 300 TEM, at an

operating voltage of 300 kV . Further details on these measurement techniques are given in

the next Section.
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6.3 Diffraction-Based Multiscale Residual Strain Measure-

ments

The different residual strain measurement techniques are described in the subsequent Sec-

tions: XRD based micro-Laue diffraction (Section 6.3.1), SEM based HR-EBSD and HR-

TKD (Section 6.3.2), and TEM based PED (Section 6.3.3). These techniques differed in

algorithm, and also in spatial plus angular resolutions. At this stage, it is important to note

the rationale in referring micro-Laue XRD and TEM-PED as techniques sensitive to ∆d/d

and HR-EBSD and HR-TKD as techniques sensitive to ∆θ/θ. The strain measurement

using TEM-PED technique primarily relies on the shift of the diffraction spots, which alters

the resulting distortion matrix D. The in-plane residual strain components are then esti-

mated using Equation 6.5 (listed subsequently). The shift in diffraction spots in TEM-PED,

irrespective of (direction of) g, is an outcome of the changes in the interplanar spacing of

the crystal (∆d/d). In a similar manner, any change in dϕψ, irrespective of the goniometer

rotations, is an outcome of the changes in interplanar spacing (∆d/d). However, HR-EBSD

as well as HR-TKD techniques rely on the shift in q (see subsequent Equations 6.2 and 6.3),

which is primarily sensitive to changes in interplanar angles (∆θ/θ).

The micro-Laue setup in our study uses an approximate circular X-ray spot of ∼ 50 µm

with an estimated depth of penetration of less than 5 µm. The technique has an angular

reproducibility of ∼ 0.01◦ (He, 2003; S lowik and Zieba, 2005; Krost and Bläsing, 2009).

HR-EBSD and TKD offer similar angular resolution (0.006◦) and a higher spatial resolution

restricted by electron-atom interaction volume (∼ 20 nm) (Humphreys, 2004; Wilkinson

et al., 2006; Jiang et al., 2013a; Yu et al., 2021). It is important to note that the spatial

resolution in EBSD, including HR-EBSD, is non-isotropic (Farooq et al., 2008). The tilting

of the sample by 70◦ in EBSD results in the intersection shape of the electron beam (at the

entry point of the specimen) to take on an elliptical shape, with an aspect ratio of 1 : 3

(Schwarzer et al., 2009; Sneddon et al., 2016; Fullwood et al., 2022). The beam subsequently

enters the sample to a certain depth, where a “virtual point source” is generated by inelastic

scattering, which then produces the outwards directed elastically scattered electrons, that

form the EBSD patterns (Winkelmann, 2010). The non-isotropic nature of the EBSD/HR-

EBSD resolution is hence an outcome of the intersection of this internal cone of electrons

with the tilted sample surface. In summary, this leads to the reduction of spatial resolution

along the vertical direction by ∼ 3 times (Schwarzer et al., 2009; Sneddon et al., 2016).

Further, the interaction volumes and diffraction paths for HR-EBSD on a bulk sample and

HR-TKD on thin-foil are quite different. For a bulk sample, the information depth lies in

the range 10− 40 nm at 20 kV . The depth values can decrease further for denser materials
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(Dingley, 2004; Winkelmann, 2010). In HR-TKD the lateral resolution is defined by the

effective beam diameter at the exit point (bottom surface) of the TEM foil. This would

typically be of the order of 10 nm and is defined by the actual beam spread in the sample

(by the foil thickness, material density, and keV). TEM-PED offers the very best in spatial

(below ∼ 2 nm) but less so in angular resolution (≤ 0.4◦). This technique is restricted to

very thin TEM foils (Viladot et al., 2013; Ghamarian et al., 2014; Ghamarian, 2017).

6.3.1 XRD based micro-Laue diffraction

Unlike the traditional XRD based residual strain measurements (Van Houtte and De Buyser,

1993; Verlinden et al., 2007), which are relatively routine for polycrystalline material, single

crystal micro-Laue diffraction remains extremely specialized. Such measurements have been

restricted to high energy synchrotron radiation (Margulies et al., 2002). More recently,

however, Lodh et al. (2017, 2018, 2019) have developed a similar, though not identical,

approach utilizing laboratory micro-focus XRD. We have adopted the same in this study.

As indicated in Figure 6.2, and further described by Thool et al. (2020), the gauge of the

micro-tensile specimen(s) has been subjected to prior EBSD scan(s) at different stages of

tensile deformation (see Figure 6.1). We have tracked the corresponding grains delineated by

appropriate fiducial markers. Laser plus video tracking has been used to facilitate placing the

∼ 50-micron X-ray beam in the center of individual grains. Appropriate rotations (θ, ϕ, ψ)

in goniometer angles, derived from EBSD-estimated grain orientations, were imposed. As

stated earlier, the average orientations from a 70 µm × 70 µm region near the geometric

center of the grains were used to determine the rotations (θ, ϕ, ψ) in goniometer angles. This

was done to minimize the errors associated with the determination of goniometer angles

due to the spread in EBSD estimated average grain orientations, especially in the deformed

specimens. In addition, the laser plus video tracking facility along with a ∼ 0.01◦ of angular

reproducibility ensured that no significant errors were introduced in the determination of

(θ, ϕ, ψ) angles for micro-Laue residual strain measurements. We have obtained six different

brightest Laue spots (Lodh et al., 2017), and the centroids were used to estimate dϕψ for

each grain. Following this, εϕψ was calculated as εϕψ =
dϕψ−d0
d0

, where d0 is the estimated

unstrained interplanar spacing obtained from the annealed powder specimen (Noyan and

Cohen, 2013; Kumar et al., 2016). In this study, we have obtained and used d0110 = 2.0266 Å,

d2000 = 1.4309 Å and d2110 = 1.1697Å, respectively. The resulting εϕψ was then transformed

to the grain average strain εkl in the specimen co-ordinate system as given in Lodh et al.

(2017, 2018, 2019, 2022):
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εϕψ = ε11 cos2 ϕ sin2 ψ + ε12 sin 2ϕ sin2 ψ + ε22 sin2 ψ sin2 ϕ+ ε33 cos2 ψ+

ε13 cosϕ sin 2ψ + ε23 sinϕ sin 2ψ
(6.1)

The solution of Equation 7.1 gives the residual strain tensor for an individual grain. Since

there are six unknown strain components, at least six independent reflections are needed to

solve the linear equations. All these make the technique fairly sophisticated. The schematic

shown in Figure 6.2 briefly explains the above methodology. We have conducted these

measurements, of intergranular residual strain, on 50 different (and randomly selected)

grains subjected to progressive tensile deformation. It is to be noted that the micro-Laue

residual strains, measured in the present study as well as those reported in literature (Lodh

et al., 2017), show negligible spherical or hydrostatic strains.

Figure 6.2: Schematic indicating the micro-Laue based single-crystal X-ray diffraction
(XRD) technique for diffraction based residual strain measurements.
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6.3.2 SEM based HR-EBSD and TKD

The automated EBSD or TKD measurements involve the Hough transformation to extract

the approximate lattice plane traces found in the Kikuchi diffraction patterns (Adams et al.,

1993; Wright and Adams, 1992). These measurements are usually based on the angle(s)

between the planes or Kikuchi bands, which are then analyzed, using a “look-up” table,

to obtain corresponding crystallographic orientations. The primary difference between the

EBSD and TKD lie in the mode of pattern generation. Though both techniques rely on

an incoherent scattering event to act as a basis (virtual point source) for further elastic

scattering events, the exit beam diameter of the scattered electrons is much lower in TKD,

compared to its EBSD counterparts (van Bremen et al., 2016). In addition, the negative

tilt angles used in TKD leads to incident electrons being forward scattered, in-contrast to

the EBSD technique, where (incident) electrons are backscattered from the sample surface

to the detector.

The use of an electron transparent specimen, in conjunction with the negative tilt angle,

results in the diffraction patterns originating from a small region close to lower surface of

the specimen (Trimby, 2012; Sneddon et al., 2016). This leads to a significant improvement

in the spatial resolution in TKD/HR-TKD as compared to the EBSD/HR-EBSD. It is to

be noted (Trimby, 2012) that TKD/HR-TKD subtends to a smaller interaction volume

and hence superior spatial resolution. More recently, the use of on-axis TKD technique,

which utilizes a zero-tilt condition, was reported to provide significant improvements in the

pattern intensities and data acquisition rates (Niessen et al., 2018). Additionally, unlike the

conventional TKD measurements used in the present study, the on-axis TKD technique does

not result in a gnomonic distortion of the diffraction patterns (Yuan et al., 2017; Niessen

et al., 2018).

Kikuchi patterns from both techniques can be further analyzed by comparing appropriate

Regions of Interest (ROI) with a reference pattern. This technique is often referred as cross-

correlation or HR-EBSD (Wilkinson et al., 2006; Wright et al., 2011; Fullwood et al., 2015).

HR-EBSD, for example, can be used to determine relative orientations of the reference and

current sample point to very high angular resolution, and to estimate relatively minor lattice

strains (Wilkinson et al., 2006; Yu et al., 2021).

We have processed high resolution Kikuchi patterns, both EBSD and TKD, using back-

ground division and dynamic background subtraction. Kikuchi patterns from the grain

center, having maximum image quality (Small et al., 2020), were used as the reference pat-

terns. A comparison between reference and the strained pattern(s), see Figure 6.3, provided
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pattern shift (q) and change(s) in interplanar angles (∆θ/θ). As described latter in the re-

sults section, this technique needs selection of appropriate ROIs (we have used 48 as well as

64 in our study) and information on accurate pattern center (Basinger et al., 2011; Fullwood

et al., 2015). Note that the selection of the reference patterns, ideally from a strain-free

crystal, is always relative (Britton and Wilkinson, 2012; Small et al., 2020). The measured

q vectors are related to both lattice distortion and rotation as (Wilkinson et al., 2006, 2009;

Britton and Wilkinson, 2011),

r2r3

[
∂u2
∂x2

− ∂u3
∂x3

]
+ r1r3

∂u2
∂x1

+ r23
∂u2
∂x3

− r1r2
∂u3
∂x1

− r22
∂u3
∂x2

= r3q2 − r2q3 (6.2)

r1r3

[
∂u1
∂x1

− ∂u3
∂x3

]
+ r2r3

∂u1
∂x2

+ r23
∂u1
∂x3

− r21
∂u3
∂x1

− r2r1
∂u3
∂x2

= r3q1 − r1q3 (6.3)

In brief, when a crystal lattice is subjected to an imposed deformation, the zone axes

direction vector r shifts by q resulting in a lattice distortion of ∂ui
∂xj

. The elastic strains can

then be derived as Ee = 1
2

(
F eT · F e − δ

)
, where δ denotes the identity tensor and F e

represents the elastic deformation gradient, given by F e = δ+ ∂ui
∂xj

. Here, i and j denote the

basis directions, respectively. Further, to separate the normal strains, a boundary condition

has to be utilized that forces the stress σ33, normal to the sample surface, to zero. This can

be expressed as (Wilkinson et al., 2006, 2009):

σ33 = 0 = C33ε33 + C32ε22 + C32ε11 (6.4)

where C33 = C11 = 231.4 GPa and C32 = C12 = 134 GPa are anisotropic elastic constants

for the Ferrite (Fe) phase. This defines the so-called traction free boundary condition

(Hardin et al., 2015). An alternative boundary condition, more recently proposed (Ruggles

et al., 2020), specifies that the trace of the lattice distortion tensor should be zero. As

shown in Figure 6.12, both provided similar results. We have hence performed off-line

cross-correlations, under traction free boundary condition, to estimate elastic (or residual)

strains. These were performed on experimental, HR-EBSD and TKD, as well as simulated

(Winkelmann et al., 2007; Callahan and De Graef, 2013) Kikuchi patterns. Our cross-

correlations used an open source (OpenXYTM) software (Fullwood, 2020).
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Figure 6.3: Schematic indicating the High Resolution Electron Backscattered Diffraction
(HR-EBSD) in Scanning Electron Microscope (SEM) technique for diffraction based resid-

ual strain measurements.

6.3.3 TEM based PED

TEM offers excellent spatial resolution. TEM spot diffraction, however, has relatively poor

angular resolution. This is decided by the so-called s vector, or deviation from the ex-

act Bragg, and the electron atom-interaction volume (Ghamarian et al., 2014; Ghamarian,

2017). The latter determines the kinematic or dynamical interaction of the transmitted

and diffracted beam(s). The recent incorporation of the PED technique (see Figure 6.4)

in thin (below 1/3 of extinction distance) TEM foils can improve the angular resolution of

TEM spot diffraction patterns (Vincent and Midgley, 1994). In brief, introduction of an

appropriate precession angle provides ability to resolve very small angular deviations (≤ 4◦)

in TEM-PED (Viladot et al., 2013; Ghamarian et al., 2014; Ghamarian, 2017). Naturally,
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the technique can be used in both orientation and residual strain measurements (Rauch and

Veron, 2005; Rauch et al., 2010; Portillo et al., 2010; Viladot et al., 2013; Ghamarian et al.,

2014; Ghamarian, 2017). Of course, the latter would still require a reference pattern which

is then compared to the strained patterns, see Figure 6.5.

Figure 6.4: Schematic describing the Precession Electron Diffraction (PED) technique in
TEM. Introduction of a precession angle (θ) helps in obtaining additional diffraction spots.

As shown in Figure 6.5 two non-collinear diffraction spot patterns (g1, g2 for the reference

and the strained crystals, respectively) are acquired. The respective diffraction matrices

can be stated as G0 = [gx1gx2 ; gy1gy2 ] and G =
[
g′x1g

′
x2 ; g′y1g

′
y2

]
(Zhao et al., 2023). The

lattice distortion is then given as the distortion matrix D =
(
G0G

−1
)T

, where T indicates

a transpose operation (Zhao et al., 2023). The in-plane residual strain components can be
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extracted from the distortion matrix using the infinitesimal strain theory, see Pekin et al.

(2017), as:

[
εxx

1
2 (εxy − θ)

1
2 (εyx + θ) εyy

]
= D − δ (6.5)

where, εxx and εyy are the strains in X and Y direction, respectively. εxy represents the

in-plane shear component and θ here denotes the lattice rotation. It is important to note

that the above expression estimates lattice strain in the reciprocal space, and εxx, εyy and

εxy must be flipped to produce strain measurements in the specimen space. The present

study uses the TopSpinTM module of NanoMegasTM PED software for data acquisition and

subsequent analysis. Alternative algorithms, based on the polar decomposition of trans-

formation matrix between the strained and unstrained diffraction vectors have also been

proposed in literature estimate residual elastic strains with very high precisions (∼ 0.1%)

(Ozdol et al., 2015). Further, the reader is referred to Béché et al. (2013) for a detailed

analysis on the various strain mapping techniques and its associated merits and demerits.

Figure 6.5: Schematic indicating the Precession Electron Diffraction (PED) in Transmis-
sion Electron Microscope (TEM) technique for diffraction based residual strain measure-

ments.

6.4 Results from Experiments and Pattern Simulations

Figure 6.6 shows a direct comparison in the development of intergranular von-Mises residual

strains, as estimated by the micro-Laue or (∆d/d) and the HR-EBSD or (∆θ/θ). This is

shown for three randomly selected grains - G1, G2 and G3. It is to be noted that we
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have taken similar grain surface areas for the two measurements, making the data in Figure

6.6 spatially comparable. It is to be noted that past HR-EBSD studies have also reported

higher residual elastic strain values, higher than the theoretical yield limit of 0.2% (Basinger

et al., 2011; Zhang et al., 2014, 2016; Mehtani et al., 2020; Small et al., 2020; Zhao and

Li, 2021). For example, Small et al. (2020) reported equivalent residual elastic strains of

0.007−0.008 in additively manufactured Inconel 625 specimen. Further, the reported strain

values, representing multiple grains, also had an extremely large spread. It is to be noted

that fast cooling associated with additive manufacturing resulted in large intragranular

orientation gradients (> 10◦) and a significant variation in the intragranular residual strain

values. Zhang et al. (2014) have noted strains greater than 0.002 (specifically, in grains near

non-metallic inclusions) in their nickel-based superalloy subjected to thermal loading; Zhao

and Li (2021) too reported strain components with peak magnitude of up to 0.01 in stainless

steel specimens subjected to three-point bending tests. Similarly, (Mehtani et al., 2020) have

reported von-Mises residual elastic strains of magnitude 0.01−0.03 in the pseudo-epitaxially

grown magnetite grains, during their studies on oxidation kinetics of interstitial free steel.

There have been efforts to cross-validate HR-EBSD results with an alternative measure-

ment approach. For example, dislocation density measurements from HR-EBSD and XRD

have been compared (Kalácska et al., 2017, 2020; Gallet et al., 2023). Similar comparison

has also been attempted between residual strain measurements from HR-EBSD and syn-

chrotron X-ray diffraction (Deal et al., 2021). An earlier study, on a patterned Si1−xGex

thin film, have even reported (Fullwood et al., 2015; Vaudin et al., 2015) a reasonable con-

vergence between the HR-EBSD and XRD strain estimates. However, any comparison in

semi-conductor/thin film structures have intrinsic limitations of constraints and mechanical

properties, as compared to bulk metallic materials. In addition, such studies, reporting

similar elastic strains from HR-EBSD and XRD (Fullwood et al., 2015; Vaudin et al., 2015),

also involved relatively minor plastic deformation. Even in the present study, Figures 6.6-

6.7, reported a numerical convergence at lower values of imposed plastic deformation. This

study, in particular, provided a direct grain-by-grain evolution of residual strains, as esti-

mated by HR-EBSD and micro-Laue XRD. It is to be noted that such a comparison (see

Figure 6.6) has never been attempted/reported in the past. The difference between the

strain estimates did depend on the magnitude of the imposed plastic deformation as well

as the elastic stiffness of corresponding grain(s). At large tensile deformations, HR-EBSD

clearly showed higher residual elastic strain values. The authors would like to state here that

the term “higher residual elastic strains”, used henceforth, refer to residual elastic strains

significantly greater than the theoretical yield limit of 0.2%.

Further, the data in Figure 6.6 is based on only three randomly selected grains. From
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Figure 6.6: Comparison of residual strain measured using micro-Laue XRD (∆d/d) and
HR-EBSD (∆θ/θ). These measurements were performed, with progressive tensile deforma-

tion, on three identical grains G1,G2 and G3.

the large number of grains characterized in this study, 50 were randomly selected for a

statistical comparison (see Figure 6.7(a)). The residual strain(s) increased as expected with

imposed tensile deformation. There were, however, significant scatter between different

grains (see Figure 6.7(a) and error bars in Figure 6.7(b)). Statistically, but definitively,

the relative increase in residual strain, with tensile deformation, was more in HR-EBSD

than in the micro-Laue XRD. This last point is further represented in Figure 6.7(c) as

strain distributions at the highest tensile deformation step (0.15 imposed tensile strain).

In particular, HR-EBSD average residual strain was ∼ 2.06 times of that of micro-Laue.

Further, the HR-EBSD strain estimates had wider distribution or scatter. This last point,

to be deliberated latter in the manuscript, actually indicated higher angular resolution for

HR-EBSD and/or HR-TKD.

It is important to note here that the micro-Laue residual elastic strain measurements, which

are sensitive to (∆d/d), do show large magnitudes for certain grains/orientations. This
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Figure 6.7: Comparison of residual strains measured measured using micro-Laue XRD
(∆d/d) and HR-EBSD (∆θ/θ) on 50 grains. The corresponding best fit slopes are shown
in (b). (a,b) show higher residual elastic strains in HR-EBSD and (c) shows the same as

statistical distributions.
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can be attributed to multiple factors, more specifically, the improper strain free lattice

spacing substitution in Equation 7.1, as well as the geometrical errors associated with the

determination of the Laue spot centroids. In addition, it is important to note that minor

variation in lattice parameters can result in large difference in the measured strains. This

point has been discussed latter in the manuscript. We have ensured that all such possible

errors were minimized in the present study. For brevity, we did not discuss this point further

in this manuscript. The measurement uncertainty for micro-Laue based von-Mises residual

strains were estimated. This came from repeating the measurements, at least thrice, in five

randomly selected grains subjected to controlled tensile deformation. It is to be noted that

we estimated/observed a measurement uncertainty of 8.4 × 10−4 (at 0.15 imposed tensile

strain) in our micro-Laue strain measurements. Further, for the HR-EBSD measurements,

the measurement uncertainty was nearly negligible.

There have been attempts to improve HR-EBSD based residual strain measurements (Basinger

et al., 2011; Wright et al., 2011; Jiang et al., 2013a; Fullwood et al., 2015). Potential errors

might arise due to (A) insufficient ROIs, (B) inappropriate selection of the reference pat-

tern and (C) choice of pattern center and (D) remapping, which accounts for orientation

gradients in the material (Britton and Wilkinson, 2012; Maurice et al., 2012; Small et al.,

2020). In particular, we have considered factors A-D, see Figure 6.9(a). Increase in ROIs,

from 48 to 64, for example, reduced the HR-EBSD estimated single crystal residual elastic

strains. However, this drop was marginal. Combining more ROIs with manual selection of

reference pattern and correcting for pattern center shift, based on an algorithm proposed by

Fullwood et al. (2015), reduced the HR-EBSD residual elastic strain more significantly. The

remapping technique (Britton and Wilkinson, 2012; Maurice et al., 2012; Small et al., 2020),

which uses the finite rotation component of the elastic deformation gradient tensor (Fe) to

derive the rotated reference pattern, and then estimate the residual shifts (q) between the

rotated reference pattern and Kikuchi pattern from the current pixel, further improves the

residual elastic strain estimation. Subsequently, the slope of HR-EBSD versus micro-Laue

residual elastic strain dropped from ∼ 2.06 to ∼ 1.57, see Figure 6.9(b). However, an ab-

solute numerical, albeit statistical, convergence of the two techniques would require a slope

of 1, which appears to be unachievable by simply optimizing HR-EBSD parameters.

It is to be noted that for large grains, pattern center shifts are significant but expected. Such

shifts can be compensated by the HR-EBSD code (Britton and Wilkinson, 2012). As shown

in Figure 6.8(a), though shifts were real; but even if incorrectly compensated, they affected

the HR-EBSD estimated residual elastic strain value(s) only marginally (1% <). Further,

the HR-EBSD residual elastic strains emerge from the shift in the q vector. As illustrated in

the Figure 6.8(b), this is affected by the relative positioning of the zone axes. In brief, zone
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Figure 6.8: (a) Shift of pattern centers between the two edges of a large (∼ 82 micron)
grain. (b) Zone axis shift (or shift in the q vector), when axes near and away from the

pattern center (see green line) were taken.

axes further from the pattern center show numerically higher q vector. However, both these

factors also do not justify the very large difference, see Figure 6.9(b), estimated from our

statistical data. Clearly, the HR-EBSD provides larger residual elastic strain estimates than

the micro-Laue. To further explore the deviation in numerical convergence between micro-

Laue and HR-EBSD techniques, the reader is referred to Section 6.4.1. Briefly, Figure

6.10(a) shows a grain-level comparison, while Figure 6.10(b) depicts a component wise

comparison of the residual elastic strains measured using the two techniques.
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Figure 6.9: (a) Frequently reported errors in HR-EBSD and corresponding corrections.
(b) These corrections were applied to our statistical data on HR-EBSD versus micro-Laue
residual strains. However, even the ‘corrected’ data did not bring an equivalence between
the two approaches.(c) Comparison of the ratios of ‘a’ type (effect on ∆d) and ‘α’ type
(effect on ∆θ) residual elastic strains with experimental HR-EBSD and micro-Laue (von-
Mises) strains. The red dotted best fit line indicates a direct linear relationship between
the two entities. (d) Sum of squared error (SSE) distribution, shown as a lognormal fit (red

dotted line), for all grains analyzed in Figure 6.9(c).
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6.4.1 Analyzing Residual Strains from Experimental HR-EBSD Measure-

ments

Figure 6.10(a) shows the evolution of the Grain Reference Orientation Deviation (GROD)

and von-Mises residual elastic strains with increasing tensile deformation, measured using

the HR-EBSD technique. The corresponding average values from its ∆d/d counterpart

(micro-Laue) have also been provided. It is to be noted that the HR-EBSD strain mea-

surements have been shown after accounting for the corrections, i.e., (A) insufficient ROI,

(B) inappropriate selection of the reference pattern, (C) choice of pattern center and (D)

Remapping, discussed previously. It can be seen that HR-EBSD provides significantly larger

residual strains in comparison to the micro-Laue; the differences get amplified with increas-

ing deformation. This observation can also be noted from the component level comparison

shown in Figure 6.10(b), albeit the scaling factor differs significantly for each individual

strain component.

To further analyze and explore the HR-EBSD residual elastic strain measurements, we

estimate the amount of ‘a’ type (effect on ∆d) and ‘α’ type (effect on ∆θ) strains from the

residual elastic strain tensor Ee as:

εa = |Ee11| + |Ee22| + |Ee33| (6.6)

εα = |Ee12| + |Ee13| + |Ee23| (6.7)

where, εa and εα denotes the ‘a’ and ‘α’ type residual elastic strains, respectively. Since

the elastic strain tensor Ee is calculated in the crystal reference frame, a first order ap-

proximation has been utilized, i.e., the absolute values of the diagonal and non-diagonal

components of the elastic strain tensor Ee are used, to estimate the ‘a’ type and ‘α’ type

strains, respectively. Physically, εa defines the portion of Ee that would affect the inter-

planar spacing of a crystal lattice, whereas εα is indicative of the shear deformation or the

change in interplanar angles in a crystal lattice.

The ratio of these entities, i.e., εa/εα, has then been compared with existing experimental

datasets (see Figure 6.6, 6.7). 20 randomly oriented grains were selected from the specimen

deformed up to 0.15 (imposed) tensile strain; the corresponding results have been shown

in Figure 6.9(c). In an ideal scenario, i.e., if numerical convergence were established, these

above-mentioned ratios should be identical, i.e., equal to one. However, it can be clearly

observed that with increasing magnitude of εa/εα, i.e., when the ‘α’ type strains are under-

predicted, the difference in von-Mises residual strains estimated by the HR-EBSD (sensitive

to (∆θ/θ)) from its counterpart (micro-Laue: sensitive to (∆d/d)) increases linearly. It is
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Figure 6.10: Comparison of residual elastic strains measured using the micro-Laue (sen-
sitive to ∆d/d) and HR-EBSD (sensitive to ∆θ/θ) technique in terms of (a) von-Mises
strain and (b) component-level comparison. The markers refer to regions depicting large

orientation gradients and hence, the strain concentrations.
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important to note that the error in estimated von-Mises strains can rise as high as ∼ 120%

for large variations in εa/εα (see Figure 6.9(c)). The significant scatter in the data is primar-

ily due to consideration of randomly oriented grains in the specimen (0.15 imposed tensile

strain), each of which behaves differently under the imposed deformation.

We have further validated our observations on the ‘a’ type and ‘α’ type strains (see Figure

6.9(c)) and its effects on the error in strain measurements (between HR-EBSD and micro-

Laue) by conducting an identical analysis on the micro-Laue residual strain tensors. This

exercise was carried out for three distant scenarios. These were taken for the grains where

HR-EBSD residual strains resulted in a ratio of εa/εα=1.1, 2.99 and 4.43, respectively.

The corresponding strain matrices have been shown in Table 6.1. Clearly, it can be seen

that when εa/εα=1.1 (from HR-EBSD), the resulting strain tensors are nearly identical (in

magnitude), with the ratio of ε̄HR−EBSD/ε̄micro−Laue=1.18. It is important to note that

the ratio is not exactly equal to one; the minor difference may be attributed to the different

sensitivities of the two measurement techniques to lattice distortion, (∆θ/θ) versus (∆d/d).

Additionally, the differences in interaction volume for the two techniques, errors in geometric

centroid determination and the noise in the HR-EBSD patterns may also contribute to the

error.

In contrast, when εa/εα=2.99 and 4.43, the micro-Laue strain is significantly lower than the

HR-EBSD strain, with the ratio of ε̄HR−EBSD/ε̄micro−Laue being 1.42 and 2.05, respectively

(see Table 6.1). A component wise comparison of the residual strain tensors (along with

the respective strain contours), shown in Figure 6.10(b), also points out towards a similar

conclusion. In summary, Figure 6.9(c) and Table 6.1 conforms to the fact that as the ‘a’

type (effect on ∆d) strain increases relative to the ‘α’ type (effect on ∆θ) component, the

error in strain measured by HR-EBSD (sensitive to (∆θ/θ)), relative to the measurements

from micro-Laue (sensitive to (∆d/d)), also increases.
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Further, we have also shown the Sum of Squared Error (SSE), a standard output of

OpenXYTM, for all grains analyzed in Figure 6.9(c). The SSE values (see Figure 6.9(d))

range from 0.08 (minimum) to 0.2 (maximum) with a mean of 0.14. These results indicate

that the conclusions derived from Figure 6.9(c), representing errors in HR-EBSD strains

relative to the micro-Laue strains, are not largely influenced by the noise in the derived

HR-EBSD patterns.

The reference patterns for HR-EBSD as well as HR-TKD were selected from a region near

the geometric center of the grain, having the maximum image quality. In all cases, it was

assumed that the reference patterns were relatively strain-free. Owing to the large size

of grains used in the present study, the geometric center of the grains remained nearly

unaffected with progressive deformation, even at an imposed tensile strain of 0.15 (see

GROD maps in Figure 6.10(a)). As discussed in Section 6.3.1, the reference d0 for micro-

Laue single crystal XRD, was obtained from annealed powder specimens (Noyan and Cohen,

2013; Kumar et al., 2016). The measured residual elastic strains using the (∆θ/θ) sensitive

and (∆d/d) sensitive methods do not show any notable errors at lower imposed tensile

strains (Figures 6.6, 6.7 and 6.9), thus indicating residual elastic strain estimations for all

measurement techniques have initiated from an identical baseline.

One potential cause of this difference is perhaps the different levels of sensitivity, of the

respective measurement techniques, to different measures of elastic strain. After all, HR-

EBSD and micro-Laue XRD are sensitive to measurements of interplanar angle (∆θ/θ)

and spacing (∆d/d), respectively. To investigate this possibility, virtual experiments were

conducted using HR-EBSD pattern simulations (Winkelmann et al., 2007; Zaefferer, 2007;

Callahan and De Graef, 2013).

6.4.2 Residual Strain Estimates from Simulated HR-EBSD Patterns

To investigate the difference between the measurement of residual strains based on (∆θ/θ)

and (∆d/d), we have conducted simulations of HR-EBSD patterns. An ideal strain free

(BCC) lattice, see Figure 6.11(a), was subjected to progressive strains of two types. The

corresponding deformation gradients were estimated as:

1. Idealized expansions were applied along the ‘a’ direction with no Poisson contraction

in the perpendicular directions, see Figure 6.11(a). The corresponding deformation
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Figure 6.11: Results from virtual experiments conducted on simulated HR-EBSD pat-
terns. (a) Progressive tensile strains were introduced in an ideal BCC iron (Fe) strain-free
lattice (a = b = c = 2.8667 Åand α = β = γ = 90◦). This was implemented by altering
lattice parameter ‘a’ (while keeping b and c constant) and by changing ‘α’ (while holding
β and γ constant). The corresponding von-Mises strains, as estimated by ∆d/d and ∆θ/θ,
ranged from 0.0049 to 0.015. (b) For these strained, and unstrained, lattices HR-EBSD
patterns were simulated both kinematically and dynamically. These strains were then es-
timated using HR-EBSD or cross-correlation algorithm. (c) Scaling factor from patterns
simulations (as in Figure 6.11(c)) from 11 different crystallographic orientations, using trac-
tion free boundary conditions. Average scaling factors from pattern simulations (∼ 1.47)

and experiments (∼ 1.57, Figure 6.9(b)) have also been included.
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gradient:

F =


λ 0 0

0 1 0

0 0 1

 (6.8)

where, λ = d/d0. d and d0 represent the strained and unstrained lattice spacings,

respectively. The residual strains (see Figure 6.11(a)) were represented as type (∆d/d).

2. Idealized shear strains were applied at 45 deg to the ‘a’ direction, see Figure 6.11(a).

The corresponding deformation gradient:

F =


1 tan(θ) 0

tan(θ) 1 0

0 0 1

 (6.9)

where, θ denotes the change in interplanar angle. This approach represented residual

strain as type (∆θ/θ).

Figure 6.12: Kinematical pattern simulations, similar to Figure 6.11(b), but conducted
using trace free boundary conditions (σ11 +σ22 +σ33 = 0). The slopes were similar to those

obtained by adopting traction free boundary conditions (Figure 6.11(b)).

As shown in Figure 6.11(a), an ideal strain-free BCC iron lattice (Fe) was subjected to

progressive strain(s) by systematically increasing a ‘single’ lattice parameter (a) or an in-

terplanar angle (α). The corresponding infinitesimal strains ε, see Figure 6.11(a), were

then determined from the knowledge of (∆d/d) or (∆θ/θ), respectively. The imposed von

Mises strain(s) were derived as ε̄ =
√

2
3ε : ε, and were systematically altered from 0.0049 to
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0.015. We have used corresponding crystal structures to simulate the HR-EBSD patterns,

see Figure 6.11(a). The HR-EBSD pattern simulations were conducted with EDAX OIM-

MatrixTM software. It is to be noted that both kinematical, where no interaction between

beam(s) were considered, and dynamical, with multi-beam interaction, simulations were

used. The latter, as expected (Goodhew and Humphreys, 2000; Zaefferer, 2007; Callahan

and De Graef, 2013) appeared more realistic. A description of our pattern simulations is

given in the Section 6.4.2.

Figure 6.11(b) shows pattern simulations, kinematical as well as dynamical, originating from

a single representative orientation. It is to be noted that strains were progressively applied

on an ideal lattice. From the distorted lattice(s), pattern simulations (Winkelmann et al.,

2007; Zaefferer, 2007; Callahan and De Graef, 2013) were then conducted. Finally, from

the simulated patterns lattice distortions or strains were estimated by cross-correlation. As

discussed earlier, the cross-correlation or HR-EBSD is sensitive to changes in (∆θ/θ) only,

but were performed on lattices distorted by α or ∆θ and a or ∆d, respectively. These two

estimates were clearly different. As in Figure 6.11(b), the strains imposed by distorting

the ideal lattice by ∆θ showed a higher slope. More importantly, the strain estimated by

HR-EBSD is nearly identical to the imposed strain on ideal lattice (slope∼1), when the

lattices are distorted by α or ∆θ, as compared to the case when lattice is distorted by a

or ∆d. Further, it was checked that the mode of pattern simulation (Figure 6.11(b)) and

traction-free versus trace-free boundary conditions (cf. Section 6.4.2) did not significantly

alter this strain estimate. However, crystal orientations or the relative positioning of the

zone axes (see Figure 6.8(b)) appeared to affect the scaling factor. We used fitting of 11

randomly selected crystallographic orientations (and corresponding ideal lattices), and an

average scaling factor of ∼ 1.47 was obtained, see Figure 6.11(c). It is interesting to note that

the experimental and statistical data produced a scaling factor of ∼ 1.57 (Figure 6.9(b)),

which was similar but not identical to the scaling factor emerging from pattern simulations

(Figure 6.11(c)).

We have used this approach for 11 crystallographic orientations, see Figure 6.11(c). Out

of these, Figure 6.11(b) shows results from ‘orientation 1’ with both kinematical and dy-

namical simulations. The corresponding patterns were input to OpenXYTM, and estimates

of residual strains were obtained by an off-line cross-correlation of simulated Kikuchi pat-

terns. As the results for kinematical and dynamical pattern simulations were similar (Figure

6.11(b)), we have only used the computationally inexpensive kinematical simulations for the

remaining calculations. It is to be noted that HR-EBSD estimates adopting traction free

(Figure 6.11(b)) or trace free (Figure 6.12) boundary conditions were nearly identical (Rug-

gles et al., 2020). We have then determined an average scaling factor between (∆θ/θ) type
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strain measurements and (∆d/d) type measurements for a given effective strain level, for all

11 orientations – see Figure 6.11(c). An average scaling factor of ∼ 1.47 was thus obtained.

It is to be noted that the estimated scaling factors were different for orientations 5 and

11. These were orientations where zone axes were at the edge of HR-EBSD Bragg spread,

potentially introducing higher q vector (see Figure 6.8).

To further verify the simulated residual elastic strain measurements, we have estimated the

change in interplanar spacing ((∆d/d) for lattices distorted by a or ∆d) and the change

in interplanar angle ‘α’ (for lattices distorted by α or ∆θ) from the corresponding strain

tensors, derived at various deformation levels (see Figure 6.11(a)). The resultant magnitudes

have then been compared with their imposed counterparts. A reasonable convergence has

been achieved by our HR-EBSD pattern simulations, especially in the predictions of the

‘α’ angle. For brevity, the results have been only been presented for the orientation 1 (see

Figure 6.11(c)) in Table 6.2 and Table 6.3. The imposed change in Table 6.2 and 6.3 refer

to the use of deformation gradients described in Equations 6.8 and 6.9 to distort the ideal

crystal lattice, whereas the estimated changes refer to the back-calculations carried out from

the OpenXYTM estimated deformation gradients.

Table 6.2: Comparison of the imposed versus estimated change in interplanar angles (for
lattices distorted by α or ∆θ)

Applied tensile strain Trace free boundary condition Traction free boundary condition
Imposed Estimated Imposed Estimated

0.0049 0.5 0.5215 0.5 0.5243
0.008 0.79 0.7598 0.79 0.7617
0.0098 0.88 0.7651 0.88 0.7677
0.012 1.19 1.1356 1.19 1.1374
0.013 1.3 1.2407 1.3 1.2964
0.015 1.5 1.4906 1.5 1.4973

Table 6.3: Comparison of the imposed versus estimated change in (∆d/d) (for lattices
distorted by a or ∆d)

Applied tensile strain Trace free boundary condition Traction free boundary condition
Imposed Estimated Imposed Estimated

0.0049 0.0058 0.00352 0.0058 0.0034
0.008 0.0097 0.00656 0.0097 0.0060
0.0098 0.0119 0.00802 0.0119 0.0075
0.012 0.0145 0.00973 0.0145 0.0089
0.013 0.0157 0.0103 0.0157 0.0093
0.015 0.0182 0.0126 0.0182 0.0115
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6.4.3 Residual Strains Measurements at Sub-Micron Scales

Micro-Laue and HR-EBSD are significantly different in spatial resolution (∼ 50 µm versus

∼ 20 nm). Spatial resolutions of HR-TKD and TEM-PED, on the other hand, are somewhat

closer. It was hence decided to explore the differences in strain measurement further with

direct observations from TKD ((∆θ/θ)-sensitive) and PED ((∆d/d)-sensitive). It is to

be noted that both these measurements were performed on an identical area (see Figure

6.15(a)) from a 3 mm TEM foil. Considering the foil thickness of a few hundred Å, we

have focused on in-plane shear strain (γxy) for comparison. Reference patterns (HR-TKD

and TEM-PED) were obtained from the identical spot, see Figure 6.15(a). Additionally,

we have also shown standard SSE output from OpenXYTM in the Figure 6.13. The low

error fraction magnitudes (∼ 12%), especially in a strained specimen, are indicative of the

fact that the captured HR-TKD patterns (and the corresponding scan parameters, camera

settings) were of sufficient quality.

Several interesting points emerged. Firstly, the orientations (shown as inverse pole figures)

were similar. However, the so-called kernel average misorientation or KAM distribution (cf.

Chapter 3 and Thool et al. (2020)) was higher and broader for HR-TKD (see Figure 6.14).

This is not surprising. HR-TKD (or HR-EBSD) has nearly two-orders of magnitude higher

angular resolution than PED. Increasing angular resolution (∼ 0.006◦) enables HR-TKD

to detect minor gradients in orientation effectively. TEM-PED on the other hand, with

an angular resolution of < 0.4◦, would neglect such minor orientation gradients and report

them as a single orientation. This results in a wider/broader spread of the misorientation

distribution for HR-TKD when compared to TEM-PED measurements.

Figure 6.13: High resolution transmission Kikuchi diffraction (HR-TKD) results repre-
sented using Inverse Pole Figure (IPF) and the standard Sum of Squared Error (SSE) map

obtained from the OpenXYTM software.
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Naturally, the microstructural features appeared different. Though both measurements

were taken at a step size of 10 nm, HR-TKD used a beam current of 16 nA while PED

involved a beam current of 0.0017 nA and a precession angle of 10.4 mrad. It is to be

noted that the adopted precession angle provided excellent spatial resolution. In brief, the

PED map clearly offered higher spatial resolution than the HR-TKD. The respective spatial

resolutions were estimated using a MATLABTM code. This was ∼ 1.2 times (in pixels per

µm2) more in PED than in HR-TKD, though same step size was used. In particular, the

PED appeared to be more sensitive to the presence of dislocations. In particular, the PED

appeared to be more sensitive to the presence of dislocations. Though lateral resolution of

TEM-PED is superior in comparison to HR-TKD, higher beam energies and the tendency

to probe through the entire sample thickness results in a poor depth resolution (Sneddon

et al., 2016). This study, however, clearly showed that TEM-PED had superior imaging for

defects and dislocations.

Figure 6.14: Kernel average misorientation (KAM) distributions between HR-TKD and
TEM-PED, as obtained from Figure 6.15(b).

However, the biggest difference was in the imaging of γxy, see Figure 6.15(a). In HR-TKD,

this was ∼ 1.73 times of the PED strain values (Figure 6.15(b)). Imposing the previously

estimated scaling factor (between HR-EBSD and micro-Laue - Figure 6.9(b)), a slope of

∼ 1.08 was obtained (Figure 6.15(c). This is indeed striking that two different sets of

experimental lattice strain estimates (Figure 6.9(b) versus Figure 6.15(b)) gave a similar

scaling factor. In other words, this study not only established a difference in residual

strain estimates using different measures of lattice distortions (∆θ/θ) versus (∆d/d), it also

brought out a similar scaling adopting two different sets of analytical tools - HR-EBSD

versus micro-Laue, and HR-TKD versus TEM-PED.



Chapter 6. Multiscale Residual Strain Measurements 170

Figure 6.15: Exploring the numerical convergence in ∆θ/θ sensitive, HR-TKD and ∆d/d
sensitive, TEM-PED based residual elastic strains. (a) Images showing the identical region
used for mapping residual elastic strains with HR-TKD and TEM-PED. The red mark-
ers highlight the reference topological features used to ascertain identical locations for the
respective scans. (b) Residual elastic strains were estimated using high resolution trans-
mission Kikuchi diffraction (HR-TKD) and precession electron diffraction (PED) in the
identical regions. The black markers highlight areas with similar strain concentrations in
the HR-TKD as well as PED measurements. Correction (using experimental scaling factor
of ∼ 1.57) shows similar residual strain maps (in Figure 6.15(b), bottom) and (c) plot of

absolute magnitudes of HR-TKD versus TEM-PED strains (|γxy|)
.

6.5 Local Lattice Distortions in Microstructures

The field of microscopy and microstructure, in metallic materials, has started by a Sheffield

geologist Henry Sorby (Higham and Gentleman, 1963; Nuttall, 1981). Using thin sections of

a wrought iron, deformed and then partially annealed, Sorby proposed the presence of ther-

modynamically unstable (deformed) and stable (recrystallized) regions. This was during a

time-period, when deformation was often viewed as amorphization (Higham and Gentleman,

1963). Optical microscopy also described invariant plane strain microstructures, originally

by Adolf Marten and then by Bain and Davenport, long before the phenomenological theory



Chapter 6. Multiscale Residual Strain Measurements 171

of martensite crystallography was formalized (Verlinden et al., 2007). Microscopy naturally

evolved further with the arrival of electron columns and then the EBSD (Wright and Adams,

1992; Adams et al., 1993). Other than attributes like resolution, the key aspect of any mi-

croscopy is in the contrast mechanism. The latter may emerge from the amplitude-phase

contrast in classical TEM imaging, to more recent orientation contrast in EBSD and strain

contrast in HR-EBSD.

The complete microstructural description consists of grains and phases and also defects

(Verlinden et al., 2007). An important attribute of the latter is in the lattice distortions,

the focus of the present study. The lattice distortion translates into residual strains and

stresses, even bulk measurements of which may suffer from significant reproducibility issues

(Verlinden et al., 2007). The local residual strain can be measured from high resolution

TEM imaging and the so-called geometrical phase analysis (Ghamarian et al., 2014; Revelly

et al., 2015; Ghamarian, 2017). However, this restricts any such measurement to aberration

corrected microscopes and very limited area. Alternatives exist in the form of micro-Laue

XRD (Lodh et al., 2017, 2018, 2019, 2022) and SEM (Wilkinson et al., 2006; Wright et al.,

2011; Fullwood et al., 2015) plus TEM (Ghamarian et al., 2014; Ghamarian, 2017) based

microtexture measurements. It is perhaps redundant to preach on the potentials for such

multiscale diffraction-based measurements, as any metallurgist or materials scientist would

readily appreciate this point. Such techniques hold possibilities of revealing uncharted

aspects of microstructure.

A significant hurdle to any such effort, of strain-based microstructural representation, is in

quantifying the differences in estimated strain magnitudes by different analytical tools. We

have established that strain estimates from (∆θ/θ) are higher than those from (∆d/d). This

was shown with both statistical experimental data (Figure 6.9(b)) and also with numerical

simulations (Figures 6.11). Even using the same HR-EBSD algorithm, the lattices distorted

by (∆θ/θ) exhibited higher strain values (see Figure 6.11) than those altered by (∆d/d).

The numerical differences cannot be fixed using simple measurement algorithm adjustments

(Figure 6.9) or protocol (Figure 6.8). The difference originated from the template of imposed

lattice distortion. The lattices distorted by changing ∆θ appeared more strained than those

altered by ∆d, see Figure 6.6. It is interesting that experiments and pattern simulation

both brought out these differences, and a somewhat similar scaling factor (Figures 6.9(b)

and 6.15) emerged. The clear linear relationship, with strain level, is striking, and it enabled

us to obtain a convergence in strain magnitudes (Figure 6.6-6.15).

Note that the interaction volumes vary significantly between the HR-EBSD ((∆θ/θ)-sensitive)

and micro-Laue ((∆d/d)-sensitive) residual strain measurement techniques. The penetra-

tion depth for an electron beam with a spot size of ∼ 2 nm typically lies in the range of
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∼ 10 − 20 nm (cf. Section 6.3). On the other hand, the micro-Laue technique subtends a

relatively larger interaction volume, with typical penetration depths lying in the range of

5−10 µm for a 50 µm wide beam (cf. Section 6.3). It was hence suspected these differences

may also contribute to the varying magnitudes of residual strain estimates.

To mitigate this difference, a comparison of the local residual strain estimates is presented

using the HR-TKD and the TEM-PED techniques (cf. Section 6.4.3), both of which subtend

nearly similar interaction volumes. As can be seen in Figure 6.15(c), employing a scaling

factor of ∼ 1.57 (cf. Figures 6.9 and 6.11) resulted in a numerical convergence between

the (∆θ/θ)-sensitive HR-TKD and (∆d/d)-sensitive TEM-PED residual strain estimates.

Since an identical scaling factor could be employed for (∆θ/θ)-sensitive and (∆d/d)-sensitive

techniques with (HR-EBSD and micro-Laue) and without (HR-TKD and TEM-PED) dif-

ferences in their interaction volumes, it can be concluded that the latter does not largely

affect the numerical convergence between the residual strain estimates. However, our results

do indicate that the interaction volumes subtended by each of the techniques significantly

effects their measurement uncertainty as well as their spatial and angular resolution (cf.

Figures 6.13 and 6.10).

Overall, our observations from Figures 6.6-6.9 can be justified as follows: phenomenologi-

cally, for the same state of deformation in a grain, the strain measured by HR-EBSD and

micro-Laue single crystal residual elastic strain measurements should be identical. One po-

tential cause of this difference is perhaps the different levels of sensitivity of the respective

measurement techniques to different measures of elastic strain. The Kikuchi patterns are

considered to be a gnomonic projection of a crystal lattice on the phosphor screen. The

angles between the two bands corresponds to the interplanar angles in a crystal lattice,

whereas, the width of Kikuchi band corresponds to the interplanar spacing dhkl (Schwarzer

et al., 2009). The cross-correlation based residual strain calculations rely on the shift in zone

axes position q on the phosphor screen, to estimate the lattice distortion gradient tensor

at a given pixel (Wilkinson et al., 2006, 2009). As seen in Figure 6.3, such a technique

is more sensitive to ∆θ/θ (change in interplanar angles), in contrast to the micro-Laue

technique, which is more sensitive to ∆d/d (change in interplanar spacing). The varying

interpretation of the same imposed state of deformation by the two techniques can lead

to the errors/discrepancies between micro-Laue and HR-EBSD/ TEM-PED and HR-TKD

residual strains.

In addition, a larger ‘a’ type strain, which mainly results in a uniform change in the inter-

planar spacing (dhkl) would not accurately reflect on the zone axes shifts; thus, resulting in a

large deviation in the HR-EBSD/HR-TKD (∆θ/θ sensitive) estimated strains as compared

to the ∆d/d based techniques (see Figure 6.9(c)). It is important to note that the present
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study does not comment on the reliability of either of the two diffraction-based residual

strain measurement techniques, ∆θ/θ sensitive and ∆d/d sensitive; we only present a com-

parison, followed by a possible justification of the errors/discrepancies and calculation of a

scaling factor to establish numerical convergence between these multiscale diffraction-based

strain measurement approaches. Based on large statistical dataset as well as extensive pat-

tern simulations, it appears that a numerical scaling factor exists between strain estimates

from ∆d/d and ∆θ/θ. Of course, the present study established this factor only in BCC

iron, and it is unknown how other crystal symmetries or strain modes would exhibit such a

scaling. However, the present set of experimental measurements and numerical simulations

remain consistent and statistically robust. More importantly, they articulate the fundamen-

tal difference in strain estimates from ∆d/d and ∆θ/θ. In addition, this study also brings

out the potentials and challenges of multiscale diffraction-based lattice strain measurements

as a microscopic technique and contrast mechanism.

6.6 Conclusions

We have used different multiscale diffraction-based residual strain measurements. These

were sensitive to changes in the interplanar angle ((∆θ/θ)-HR-EBSD and TKD) or inter-

planar spacing ((∆d/d)-micro-Laue XRD and TEM-PED). A comparison of their absolute

magnitudes, and possible reasons for their deviation from the ideal behavior were explored.

Following were the key conclusions from this study:

1. The measurements differed in scale and resolution, but more importantly they were

numerically different. For example, both HR-EBSD and micro-Laue XRD showed an

increase in residual strain values with imposed tensile deformation. However, even

after optimizing the HR-EBSD parameters - the increase in strains were ∼ 1.57 times

higher in HR-EBSD.

2. We have then distorted an ideal BCC lattice, virtually, by progressively altering its in-

terplanar angle (α) and lattice parameter (a), respectively. These effectively changed

∆θ and ∆d. From kinematically and dynamically simulated patterns, the correspond-

ing strains were calculated by HR-EBSD. The strain estimates were consistently higher

for lattices distorted by ∆θ compared to lattices distorted by ∆d. The scaling factor

(∼ 1.47) was somewhat similar to the experimentally observed ratio of ∼ 1.57.

3. TKD and TEM-PED measurements, conducted on the identical location, showed

higher strains for TKD. However, similar magnitudes of strain distributions were ob-

tained when scaled with the earlier (HR-EBSD versus micro-Laue) factor of ∼ 1.57.



Chapter 7

Orientation-Dependent Residual

Strains during Tensile and Cyclic

Deformation

7.1 Introduction

The self-equilibrating strains retained in a material in the absence of external load are re-

ferred as residual strains (Cullity, 1956; Noyan and Cohen, 2013; Withers and Bhadeshia,

2001). These may arise due to heterogeneous elastic-plastic deformation, phase transforma-

tion or temperature changes during thermo-mechanical processing (Verlinden et al., 2007)

and are expected to influence the ensuing mechanical properties. Based on the length-scales

over which these strains self-equilibrate, they may be further classified into bulk and local

residual strains (Lodh et al., 2022; Chen et al., 2022a). Alternatively, these may also be

classified as Type-I (bulk), Type-II (intergranular) and Type-III (intragranular) residual

strains (Verlinden et al., 2007; Chen et al., 2022a).

X-ray/neutron diffraction have been used extensively to characterize the evolution of bulk

residual strains. The position, width and intensity of the diffraction peak profiles have been

quantified to analyze the bulk residual strains (Clausen et al., 1999; Agnew et al., 2003;

Erinosho et al., 2016; Upadhyay et al., 2019; Thool et al., 2020; Ferreri et al., 2022), while

also providing information regarding the dislocation density (Ungár et al., 2001; Plotkowski

et al., 2023; Wang et al., 2024) and texture development (Kocks et al., 2000; Takajo et al.,

2018) during deformation. The large penetration depth and interaction volume subtended

1

Significant parts of this Chapter have been published in (Pai et al., 2025)
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by these methods ensures a statistically representative data over several grains (Randle

and Engler, 2000). (hkl)-specific bulk residual strains, or lattice strains, are a measure of

the change in the inter-planar spacing for specific (hkl) crystallographic planes or grain

families (Verlinden et al., 2007) and are generally used to quantify the texture-dependent

anisotropic residual strain development. These have also been employed to study the lattice

strain/stress partitioning between the constituent phases, and subsequently quantify their

influence on the local as well as aggregate properties (Kim et al., 2016a; Pokharel et al.,

2019; Tran et al., 2023; Bönisch et al., 2023; Zhang et al., 2021a). For example, Zhang et al.

(2021a) in their study on the Additively Manufactured AlSi10Mg subjected to tensile loading

noted a clear difference in the load bearing capabilities of the Aluminum and Silicon phases.

Further, their study also comments on the factors influencing the orientation-dependent

lattice strains at different stages of the tensile deformation (Zhang et al., 2021a). Spatially-

resolved local residual strains have also been studied using techniques such as High Energy

X-ray Diffraction Microscopy (HEDM) (Kapoor and Sangid, 2018; Tayon et al., 2024),

single crystal micro-Laue X-ray Diffraction (XRD) (Thool et al., 2020; Manda et al., 2024)

and High Resolution Electron Back Scatter Diffraction (HR-EBSD) (Fullwood et al., 2015;

Hansen et al., 2020; Das et al., 2020). The diffraction-based approaches have been used to

quantify both the intragranular (Kartal et al., 2012; Jiang et al., 2015; Black et al., 2024)

and intergranular local residual strains (Manda et al., 2024; Tayon et al., 2024) and their

correlation with the underlying microstructure.

The development of residual strains is often anisotropic, dependent on the crystallographic

texture and inherently linked to the underlying plastic deformation (Clausen et al., 1999;

Korsunsky et al., 2002; Wang et al., 2003; Kanjarla et al., 2012; Zheng et al., 2013; Schröder

et al., 2022). Generally speaking, the imposed deformation results in the development of

substantial intragranular orientation gradients (Hartley and Kysar, 2020; Sun et al., 2022).

The magnitudes of these are largely influenced by the Schmid factor of the activated slip

systems as well as the misorientation it subtends with its neighbours (Nagarajan et al.,

2021; Chen and Furushima, 2024). The local lattice rotation leads to the activation of

additional slip systems within a grain. The resulting plastic deformation renders the grain

incapable of accommodating the stress increment, thus, displaying a relaxation in the bulk

residual strains (Brown et al., 2017). Similarly, Zheng et al. (2013) noted that the decay in

the (hkl) lattice strain magnitudes could be directly correlated to the instantaneous Taylor

factor. Further, Manda et al. (2024) reported higher local residual strain developments

for the (100) grain family, followed by the (110) and (111) grains under tensile loading.

Study of the effect of neighboring grains on the development of anisotropic local residual

strains has been performed by (Abdolvand et al., 2018; Thool et al., 2020; Louca et al.,
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2024). These observations point out that the residual strains are inherently orientation-

dependent and also influenced by the texture of the neighboring grains. Anisotropic residual

strains/stresses are expected to contribute to incompatible deformation and eventual failure

at grain boundaries (Sudhalkar et al., 2024). However, there are only limited studies on

the development of residual strains during cyclic deformation (Lorentzen et al., 2002; Wang

et al., 2003; Saleh et al., 2013).

Crystal plasticity models have been used extensively to predict the development of bulk

and local residual strains (Clausen et al., 1999; Dawson et al., 2001; Lorentzen et al., 2002;

Li and O’Dowd, 2011; Kanjarla et al., 2012; Musinski and McDowell, 2015; Zecevic et al.,

2015; Wang et al., 2017; Chen et al., 2019; Shade et al., 2019; Upadhyay et al., 2019; Jeong

and Tomé, 2020; Bandyopadhyay et al., 2021; Aburakhia et al., 2022; Chen et al., 2022a;

Ferreri et al., 2022; Bandyopadhyay et al., 2024). The residual strains can be predicted by

projecting the simulated elastic strains onto crystallographic planes. Depending on whether

the comparison is made with ex-situ or in-situ experimental measurements, the simulated

residual strains need to be appropriately relaxed. While computationally cheaper, mean-

field crystal plasticity models have been used for prediction of statistically representative

bulk residual strains averaged over a large number of grains (Clausen et al., 1999; Lorentzen

et al., 2002; Neil et al., 2010; Ferreri et al., 2022), they are generally unable to predict the

development of local residual strains. Towards this end, spatially-resolved, full field crystal

plasticity models have been employed (Kanjarla et al., 2012; Thool et al., 2020; Sedaghat

and Abdolvand, 2021; Bandyopadhyay et al., 2024; Louca et al., 2024). Accurate prediction

of the elastic-plastic transition, relaxation and load transfer among grains, and influence

of neighboring orientations is often challenging. In addition, appropriate incorporation of

processing induced residual strains (prior to deformation) is also a matter of ongoing study

(Musinski and McDowell, 2015; Kapoor and Sangid, 2018; Bandyopadhyay et al., 2024).

Further, most of the crystal plasticity models have been used to predict residual strains dur-

ing monotonic deformation. Development of residual strains and associated microstructure

evolution during cyclic deformation are not very well studied. While there are several crystal

plasticity studies on modeling cyclic deformation due to backstress evolution (Castelluccio

and McDowell, 2017; An et al., 2020; Santus et al., 2023), evolution of residual strains

during cyclic deformation has not been studied in great detail. Further, this is largely

dependent on the accurate estimation of directional backstresses during cyclic loading. Re-

cently, physically based backstress models have also been proposed to capture the underlying

substructure evolution (Brahme et al., 2011; Zecevic and Knezevic, 2015; Castelluccio and

McDowell, 2017; Agius et al., 2022; Bandyopadhyay et al., 2021; Zirkle et al., 2021; Zhang

et al., 2023). However, their role on influencing the orientation-dependent bulk and local
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residual strains has not yet been explored and needs to be studied. Further, there have been

combined experimental and crystal plasticity studies examining the intragranular lattice ro-

tation and slip activity in an Inconel 718 alloy subjected to monotonic and cyclic loading

(Hestroffer et al., 2022). Recent studies have also correlated crystal plasticity-predicted

slip and twin system activity with the bulk lattice strain evolution and tension-compression

asymmetry (where present) due to the inherent deformation anisotropy of hexagonal closed

packed crystalline materials (Wang et al., 2016; Agnew et al., 2018; Zhu et al., 2021a).

Here, we further extend these correlations in terms of the development of bulk and local

residual strains, the crystallographic texture and their interdependence with the underlying

microstructural features, during tensile and cyclic loading.

We present a combined experimental and crystal plasticity modeling framework to study

the evolution of bulk and local residual strains during tensile and cyclic deformation in an

austenitic stainless steel. The bulk residual strains are quantified in terms of the lattice-

specific (hkl) strains using XRD measurements, while the local residual strains are quantified

in terms of the HR-EBSD measured strains. A dislocation density-based crystal plasticity

finite element modeling framework is used to predict the macroscopic stress-strain response

and the bulk and local residual strains during tensile and cyclic deformation. Model predic-

tions of the bulk residual strains during tensile and cyclic deformation are compared with

the XRD measurements. Further, initial microstructures obtained from EBSD scans are

simulated to predict the local residual strains and compared with their HR-EBSD coun-

terparts. The broad objectives of this work are to study the evolution of bulk and local

residual strains, their correlation with the underlying microstructure, and the hierarchy in

the residual strain developments during tensile and cyclic deformation.

7.2 Experimental Methodology

The material used in the present study is a commercial austenitic stainless steel (AISI 316L).

This study used a fully recrystallized material (average grain size of 31±6 µm) in a standard

mill-annealed condition (Wasnik et al., 2002). Appropriate specimens were then subjected

to tensile and cyclic deformation. Two types of specimens, standard (ASTM Standard E-606

(ASTM et al., 2012)) and sub-size (cf. Chapter 3), were used. The former were subjected to

room temperature tensile tests as well as strain-controlled Low Cycle Fatigue (LCF) tests.

These were performed in a servo-hydraulic axial fatigue system, MTS-Landmark, with a 100

kN loading capacity. Fully-reversed cyclic loading tests were performed for a total strain

amplitude ∆ε/2 of 0.01 at a nominal strain rate of 10−3 s−1. This corresponds to an elastic
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strain amplitude, ∆εe/2 ∼ 0.002 and plastic strain amplitude, ∆εp/2 ∼ 0.008. The dis-

placement data was acquired using a fixed gauge length extensometer (having capacity of

measuring strains up to 0.5) of gauge length 10 mm. For our progressive, albeit interrupted

cyclic loading/LCF experiments, microstructural characterizations were carried out after

deformation to 0, 10, 20, 50, 100 and 200 cycles, respectively. An identical specimen was

also used to carry out the uninterrupted LCF test up to 200 cycles. Further, uninterrupted

monotonic tensile testing was performed up to a nominal strain of 0.25 at a nominal strain

rate of 10−3 s−1 on the standard specimen. Following this, interrupted tensile tests were

carried out in a DEBENTM micro-tensile stage using a sub-size specimen, at a nominal

strain rate of 10−3 s−1. Microstructural characterizations were carried out at regular in-

tervals during progressive tensile deformation at intervals of 0, 0.05, 0.1, 0.15, 0.2 and 0.25

nominal strains. The uninterrupted LCF/tensile experiments were used to obtain the me-

chanical response and the crystallographic texture (initial and deformed). The progressive

LCF/tensile tests, on the other hand, were used to study the evolution of microstructure

and residual strains with increasing deformation.

(hkl) specific bulk residual strain (lattice strain) measurements at various stages of the

progressive tensile and cyclic deformation were carried out in a PanAlyticalTM Empyrean

X-ray Diffraction (XRD) system. This equipment hosts a 3 kW sealed tube with a X-ray

spot size of ∼ 1 mm (as determined by X-ray lens) and a 1-DerTM solid state linear (1D)

detector. The lattice strains were measured using the standard d-sin2ψ technique (Prevéy,

1986; Van Houtte and De Buyser, 1993; Lodh et al., 2022) on four distinct crystallographic

poles or (hkl) families, namely, the (111), (001), (101) and (311) poles, which satisfy the

Bragg’s law. As the X-ray optics (PolycapTM) and solid-sate detector (1-DerTM) are best

suited for Cu K-α, we have used the same as the X-ray source. An angular 2-theta range

of ∼ 140◦ is thus achieved in our laboratory XRD setup (PanAlyticalTM Empyrean). This

enables covering the following (in the increasing order of 2-theta) diffraction peaks or poles:

(111), (200), (220), (311), (222), (400) and (331). Thus, only the (111), (200) (denoted as

(001) family), (220) (denoted as (101) family) and (311) grain families have been considered

in the present work. It may also be noted that past literature (Neil et al., 2010; Chen

et al., 2019; Upadhyay et al., 2019) have also considered lattice strains for these FCC

crystallographic orientations. A K-β filter (Nickel) was used on the incident side to suppress

the beta-emission line, whereas soller slits (with a solid angle of 0.04 rad) were used to limit

the out-of-plane/angular divergence on the diffracted beam side. A commercial software,

XpertTM Stress Plus, was used for analyzing the XRD data. Additionally, all measurements

were performed three times for a given condition to ensure repeatability. Note that we have

used εLD to refer to the longitudinal residual strains and εTD to refer to the transverse

residual strains, bulk as well as local, throughout the manuscript.



Chapter 7. Evolution of Bulk and Local Residual Strains 179

The sample preparation for microscopy involved a combination of traditional metallography

techniques, followed by electropolishing the specimens in an electrolyte of 80 : 20 ratio of

methanol to perchloric acid solution. A StuersTM Lectropol-5 equipment at 273 K and 14

V dc was used for electropolishing the specimens. A FEITM Quanta-3D Field Emission

Gun-Scanning Electron Microscope (FEG-SEM) with a EDAXTM Trident system was used

for Electron Back Scatter Diffraction (EBSD) scans. The EBSD scans used a fixed step size

of 0.25 µm, an accelerating voltage of 20 kV , a current of 16 nA and a working distance of

14.0 mm. The scans were analyzed using EDAXTM’s OIM Analysis software. For estimating

local residual strains using the High Resolution EBSD (HR-EBSD) technique, the 16-bit

Kikuchi patterns (acquired at 2 × 2 binning) were stored for all points within the region

of interest. An open source HR-EBSD toolkit, OpenXY (Fullwood et al., 2015; Fullwood,

2020) was used, with the methodology given in Chapter 6. Additionally, Pattern Region

of Interest Analysis (PRIAS) images (Chaudhary et al., 2023) have also been acquired at

each stage of the interrupted tensile and cyclic deformation, to understand the changes in

surface topography of the specimens.

A confidence index cutoff of 0.1, representing 95% accuracy in the indexing of Kikuchi pat-

terns, was used to filter out any erroneous data during post-processing. To avoid any edge

effects, regions of 200 µm × 200 µm area near the center of tensile and cyclic specimens

were used for all microstructural characterizations. Further, impressions from the micro-

hardness indents were used to locate the region of interest during interrupted tensile and

cyclic (EBSD) measurements. While studies pertaining to the detailed microstructural char-

acterizations focused on a smaller region of interest, wide area scans (1.25 mm× 1.00 mm)

along the specimen cross-section with a step size of 0.75 µm were used to estimate the bulk

crystallographic texture.

7.3 Modeling Framework

A dislocation density-based crystal plasticity model has been developed and integrated into

the open source crystal plasticity framework, ρ-CP (Patra et al., 2023a), to predict the evo-

lution of lattice strains during deformation. While existing models in the ρ-CP framework

are based on the evolution of mobile and immobile dislocation densities during deformation,

the present work has adopted a rather simpler Kocks-Mecking type formulation for evolu-

tion of statistically stored dislocation densities, combined with a Taylor hardening model

for dislocation strengthening and a slip system-level Armstrong-Frederick type model for

directional hardening. In addition, initial residual strains have been incorporated using the
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Eigenstrain method (Musinski and McDowell, 2015) to mimic processing-induced residual

strains in the as-received material.

7.3.1 Finite Deformation Kinematics

The finite deformation framework relies on the multiplicative decomposition of the defor-

mation gradient, F , into the elastic, F e, plastic, F p and thermal, F θ, parts (Musinski and

McDowell, 2015; Pokharel et al., 2019), i.e.,

F = F e · F p · F θ (7.1)

where, F θ accounts for Eigenstrains due to thermal expansion/contraction, F p accounts for

the plastic shear on the thermally-strained lattice, thus transforming it to an intermediate,

isoclinic configuration. F θ has been added to instantiate the (initial) residual strains present

in the as-received material, in the absence of any external load. Based on the assumption of

isotropic thermal expansion/ contraction, F θ can be written as (Musinski and McDowell,

2015):

F θ =
√

1 + 2αθ∆θ δ (7.2)

where, αθ denotes the temperature-dependent thermal expansion co-efficient, ∆θ = θref − θ
is the deviation of the current temperature, θ, from the stress-free temperature, θref , and

δ is the second rank identity tensor. The stress-free Eigen strains can hence be written as:

Eθ =
1

2

(
F θT · F θ − δ

)
= αθ∆θ δ (7.3)

Note that the Eigenstrain approach is introduced as a means to induce the residual strains

in the undeformed material. The value of θref is hence decided by simple analytical calcula-

tions to obtain the desired residual strains. We note that alternate approaches to introduce

residual strains in polycrystalline ensembles have also been proposed recently (Bandyopad-

hyay et al., 2024).

The plastic part of the deformation gradient, F p, can be related to the spatial velocity

gradient, Lp, as Ḟ p = Lp ·F p. Further, Lp is written as the tensorial sum of crystallographic

shearing rate, γ̇α, over all possible slip systems, Ns, and is given by:

Lp =

N∑
α=1

γ̇αmα
0 ⊗ nα

0 (7.4)
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where, mα
0 and nα

0 denote unit vectors along the slip and slip plane normals on slip system

α in the reference configuration, respectively.

The crystallographic shearing rate due to dislocation glide is represented using a Kocks-type

thermally activated flow rule as (Kocks et al., 1975):

γ̇α = γ̇0 exp

{
−∆Fg
kT

(
1 −

(
|τα − χα| − sαa

sαt

)p)q}
sgn (τα − χα) ; |τα − χα| > sαa (7.5)

where, γ̇0 is the reference shearing rate, ∆Fg is the activation energy for dislocation glide, k is

the Boltzmann constant, and T is the absolute temperature, respectively. The parameters

p and q can be used to control the shape of the activation enthalpy curve. Further, sαa

represents the non-directional athermal slip resistance, due to the long range stress field

of obstacles, such as dislocation forests, whereas sαt represents the thermal slip resistance

due to short range barriers, such as solute atoms. The athermal slip resistance involves

contribution from the threshold lattice resistance, grain-size strengthening and dislocation

strengthening, and is given by:

sαa = τα0 + kihGb

√√√√ N∑
ξ=1

AαξρξSSD (7.6)

Here, τα0 denotes the intrinsic lattice resistance, kih denotes the Taylor hardening coeffi-

cient due to dislocations, G is the shear modulus, b is the Burgers vector magnitude and

Aαξ represents the slip system level interaction matrix for dislocation junctions formed be-

tween dislocations on slip system α and ξ, and ρξSSD is the density of Statistically Stored

Dislocations (SSD) on slip system ξ.

The substructure evolution was captured using a Kocks-Mecking type model for SSD evo-

lution of the form (Estrin, 1996; Kocks and Mecking, 2003):

ρ̇αSSD =
kM
b

√
ραSSD |γ̇α| − kDρ

α
SSD |γ̇α| (7.7)

Here, the first term on the right-hand side accounts for dislocation multiplication at pre-

existing junctions, while the second term accounts for dislocation annihilation due to dy-

namic recovery. The parameters, kM and kD are derived by fitting the model to the exper-

imental stress-strain response.

Backstresses may contribute to directional hardening during cyclic loading. The rate of

evolution of crystallographic backstress is modeled as a function of the dislocation density

using a non-linear Armstrong-Frederick type kinematic hardening model (Shenoy et al.,
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2008; Chaudhary et al., 2022):

χ̇α =
(
kαχ1Gb

α
√
ραSSD sgn (τα − χα) − kαχ2χ

α
)
|γ̇α| (7.8)

where, the first term accounts for the development of backstress due to dislocation pile-up

and the second term accounts for the recovery, respectively. kαχ1 and kαχ2 are associated

material parameters that can be estimated by fitting to experimental cyclic stress-strain

response. As discussed earlier, more advanced physically based formulations for backstress

predictions exist in the literature (Brahme et al., 2011; Zecevic and Knezevic, 2015; Castel-

luccio and McDowell, 2017; Zirkle et al., 2021; Agius et al., 2022; Zhang et al., 2023). In

the present study, we resort to a rather simpler dislocation density based model form for

backstress evolution, which has been demonstrated earlier for polycrystalline copper (Patra

et al., 2023a) and Ni-based superalloys (Chaudhary et al., 2022, 2025).

The constitutive equations have been implemented as a material model in the open-source

crystal plasticity framework, ρ-CP, that interfaces with the open source finite element solver,

MOOSE (Permann et al., 2020), for performing crystal plasticity finite element simulations.

Details of the fully implicit numerical scheme for the time step integration of the crystal

plasticity model are given in Patra et al. (2023a).

7.3.2 Prediction of Lattice Strains

Based on prior studies (Li and O’Dowd, 2011; Pokharel et al., 2019; Upadhyay et al., 2019),

we have adopted the following methodology for predicting the evolution of lattice strains

during tensile and cyclic deformation. This method uses the crystallographic orientation

(in terms of the Euler angles) at a given material point to project the elastic Green strain

tensor on to specific < hkl > directions or (hkl) family of planes. Given the initial Euler

angles (ϕ1, ϕ, ϕ2) in Bunge notation, the corresponding rotation tensor, R0, can be used to

rotate from the global/ laboratory frame of reference to the undeformed crystal frame of

reference (and vice-versa) (Randle and Engler, 2000). Polar decomposition of the elastic

deformation gradient, F e, at a given material point can be used to estimate the associated

rigid rotation of the lattice, Re, as:

F e = Re ·U e ⇒ Re = F e ·U e−1 (7.9)
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Here, U e is the elastic stretch tensor. The total lattice rotation experienced by a material

point in the deformed configuration is thus given as:

R = Re ·R0 (7.10)

The < hkl > plane normal of the material point in the deformed configuration, nhkl, can be

obtained by rotation of the < hkl > plane normal from the undeformed frame of reference,

Nhkl, as:

nhkl = R ·Nhkl = R · (he1 + ke2 + le3)√
h2 + k2 + l2

(7.11)

The lattice strain at a given material point can thus be written as:

εhkl = nhkl ·Ee · nhkl (7.12)

where, Ee = (1/2)(F eT · F e − δ) is the elastic Green strain.

The average lattice strain over all possible material points contributing to a < hkl > reflec-

tion is given as:

⟨εhkl⟩ =
1

Vhkl

∫
Vhkl

εhkldV (7.13)

where, Vhkl denotes the volume of grains contributing to a given < hkl > reflection. The

possibility of a given material point contributing to the < hkl > reflection depends upon

the deviation of the < hkl > plane normal from the diffraction vector, g, and can be given

by:

Vhkl ∈
∣∣cos−1 (g · nhkl)

∣∣ ≤ ωtol (7.14)

Generally, ωtol = 6.5 − 7.5◦ has been used for neutron diffraction measurements (Pokharel

et al., 2019; Upadhyay et al., 2019). We have verified that for our XRD measurements

a similar tolerance is reasonable and have used the same for model predictions, as well.

Finally, note that all grain families contributing to a given < hkl > reflection have been

referenced using the round braces, i.e., (hkl), throughout the manuscript.

We have quantified residual strains, instead of residual stresses because the latter are indi-

rectly obtained by taking the appropriate product of the residual strains with the elastic

constants. There may be error involved with this if the anisotropic elasticity tensor, ro-

tated to the crystal axes, is not considered. On the other hand, residual strains are directly

obtained from peak or zone axes shifts from X-ray diffraction or HR-EBSD.
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7.4 Results and Discussion

7.4.1 Model Calibration

Table 7.1: Volume fraction of different texture components in the (a) undeformed and
(b) deformed specimens.

(a)

Texture Component Experimental Texture Reduced Texture (1000 orientations)

Cube ({001} < 100 >) 0.012 0.011
Brass ({110} < 112 >) 0.068 0.070
S ({123} < 634 >) 0.053 0.048

(b)

Texture Component
εzz = 0.25 (Tensile) N = 2 (Cyclic)

Experiment Simulation Experiment Simulation

Cube ({001} < 100 >) 0.021 0.023 0.017 0.012
Brass ({110} < 112 >) 0.049 0.052 0.055 0.063
S ({123} < 634 >) 0.038 0.050 0.043 0.047

Figure 7.1(a) shows a schematic of the Loading Direction (LD // Z), Transverse Direction

(TD // X) and Normal Direction (ND // Y) on the cross-section of a representative tensile

specimen, while Figure 7.1(b) shows the representative crystallographic texture measured

from the wide-area EBSD scans on the X-Y plane for the undeformed specimen. This has

been shown in terms of the ϕ2 = 0◦, 45◦ and 65◦ sections of the Orientation Distribution

Function (ODF). A maximum intensity of 8.105 was observed (see Figure 7.1(b)), indicative

of a mildly textured material. Note that the wide-area EBSD scan had dimensions of

1.25 mm × 1.00 mm and comprised of 5082 grains. The corresponding IPF map and

the grain size distribution has been shown in Figure 7.2(a,b). The representative texture

derived from this wide-area EBSD scan has been used as an input to our simulations. The

experimental texture was then reduced to 1000 unique orientations, which serves as an input

for the crystal plasticity simulations using the MTEX open source software (Bachmann

et al., 2010). Figure 7.1(b) shows the reduced crystallographic texture for the same ODF

sections. Additionally, Figure 7.1(b) also shows a distribution of the ODF intensity, f(g),

along the ϕ1 axis for ϕ = 45◦, ϕ2 = 0◦ (see dotted line across ϕ2 = 0◦ ODF section in

Figure 7.1(b)). It can be seen that the line profile of the reduced texture is qualitatively

similar to the experimental texture and has been used an input for the bulk simulations.

The similarity is also evident from the near-similar volume fractions of the Cube, Brass and

S texture components between the experimental and the reduced texture (cf. Table 7.1(a)).

Moreover, one can also observe relatively higher volume fractions of the Brass component, in

comparison to its counterparts in Table 7.1(a). It can also be seen in 7.2(a) that a majority

of the grains in the undeformed specimen are of the ∼ (101) family, thus resulting in a

near-Brass texture.
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Figure 7.1: (a) Schematic showing the Loading (LD), Transverse (TD) and Normal (ND)
directions on a tensile specimen. (b) The experimental and reduced crystallographic tex-
tures plotted in terms of the Orientation Distribution Function (ODF) ϕ2 = 0◦, 45◦ and
65◦ sections. The corresponding intensity distribution along the α fibre (see dotted line in
(b) along ϕ1,ϕ = 45◦,ϕ2 = 0◦ ODF section) for the experimental and reduced textures has
been shown in (b). The blue markers indicate some of the typical texture components in
Face Centered Cubic (FCC) metals, the volume fractions of which have been tabulated in

Table 7.1(a).

Table 7.2: Constitutive model parameters calibrated to obtain a best-fit with the exper-
imental tensile and cyclic stress-strain response.

Parameter Value Meaning

C11 207.98 + 0.0724θ − 1.75× 10−4θ2 + 5.26× 10−8θ3 GPa
Elastic constantsC12 135.77 + 0.0405θ − 1.25× 10−4θ2 + 5.26× 10−8θ3 GPa

C44 121.83 + 0.02413θ − 8.20× 10−5θ2 + 3.49× 10−8θ3 GPa

G
√

(C11−C12)C44
2

Shear modulus

α 9.472× 10−6 + 2.062× 10−8θ − 8.934−12 θ2 Thermal expansion coefficient (K−1)
b 2.51× 10−7 mm Burgers vector magnitude
γ̇α0 0.8 s-1 Reference shear strain rate
∆Fg 1.4Gb3 Activation energy barrier
p 0.48 Shape parameter
q 1.8 Shape parameter
τ0 5.1 MPa Threshold slip resistance

Aαξ 0.1 if α ̸= ξ, else 1 Slip system interaction matrix
sαt 130 MPa Thermal slip resistance
kih 0.036 Taylor hardening coefficient
kM 0.00205 Dislocation multiplication constant
kD 35 Dynamic recovery constant
kχ1 1639

Backstress evolution parameters
kχ2 250
ρ0SSD 1.2× 105 mm-2 Initial SSD density
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Figure 7.2: (a) Wide area Electron Backscatter Diffraction (EBSD) scan along the spec-
imen cross-section to map the crystallographic texture of the specimen. (b) Grain size
distribution presented in the logarithmic scale. Wide area EBSD scan along the cross-
section of the specimen deformed in (c) uniaxial tension (εzz = 0.25) and (d) completely
reverse cyclic loading (N=200). Note that multiple randomly chosen areas were mapped

and stitched to obtain the microstructure presented in (c, d).

A 1000 grain cube-shaped simulation domain, with 27 elements per grain, was instantiated

using an in-house algorithm. It has been shown previously that a simulation domain with

512 discrete grains/orientations (or more) can provide a representative response, both in

terms of the macroscopic stress-strain response and the distribution of residual stress com-

ponents developed during deformation (Patra and Tomé, 2024). Moreover, this domain size

is comparable to those used in the literature (Chen et al., 2022a; Zhang et al., 2019). While

adding more number of elements per grain may lead to the prediction of slightly compliant

response, the computational costs are increased significantly. The 3D ensemble was meshed

using hexahedral finite elements, with linear interpolation and full integration. The reduced

texture, shown in Figure 7.1(b), was assigned randomly to the cube-shaped grains within

the simulation domain. As stated in Section 7.2, the SS 316L was received in a standard mill

annealed condition. In order to account for the prior material processing induced residual

strains in the undeformed state, we have introduced initial residual strains in our crystal
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plasticity finite element model (Musinski and McDowell, 2015). This is based on our ex-

perimental measurements, which indicate a non-negligible magnitude of residual strains for

all grain families in the undeformed specimens (see Figures 7.8 and 7.10). To induce these

residual strains, normal displacements were constrained on all surfaces of the simulation

domain and the simulation domain was subjected to a quenching from θref = 345 K to the

room temperature θ = 300 K, at a cooling rate of 45 K/s. This resulted in an average resid-

ual strain of 626.38 µε. Following this, symmetric boundary conditions were applied and

the simulation domain was deformed quasi-statically at a nominal strain rate of 10−3 s−1

to predict the tensile (see Figure 7.3(a,c)) and the cyclic stress-strain response for a strain

amplitude of 0.01 up to 200 cycles (see Figure 7.3(b,d,e)).

SS 316L was assumed to have a Face Centered Cubic (FCC) austenite phase, with dislocation

glide permitted on 12 possible octahedral {111}< 110 > slip systems. The temperature

dependent-anisotropic elastic constants, C11, C12 and C44, were derived from prior studies

(Upadhyay et al., 2019). Parameters governing the shape of the enthalpy curve, p and q, the

activation enthalpy for dislocation glide, ∆Fg, the reference shear strain rate, γ̇0 and thermal

slip resistance, st, were chosen so as to obtain a best fit of the simulated yield stress with the

experimental yield stress. These are in the range of values used for representative materials

from previous studies (Patra et al., 2023a). Since the as-received material was obtained in a

fully annealed condition, a low value of initial SSD density, ρSSD = 1.2×105 mm−2 was used.

Subsequently, the parameters governing substructure evolution and Taylor hardening, kM ,

kD and kih were calibrated by fitting the simulated mechanical response to its experimental

counterpart during tensile loading. Finally, the backstress evolution parameters, kαχ1 and

kαχ2, were calibrated to capture the experimentally observed cyclic loading response. The

best-fit constitutive model parameters are given in Table 7.2. Note that the same set of

model parameters were used to predict the response during tensile and cyclic deformation.

While we note that there is some under-prediction of the flow stress during tensile deforma-

tion for strains greater than εzz = 0.1, we have calibrated the model parameters such that

they are able to predict the mechanical response under both tensile and cyclic deformation.

This presents a challenge in partitioning the strengthening between the isotropic hardening

and backstress hardening and the presented model predictions represent the best fit after

several calibration attempts. It can be seen that the model predictions are representative for

both tensile and cyclic deformation, since the predicted flow stress is within the error bars

from three repeatable experiments performed for both cases (cf. Figure 7.3). Moreover, the

model is also able to predict the stabilized hysteresis loop after N = 100 cycles (cf. Figure

7.3(d)).
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Figure 7.3: Comparison of the predicted stress-strain response with their experimental
counterpart during (a, c) tensile, and (b, d) fully reversed cyclic loading. Three experiments
were performed for both tensile and cyclic deformation and they are shown in (a) and (b).
The same data is plotted in (c) and (d) in terms of the mean and the scatter from the three
experiments for each case, along with the respective simulated response. (e) Comparison of
the simulated peak stress with the experimental peak stress, σzz, at the end of the tensile
part of loading cycle as a function of the number of cycles. The blue lines represent N=10,
20, 50, 100, 150 and 200 cycles, respectively. The scatter in the data is also plotted from

the LCF experiments.



Chapter 7. Evolution of Bulk and Local Residual Strains 189

The model parameters presented in Table 7.2 are obtained by calibrating our crystal plas-

ticity simulations with their tensile and cyclically loaded experimental counterparts (cf.

Figure 7.3). Note that the same set of model parameters have been employed to predict

the tensile and cyclic responses. Further, we present a validation of these model parameters

by comparing the experimental and simulated mechanical response under plane strain com-

pression. The plane strain compression experiments were performed in a Gleeble 3800TM

thermomechanical simulator.

The loading and boundary conditions employed in our simulations have been presented

in Figure 7.4(a). The corresponding stress-strain behavior has been presented in Figure

7.4(b). The labels, Experiment 1, 2 and 3 refer to the experimental dataset generated from

three different deformation experiments. Firstly, a sufficient reproducibility can be noted

in our experiments. Further, as can be seen in Figure 7.4(b), our model has reasonably

predicted the macroscopic experimental response and this validates the constitutive model

parameters. Due to constraints in the sample size, the deformation was restricted up to a

nominal strain of |εzz| = 0.12.

Figure 7.4: (a) Schematic of the loading and boundary conditions employed during plane
strain compression. (b) The corresponding experimental and simulated mechanical response
up to an applied strain of |εzz| = 0.12. The labels in (b), Experiment 1, 2 and 3, refer to

the experimental dataset generated from three different deformation experiments.

Figure 7.5 shows the deformed textures after loading to εzz = 0.25 under tensile loading,

and cyclic loading for N = 200 cycles at a strain amplitude of 0.01, in terms of the ϕ2 = 0◦,

45◦ and 65◦ sections of the ODF from both experiments and simulations. The predicted

deformed textures show a qualitative match with their experimental counterparts, for both

tensile and cyclic loading. This is observed from the contour plots of the ODF sections,

as well as from the intensity distribution along the α fibre. The tabulated volume fraction
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of various texture components in Table 7.1(b) too indicates a reasonable match between

the simulated and experimental textures. The discrepancies between the simulated and

experimental crystallographic textures can be attributed to the relatively small simulation

domain, with 1000 grains and 27 elements per grain. A larger simulation domain with a

larger number of grains and finer mesh resolution may improve the prediction accuracy

for micro-texture developments and orientation gradients during deformation. Further,

non-local, strain gradient plasticity models may also be used for improved prediction of

orientation gradients at the grain interfaces, as in Chapters 3 and 4. In the present work,

we have resorted to a local crystal plasticity model, with limited number of grains and

elements, in order to limit the computational costs for running simulations up to 200 cycles.

Both the experimental and the simulated line profiles in Figure 7.5 show that the texture

intensity of the sample reduces after tensile and cyclic deformation. This is because the

imposed deformation results in a gradual rotation of crystalline lattice (Verlinden et al.,

2007; Nagarajan et al., 2021). The grain core rotates such that its slip systems are aligned

favorably to the loading direction during tensile deformation. The grain mantle too un-

dergoes a rotation, though at a lower rate, since it has to accommodate the constraints

imposed by the neighboring grains (cf. Chapters 3 and 4). With increasing deformation,

this lattice rotation leads to diffusing out of the hotspots noted in crystallographic texture

of the undeformed specimen (cf. Figures 7.1(b)). While a similar phenomenon also occurs

during cyclic deformation, its role in diffusing the texture is limited due to reversal of the

grain rotations during loading in the opposite direction. Hence, it can be observed that

the texture distribution for the specimen deformed under tensile loading appears diffused in

comparison to that deformed under cyclic loading, for simulations as well as experiments.

The peak intensity (f(g)) along the α fibre (at ϕ1 = 23◦ in Figure 7.5(a)), too, has reduced

significantly in comparison to the undeformed texture (see Figure 7.1(b)) for the tensile

case, as compared to its cyclic counterpart. Similarly, the near-Brass texture, which majorly

dominates in the undeformed condition (cf. Figure 7.1 and Table 7.1(a)) is found to diffuse

significantly during tensile deformation as opposed to its cyclic counterpart (cf. Figure 7.5

and Table 7.1(b)). This suggests that lattice rotation, contributing to the diffused texture,

is more dominant in the material deformed under tensile loading, in comparison to the

specimen subjected to cyclic loading. This point shall be further examined in Section 7.4.3,

where these lattice rotations, quantified in terms of the intragranular orientation gradients,

have been correlated to the lattice strain evolution under tensile and cyclic loading.
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Figure 7.5: Comparison of the experimental and simulated Orientation Distribution Func-
tion (ODF) contours represented using ϕ2 = 0◦, 45◦ and 65◦ ODF sections, for specimens
deformed under tensile and cyclic loading. The corresponding intensity distribution along
the α-fibre (see dotted line along the ϕ1 axis for ϕ = 45◦, ϕ2 = 0◦) has also been shown.
The blue markers indicate some of the typical texture components in Face Centered Cubic

(FCC) metals, the volume fractions of which have been tabulated in Table 7.1(b).

7.4.2 Evolution of Bulk Lattice Strains

We have performed ex-situ measurements of bulk lattice strains during the interrupted

tensile and cyclic deformation. The specimen was first deformed in an ex-situ (tensile or

cyclic) setup, followed by unloading and measurement of lattice strains using the d-sin2ψ

technique in the XRD setup (Cullity, 1956; Noyan and Cohen, 2013). To ensure reliability in

the measured data, all reported lattice strain values involved three measurements at different

regions close to the center of the gauge for each deformation case. In order to account for

the strain relaxation during the sample unloading and residual strain measurement, the

simulated residual strains were recorded 1000 s after the removal of imposed deformation

(by setting ε̇ = 0) for each of the cases. This methodology is followed for both tensile (cf.

Figure 7.6(a)) and cyclic loading simulations (cf. Figure 7.6(b)).

Figure 7.6 shows the evolution of the stress and the longitudinal lattice strain on the (001)

plane (g⃗||LD), as a function of the time after tensile deformation (Figure 7.6(a)), and cyclic

deformation (Figure 7.6(b)). As can be seen, non-negligible relaxation of residual strains

are observed after both tensile and cyclic deformation. The high value of residual stress
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is reflective of residual state of strain. For example, the residual strain after relaxation

is εLD001 ∼ 3500 µε. The corresponding approximate residual stress can be estimated by

multiplying this with the directional elastic modulus of ∼ 100 GPa, which gives a residual

stress of ∼ 400 MPa.

Figure 7.6: Predicted evolution of the longitudinal lattice strains (εLD) during relaxation
after unloading for (a) tensile and (b) cyclic deformation.

Further, single crystal simulations have also been performed to verify the model’s ability to

predict (hkl) lattice strains. Figure 7.7(a) shows the predicted stress-strain response from

three single crystal simulations oriented for tensile deformation along < 001 >, < 011 >

and < 111 > directions. The corresponding lattice strains, ε001, ε011, ε111, for a scattering

vector parallel to the loading direction have been shown in Figure 7.7(b). A comparison

of the predicted elastic modulii, which is obtained from the slopes of the curves in Figure

7.7(b), with the corresponding analytical values has been summarized in Table 7.3.

Figure 7.7: Prediction of (a) stress-strain response, and (b) lattice strains for single
crystals oriented for tensile deformation along < 001 >, < 011 > and < 111 > directions

up to an applied strain of ε = 0.02.

A comparison of the experimental and simulated lattice strain evolution is shown as a

function of the imposed tensile strain, εzz, for the (111) family in Figure 7.8(a), (001)

family in Figure 7.8(b), (101) in Figure 7.8(c), and (311) family of planes in Figure 7.8(d).
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Figure 7.8: Evolution of the bulk lattice strains during tensile loading for the (a) (111),
(b) (001), (c) (101) and (d) (311) family of planes as a function of the nominal strains along
the loading direction, εzz. The arrows highlight lattice strain relaxations noted on the (101)
planes and corresponding load transfer to the (001) planes. (e) Evolution of simulated bulk

lattice strains as a function of the true stress along the loading direction, σzz.
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Table 7.3: Comparison of the single crystal elastic modulus, E (in GPa), obtained from
simulations and analytical calculations.

Crystal Orientation Simulation Analytical

< 001 > 100.097 93.80
< 101 > 197.520 193.21
< 111 > 295.346 293.97

Strain components parallel to the loading direction are marked as LD, while those along

the transverse direction are marked as TD. As discussed earlier, initial residual strains were

introduced in the simulations to induce residual strains comparable to the experimentally

measured values prior to deformation (cf. Section 7.3). The simulated evolution of bulk

lattice strains (without relaxation) as a function of the true stress along the loading direction,

σzz, is also shown in Figure 7.8(e).

As reported in the literature (Lorentzen et al., 2002; Brown et al., 2017; Upadhyay et al.,

2019), the elastically compliant (001) grains accommodate the maximum elastic strains.

During the initial stages of deformation, this is followed by the (311), (101) and the (111)

family of grains in the increasing order of elastic stiffness, the latter being the stiffest

orientation and hence carrying the least amount of lattice strain. The simulated strains

show a qualitative match with the experimental lattice strains along the LD. However, the

simulations under predict the lattice strain along the TD for all grain families. The reader

is referred to the subsequent paragraphs for a detailed discussion on the mismatch in the

magnitudes of experimental and simulated transverse lattice strains.

As can be seen in Figures 7.8 and 7.10, the simulated transverse lattice strains are gen-

erally underpredicted in comparison to their experimental counterparts, though there is a

qualitative match. Such a difference has been primarily attributed to the dispersion of the

transverse scattering vector (Neil et al., 2010). Physically, this can be noted from Tables

7.4 and 7.5 (later in the Chapter), which present a lower ratio of the absolute mean to

standard deviation, |µ|/SD, for the transverse lattice strains, εTD, as compared to the lon-

gitudinal strains, εLD. This is due to a smaller number of material points satisfying the

tolerance criterion given in Equation 7.14 for εTD, thus not contributing to the lattice strain

estimation. We have plotted the number fraction of material points contributing to the lon-

gitudinal and transverse lattice strains for the various grain families with increasing tensile

and cyclic deformation in Figure 7.9. It can be seen that the number fraction of material

points contributing to εTD are generally lower for most of the grain families in comparison

to εLD, thus leading to a quantitative inaccuracy in the prediction of εTD. Employing a
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large number of grains within the simulation domain may improve the predictions of the

transverse lattice strains, however with additional computational costs.

Figure 7.9: Evolution of the number fraction of material points contributing to the es-
timated (a) longitudinal, εLD, and (b) transverse, εTD, lattice strains during tensile and

cyclic deformation.

A significant relaxation is observed in the longitudinal lattice strains for the (101) family

of grains, εLD101 (see red arrow in Figure 7.8(c)). Such a phenomena is observed in both

experiments and simulations, and has also been observed in earlier studies (Clausen et al.,

1999; Brown et al., 2017). A relaxation in lattice strains is indicative of the fact that

these grains have started deforming plastically, and hence, do not contribute further in

accommodating the elastic deformation (Brown et al., 2017). The resulting load shed by

the (101) family is accommodated by the (001) family of grains, which shows a concurrent

increase in the longitudinal lattice strains (see red arrow in Figure 7.8(b)). This load transfer

from the (101) to the (001) family can be clearly noted in Figure 7.8(e), which shows the

evolution of the simulated bulk lattice strains as a function of the true stress and has also

been reported in the literature (Kanjarla et al., 2012). Though Brown et al. (2017) have

observed relaxation in the (111) grain family as well, we only observed a saturation in

their magnitudes. Similarly, a saturation is observed in the εLD311 up to 0.2 imposed strain,

following which a slight decrease in its magnitude can be observed. The transverse lattice

strains, on the other hand, mostly indicate a saturation for the (101) and the (311) family.
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A small relaxation is observed for the εTD111 , thus resulting in a corresponding hardening,

though minimal, for the (001) grain family.

Figure 7.10: Evolution of the bulk lattice strains during cyclic loading for the (a) (111),
(b) (001), (c) (101) and (d) (311) family of planes as a function of the number of cycles.
(e) Evolution of the simulated bulk lattice strains in terms of peak stress as a function of

the number of cycles during cyclic deformation.

Figure 7.10 presents a similar comparison of the lattice strain evolution with the number of

cycles, N , for cyclic loading. The hierarchy in lattice strain evolution is followed for cyclic

loading as well, i.e., εLD001 > εLD311 > εLD101 > εLD111. Similar to the observations of Saleh et al.

(2013) on TWIP steel, a saturation in the longitudinal lattice strains can be observed for all
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grain families following the initial 10-20 cycles in both experiments and simulations. The

trends in the simulated and experimental lattice strains are qualitatively similar. However,

there are some quantitative differences, for example, at lower number of cycles for εLD001 and

at higher number of cycles for εLD111. This disparity is possibly because the shift in XRD-

2θ peak profiles for the low angle peaks (43.02◦ for (111) and 50.01◦ for (001)) cannot be

captured accurately for minute changes in the d-spacing (Cullity, 1956; Noyan and Cohen,

2013); a small variation in lattice strains may result in a pronounced shift in the XRD-2θ

peaks at larger 2θ values (Cullity, 1956; Verlinden et al., 2007; Noyan and Cohen, 2013).

However, a reasonable match is noted in the lattice strain magnitudes for the higher angle

peaks, see εLD101 (Figure 7.10(c)) and εLD311 (Figure 7.10(d)). As with tensile deformation, the

transverse strains during cyclic deformation are also under-predicted. Note however that

except for εLD101, the model predictions for LD strains are generally within the scatter bars of

the experimental measurements. Further, as can be seen in Figure 7.10, the lattice strains

exhibit a saturation for most of the grain families beyond 50 cycles (with the exception of

(001) family) from both experiments and simulations. The macroscopic mechanical response

presented in Figure 7.3(b) also shows a saturation beyond 50 cycles (cf. Figure 7.3(e) for the

evolution of the peak stress as a function of the number of cycles). It may be expected that

a saturation in the macroscopic response and the evolution of lattice strains would extend

beyond 200 cycles, until the development of strain localizations or microcracks within certain

grains/ grain families, which may cause a relaxation or decay in the lattice strains (Wang

et al., 2003; Zheng et al., 2013).

There have been similar studies (Wang et al., 2003; Zheng et al., 2013) reporting a decay

in the lattice strain magnitudes during cyclic loading of a stainless steel. The decay was

further correlated to the cumulative slip and the Taylor factor evolution (Zheng et al., 2013).

However, we only observe a saturation in the lattice strains with increasing N . Further, the

transverse lattice strains also show a saturation in the magnitudes with increasing number

of cycles, for the simulations as well as experiments. A non-negligible relaxation, followed

by hardening can be seen around N = 50 − 100 cycles for the (001) grain family in Figure

7.10(e). This could possibly arise due to the development of strain localizations in a few

(001) grains. The former would result in those grains deforming plastically, and hence not

contributing to the bulk lattice strain estimation. Finally, the relatively low number of

cycles during cyclic loading did not contribute to large-scale (unimodal) grain rotation (see

Figure 7.5). This impeded the rotation of grains to more favourable orientations, inhibiting

the activation of additional slip systems and preventing relaxation in certain lattice strains.

Note that the plastic strain amplitude, ∆ϵp/2 ≈ 0.008, in our experiments and simulations.

It might be difficult to draw an equivalence in the amount of imposed plastic deformation
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between cyclic and tensile deformation. However, our objective is to compare qualitative

trends between the different loading modes. Cyclic deformation was performed till there is

a saturation in the macroscopic response (and presumably the dislocations substructure),

which is also expected to reflect in the saturation of the residual strains. On the other hand,

tensile deformation was only conducted till a nominal strain of 0.25, which is well below the

uniform elongation strain and also does not result in the formation of deformation twins.

Further, phase quantification using Rietveld refinement of the XRD-2θ peaks (Rietveld,

1969) showed that the volume fraction of the strain-induced martensite is negligible after

εzz = 0.25 tensile strain and after N = 200 cycles.

In this Section, we focused on the evolution of lattice strains on four specific (hkl) families,

or, grains with specific hkl plane normals. The subsequent Section attempts to explain

the observed trends in lattice strains in terms of the orientation gradients and substructure

evolution, which are representative of the plastic deformation exhibited by a given grain

family.

7.4.3 Role of Misorientation Developments on the Relaxation of Residual

Strains

Different misorientation measures exist in the literature to quantify the orientation gradi-

ents/lattice rotations developing during deformation (Schwartz et al., 2009; Wright et al.,

2011; Thool et al., 2020). Here, we employ the Grain Reference Orientation Deviation

(GROD), which quantifies the deviation of a pixel orientation with respect to that of the

grain centroid, and is mathematically written as (Wright et al., 2011):

GROD = ∆(gi, gcentroid) (7.15)

where, gi and gcentroid denote the orientation tensor at the pixel i and the grain centroid,

respectively.

Figure 7.11 (a,b) show the average experimental and simulated GROD within the (001),

(101) and (111) grain families, i.e., grains with < 001 >, < 101 > and < 111 > axis

parallel to the Loading Direction (LD), after tensile and cyclic deformation. Although

the simulated average GROD values follow a similar trend as in the experiments, their

magnitudes are under-predicted as compared to the experimental measurements. This can

be attributed to the fact that the cube-shaped simulation domain used a coarser mesh

with only 27 elements per grain, as compared to the 0.75 µm step size used during large-

area EBSD measurements. However, the (101) grain family displays the highest GROD



Chapter 7. Evolution of Bulk and Local Residual Strains 199

magnitude during tensile deformation in both experiments and simulations. These are

followed by the (001) and (111) grain families. Similar observations have also been reported

by Lebensohn et al. (2008), who noted higher misorientation in the < 110 > grains with

increasing tensile deformation. They proposed that the interaction of the < 110 > grains

with subdomains of the surrounding (stable) < 001 > and < 111 > grains were responsible

for such trends in the deformed microstructures. However, note that the experimental as

well as simulated GROD magnitudes are relatively lower in the material subjected to cyclic

deformation, as compared to tensile deformation. Similarly, as seen in Figure 7.5, the peak

intensity along the α fibre (ϕ1 ∼ 20◦-30◦) is significantly diffused after tensile deformation,

in comparison to its cyclically deformed counterpart. Since the present study uses a strain

amplitude of ∆ε/2 = 0.01 for a relatively low number of cyclic reversals (N = 200), the

experimental GROD values are generally lower in comparison to the monotonically loaded

tensile specimens. Further, Hestroffer et al. (2022) noted that the grains rarely undergo

complete reversals (in lattice rotation) during cyclic loading. However, similar to the present

study, they did notice a narrower distribution of the grain average lattice rotation on reverse

loading.

In summary, the experimental as well as simulated texture predictions show that grains of

the (101) family develop large intragranular orientation gradients during tensile deformation

as compared to cyclic deformation. Further, Figure 7.11 (c,d) and 7.11 (e,f) show the sim-

ulated SSD density, ρSSD, and the average effective backstress, χ̄, magnitudes in the grains

belonging to the (001), (101) and (111) grain family, after tensile and cyclic deformation.

These trends in the substructure variables, along with the GROD evolution show that the

grains belonging to the (101) family undergo the maximum amount of plastic deformation

under tensile deformation. These are followed by the grains of the (001) family, which al-

though lower, do exhibit reasonable developments in the GROD and substructure variables,

χ̄ and ρSSD. For the material subjected to cyclic deformation, the (001) and the (101) grain

families exhibit nearly comparable magnitudes of GROD and ρSSD. The χ̄ however, shows

slightly higher magnitude, by about 3 MPa, for the (001) family as compared to the (101)

family. Finally, the (111) grain family shows the least amount of average GROD, χ̄ and

ρSSD during tensile and cyclic deformation.

As noted in the literature, increasing (imposed) deformation results in the rotation of the

crystal towards “softer” orientations (Dillamore et al., 1979). These lattice rotations gen-

erally occur from crystal orientations with less than 5 active slip systems, rotating them to

plastically compliant “softer” orientations, with additional active slip systems. This enables

the grain to accommodate higher plastic deformation. The large intragranular orientation

gradients (GROD), effective backstress and SSD densities noted in the grains belonging to
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Figure 7.11: Average measures of (a,b) experimental and simulated Grain Reference Ori-
entation Deviation (GROD), (c,d) simulated Statistically Stored Dislocation (SSD) density,
ρSSD, and (e,f) simulated effective backstress, χ̄, on the (001), (101) and (111) family of
grains, i.e., grains with < 001 > ||LD, < 101 > ||LD and < 111 > ||LD. The top row
represents the material subjected to tensile deformation (εzz = 0.25), while the bottom row

represents the material subjected to cyclic deformation (N = 200).

the (101) family are indicative of this fact (cf. Figure 7.11). However, these plastically com-

pliant grains do not contribute towards accommodating the elastic lattice distortion, thus

exhibiting relaxations in lattice strains (Brown et al., 2017). The same was also observed

in our measurements and predictions of bulk lattice strains. Moreover, the volume fraction

of the (101) grain family is relatively high (∼ 41%), which necessitates that these orien-

tations deform plastically in order to accommodate the macroscopic shape change, while

also leading to relaxations in the (elastic) lattice strains. For the cyclic deformation, the

intragranular orientation gradients (GROD), χ̄ and ρSSD are not only lower, but nearly

equivalent between the (001) and the (101) grain family. Thus no lattice strain relaxations

are observed during cyclic deformation for the (101) grain family. The (001) grain family

possesses at least 5 active slip systems, even in the undeformed configuration, and is thus

plastically compliant. Hence, it does not require significant lattice rotations to accommodate

the imposed deformation. Despite the development of intragranular orientation gradients

(GROD) or χ̄, no lattice strain relaxations are observed for the (001) grains after tensile

and cyclic deformation. Finally, the (111) grain family is less compliant both elastically and

plastically (with low Schmid factor). Hence, they are found to have the lowest GROD, χ̄

and ρSSD, and also do not exhibit any relaxation in the bulk lattice strains.

Local misorientation developments can also be quantified in terms of the Kernel Average

Misorientation (KAM) (Kocks et al., 2000; Wright et al., 2011, 2016). Comparison of the
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average KAM between experiments and simulations for both tensile and cyclic deformation

are presented in Figure 7.12. However, it should be noted that a relatively coarse mesh was

used in the simulations (as compared to the pixel size used for experimental measurements)

and a one-to-one comparison should be avoided. Nonetheless, the qualitative trends for

KAM developments are similar those for the corresponding GROD observations from both

experiments and simulations.

Figure 7.12: Average measures of the experimental and simulated Kernel Average
Misorientation (KAM) for the (001), (101) and (111) family of grains, i.e., grains with

< 001 > ||LD, < 101 > ||LD and < 111 > ||LD.

Figure 7.13 shows the crystallographic orientation of the simulated material points belong-

ing to the (001), (101) and (111) grain families in an IPF, projected along the loading

direction, prior to deformation, and after tensile and cyclic deformation simulations. This

crystallographic orientation data is obtained from the material points belonging to the re-

spective grain families in our simulation domain. Analogous to our observations in Figures

7.5 and 7.11(a,b), material points belonging to the (101) family exhibit significantly large

lattice rotations, followed by those belonging to the (111) and the (001) family under tensile

deformation (see Figure 7.13(b)). Such large lattice rotations are representative of hetero-

geneous plastic deformation to accommodate the imposed deformation. The lattice rotation

also results in a large dispersion in the scattering vector, thus causing a number of material

points to violate the tolerance criterion and not contribute to the given < hkl > reflections

(cf. Equation 7.11). This also contributes to the observed relaxations in lattice strains in

Figure 7.8. As seen in Figure 7.13(c), the lattice rotations were found to be significantly

lower subsequent to cyclic deformation. Hence no significant lattice strain relaxations were

observed after cyclic deformation.
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Figure 7.13: (a) Crystallographic orientation of material points belonging to the (001),
(101) and (111) family in the undeformed simulation domain presented in an Inverse Pole
Figure (IPF) projection (along the Loading Direction). Deformed orientations of the mate-
rial points after (a) tensile deformation (εzz = 0.25), and (b) cyclic deformation (N = 200).

While we have studied the evolution of bulk lattice strains in the present section, the local

microstructural features, such as the twin boundaries, neighboring grain orientation, triple

junctions etc. may lead to localized plastic deformation and influence the development of

local residual strains. To this end, the subsequent section focuses on exploring the role

played by these local microstructural features on the evolution of local residual strains.

7.4.4 Local Residual Strains

In this Section, we report the development of local residual strains studied during tensile

and cyclic deformation. While X-ray diffraction was used for the measurement of bulk

residual strains in the previous sections, the local residual strains are determined using the

HR-EBSD technique, which quantifies the shift in zone axes positions to estimate spatially

resolved residual strains within a microstructure. This is performed from the measured

EBSD patterns using the open source OpenXY tool (Fullwood, 2020) and is described in

detail in Fullwood et al. (2015) and Chapter 6.

The microstructures derived from focused/small area EBSD scans were directly used as

input for our Crystal Plasticity Finite Element (CPFE) simulations. These are first meshed

using 3D hexahedral elements of size 1 µm and linear interpolation. Following Patra et al.

(2023a), the simulation domain consists of a single element along the thickness or the out-

of-plane direction, while noting that addition of elements along the out-of-plane direction

may improve the accuracy of strain field predictions (Lim et al., 2014). The use of such a

simulation setup can be justified since the HR-EBSD measurements are also based on the

plane stress approximation, as the backscattered electrons get reflected from ∼ 20 nm within

the specimen surface (Wilkinson et al., 2006; Fullwood et al., 2015). Note that a much finer
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mesh size has been used here as compared to the bulk residual strain simulations, thus

allowing us to capture spatial variations in the development of residual strains. Following

previous studies (Chaudhary et al., 2023; Patra et al., 2023a), the boundary conditions,

as shown in Figure 7.14, were used in the present simulations. Displacements normal to

the respective directions were constrained for the left, back and bottom faces, while fully

constraining the corner common to these three faces. As shown in Figure 7.14, displacement

controlled loading was applied at a nominal strain rate of 10−3 s−1 along the z-direction

for both tensile and cyclic deformation. The front face was kept traction free to simulate

a plane stress condition, as is also assumed in the experimental HR-EBSD residual strain

calculations. Given the finer mesh, these simulations are more computationally intensive as

compared to the bulk simulations. Hence, tensile deformation was only performed till an

applied strain of 0.1, while the cyclic deformation was performed for 20 loading cycles at a

strain amplitude of 0.01.

Figure 7.14: Schematic of the EBSD simulation setup and boundary conditions employed
for studying the development of local residual strains under (a) tensile and (b) cyclic loading.
The color scheme is representative of the crystallographic orientations shown in the Inverse

Pole Figure (IPF) key.

Figure 7.15 shows the deformed microstructure at an applied tensile strain of 0.1 in terms

of the contours of the experimental and simulated local residual strains (Figure 7.15(a,b)),

elastic modulus along the LD (Figure 7.15(c)), experimental and simulated GROD (Figure

7.15(d,e)), experimental and simulated IPF maps (Figure 7.15(f,g)), PRIAS map to highlight

the surface topography (Figure 7.15(h)), simulated ρSSD (Figure 7.15(i)) and simulated χ̄

(Figure 7.15(j)). Note that the predicted residual strains were plotted after relaxation for
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1000 s as presented in Figure 7.6. These grains are a subset of the microstructure shown in

Figure 7.14.

The predicted local strain contours along the LD, εLD, are qualitatively comparable with

the HR-EBSD measurements (for example, see grains marked A, B and C in Figure 7.15).

Based on the contour of the elastic modulus along the loading direction, these are also the

elastically compliant grains that generally accommodate higher elastic strains. However,

there are also elastically stiffer grains, for example, see grains marked D, E and F, which

exhibit relatively high residual strains. This is due to the spatial arrangement of the grains,

especially with respect to their neighbors, which induce higher residual strains in such grains.

Specifically, grains which share boundaries with the annealing twins or other grains with

relatively high plastic deformation, have higher residual strains, even if they are elastically

stiffer. This indicates that the length-scales over which the local residual strains equilibrate

are also governed by the local microstructural features, in addition to the crystallographic

texture (or the elastic stiffness).

In order to highlight this, three grains marked 1-3 in Figure 7.15 are chosen such that their

initial crystallographic orientations are similar, however with a difference in spatial arrange-

ment with respect to their neighbors. The residual elastic strains obtained from isolated

single crystal simulations for these three grains/orientations were compared with the respec-

tive grain-averaged local residual strains from the polycrystal simulation. This is shown in

Figure 7.16. It can be seen that the evolution of the grain-averaged residual strains (cf.

Figure 7.16(a)) are significantly different from the corresponding single crystal predictions

(cf. Figure 7.16(b)) and are influenced by their neighbors. While grain 1 shows a relaxation

in residual strains during the later stages of deformation (also see strain contours at the

different stages of deformation in Figure 7.16(a)), grains 2 and 3 show an increase in residual

strains with increasing εzz. This is primarily due to the development of strain localizations,

manifested in the form of higher ρSSD and χ̄ in grain 1 (see Figure 7.15)) with increasing

εzz. Such heterogeneties, especially near the grain boundaries and triple junctions, result in

stress concentrations and necessitate that the grain deforms plastically, while also relaxing

the contribution to the concurrent elastic deformation. These observations provide a clear

indication that unlike the bulk lattice strains, the crystallographic orientation is not the sole

factor governing the local residual strain development in polycrystalline microstructures.

A reasonable similarity can be observed between the CPFE predicted and experimental

GROD measurements, see black markers in Figure 7.15 for example. Further, the simu-

lated as well as experimental GROD maps show the development of large intragranular

orientation gradients in the deformed microstructure, analogous to the high GROD values

noted for the wide/large area EBSD scans in Figure 7.11(a). The regions in the vicinity
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of grain boundaries often deform heterogeneously, to maintain the local continuity in the

microstructure (Nagarajan et al., 2021). This results in a significant accumulation of GROD

near the grain boundaries (Mishra et al., 2009). While there is a qualitative concurrence in

GROD and residual strain developments between experiments and simulations, the model

under-predicts the GROD hotspots in several regions. These predictions could be improved

by using a strain gradient plasticity model, which is better suited for prediction of local

orientation gradients (cf. Chapters 3 and 4). However, the computational costs associated

with such models limit their use in the present case, where cyclic deformation over several

cycles has to be performed. Further, it should also be noted that the model takes as input

only the surface EBSD scan and tracks their deformation in comparison to the experiments,

under a plane stress assumption. Sub-surface deformation, especially at grain boundaries

and triple junctions are expected to influence the development of GROD hotspots in the

experiments, which are not considered in the model.

A comparison of the GROD contours in Figure 7.15(d,e) with the IPF maps in Figure

7.15(f,g) shows that the (101) family of grains generally develop large orientation gradients.

The localized heterogeneity leads to the activation of additional slip systems in this region,

as evident from the secondary slip bands seen in the PRIAS image in Figure 7.15(h). This

ultimately results in a large heterogeneity in the distribution of local strains, as seen in

Figure 7.15(a,b). The relatively coarser mesh employed for the CPFE simulations fails to

capture the development of slip bands within these grains. Nevertheless, our simulated

strain contours compare qualitatively with the experimental measurements.

The PRIAS image in Figure 7.15(h), which is used to highlight the formation of slip bands,

indicative of strain localizations, show that the grains demonstrating higher residual strains,

for simulations as well as experiments, do not generally display significant slip bands. The

grains with more slip bands do show higher ρSSD and χ̄, as expected (for example, see lower

half of grain A and grain B). However, simple topography-based 2D observations using

PRIAS images might not be a sufficient to comment on slip band formation, and more

advanced surface profilometry techniques may be utilized for detailed analysis (Prakash

et al., 2021).

Figure 7.17 presents an analysis identical to the one performed in Figure 7.15, for the

microstructure subjected to cyclic deformation for N = 20 cycles (Figure 7.14(b)). Due to

high computational costs, we have performed CPFE simulations to only N = 20 loading

cycles. Given that a saturation in the macroscopic peak cyclic stress was observed after

≈20 loading cycles (cf. Figure 7.3, 7.10), the evolution of the local microstructure is also

expected to saturate.
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Figure 7.15: Deformation contours in the microstructure subjected to tensile deforma-
tion (εzz = 0.1), presented in terms of the (a,b) experimental and simulated local residual
strain, εLD contours, (c) elastic modulus along the Loading Direction (LD), (d,e) experi-
mental and simulated GROD contours, (f,g) experimental and simulated Inverse Pole Figure
(IPF) maps, (h) PRIAS image, (i,j) simulated SSD density, ρSSD, and simulated effective
backstress, χ̄, contours. The markers A-F highlight the grains showing higher local resid-
ual strains, in both experiments and simulations. The markers 1,2 and 3 denote grains
whose (undeformed, at εzz = 0) orientations are used to study single crystal elastic strain

response, see Figure 7.16.
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Figure 7.16: Contours showing the evolution of local residual strains, εLD, in the grains
marked 1,2 and 3 in Figure 7.15(c). The stages of tensile deformation, A, B, C and D
have been marked in (b), which shows the comparison of the residual elastic strains from
isolated single crystal simulations (solid lines) with the grain-averaged local residual strains

for these three grains from the polycrystal EBSD simulation in Figure 7.15.

Figures 7.17(a,b) show the HR-EBSD measured and CPFE predicted local strain, εLD,

contours after N = 20 loading cycles. The grains marked A-F highlight regions showing

a qualitative match in εLD between the simulations and experiments. As observed with

the bulk lattice strain studies (cf. Figure 7.8 and 7.10), the elastically compliant grain

families accommodate the maximum amount of residual strains (εLD), for example, see

grains marked A,B and E in Figure 7.17(f). However, the spatial arrangement of the grains

with respect to local microstructural features such as the twin boundaries (grains marked

C and F in Figure 7.17) and triple junctions (grain marked E in Figure 7.17) also influences

the development of residual strains.
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Figure 7.17: Deformation contours in the microstructure subjected to cyclic deforma-
tion for N = 20 cycles, presented in terms of the (a,b) experimental and simulated local
residual strain, εLD, contours, (c) elastic modulus along the Loading Direction (LD), (d,e)
experimental and simulated GROD contours, (f,g) experimental and simulated Inverse Pole
Figure (IPF) maps, (h) PRIAS image, (i,j) simulated SSD density, ρSSD, and simulated
effective backstress, χ̄, contours. The markers A-F highlight the grains showing higher local

residual strains εLD, in both experiments and simulations.

The experimental and simulated GROD contours are shown in Figures 7.17(d,e). Misori-

entations develop in the vicinity of the grain and twin boundaries, for example see the red

markers shown in Figure 7.17(d,e). However, the magnitude of these misorientations is con-

siderably lower in comparison to the tensile counterparts, as also observed from the bulk

measurements in Section 7.4.3. As reported by Hestroffer et al. (2022), the unloading does

not result in a full reversal of the grain rotation. The present study also observed that such

a non-zero lattice rotation (±1◦) exists in these microstructures (see GROD maps in Figure

7.17(d,e)) after N = 20 loading cycles. This is primarily because the tensile deformation

results in a unimodal rotation of the grains, whereas the cyclic loading would lead to partial

reversals in the grain rotations. Figure 7.17(f,g) shows the deformed experimental and sim-

ulated IPF map of the grain cluster. Unlike our observations in Figure 7.15(f) for the tensile

deformation, the IPF map does not show large orientation gradients in the microstructure.
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However, these microstructures do exhibit pronounced strain localizations, as seen from the

ρSSD and χ̄ contours in Figures 7.17(i,j). In particular, such concentrations are evident in

the regions with annealing twins. In contrast to tensile deformation, accumulation of ρSSD

and χ̄ inside the twins is only observed during cyclic deformation. This could also poten-

tially lead to failure initiation at the annealing twin boundaries as reported extensively in

the literature (Chaudhary et al., 2023; Stinville et al., 2017).

Another important difference between the microstructures subjected to tensile and cyclic

deformation is in the development of ρSSD (cf. Figures 7.15 and 7.17). The former shows

lower magnitudes of ρSSD over its cyclic counterpart. This was observed in the bulk simu-

lation predictions reported in Figure 7.11 as well. A similar observation was also noted by

Jiang et al. (2015), who reported higher total dislocation density in their cyclically deformed

specimens (after 2 cycles) over a monotonically strained specimen (after 10% deformation).

Further, they noted that the difference between the two diminished with increasing number

of cycles (Jiang et al., 2015). During cyclic deformation, the dislocations often undergo

repetitive back-and-forth motion on the same set of slip systems. Since the lattice rotation

is primarily limited to the minor under-reversals, large lattice rotations to favorably acti-

vate additional slip systems are generally absent in the initial stages of cyclic deformation

(Hestroffer et al., 2022). This results in congestion of dislocations on only a few active

slip systems and reduces the mean free path for the dislocation movement, thus increasing

dislocation pileups (Benzerga et al., 2003). In our crystal plasticity model which has con-

sideration for directional shear, these pileups are reflected in the form of strain localizations

and higher dislocation density during cyclic deformation. In addition, the microstructure

presented in Figure 7.17 has a relatively higher (annealing) twin fraction (fraction of Σ3

boundaries: 0.391) in comparison to its tensile counterpart (fraction of Σ3 boundaries:

0.273). The ρSSD accumulations are often noted in the vicinity of these regions, see Figure

7.17(i). Thus, the higher ρSSD during cyclic deformation may also be attributed to these

local microstructural features

Finally, the results derived from the simulation domain presented in Figure 7.14 show that

the elastically compliant grains accommodate the maximum elastic strains and vice-versa.

Similarly, grains exhibiting large intragranular orientation gradients, indicative of significant

plastic deformation, show relaxations in the local residual strains from essentially plane

stress simulations (cf. Figures 7.15(a-e) and 7.16). Qualitatively, these results are similar to

those obtained from their bulk, 3D counterparts (cf. Figures 7.8 and 7.10), with quantitative

differences attributed to the local deformation characteristics due to neighboring grains,

annealing twins, triple junctions, etc.
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Figure 7.18: Comparison between the line profiles of the experimental and simulated
residual strains, εLD, under (a,b) tensile and (c,d) cyclic loading along the different straight
lines highlighted on the PRIAS images shown in Figure 7.15 (for tensile loading) and Figure
7.17 (for cyclic loading). For both microstructures, the labels, θ = 0◦ and θ = 90◦, denote

the horizontal and vertical line profiles, respectively.
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We have performed a comparison of the line profiles of local residual strains for the mi-

crostructures reported in Figures 7.15 and 7.17. Figure 7.18 presents a comparison of the

simulated and measured local residual strains (εLD) for the deformed microstructures after

tensile (Figure 7.18(a,b)) and cyclic deformation (Figure 7.18(c,d)). The labels θ = 0◦ and

θ = 90◦ represent the horizontal and vertical lines marked on the PRIAS images shown in

Figure 7.15(h) for tensile deformation and Figure 7.17(h) for cyclic deformation. A 3 point

moving average was applied for the simulated as well as experimental datasets to smoothen

the line profiles.

As can be seen, there is some noise in the experimental HR-EBSD measurements, while the

CPFE predictions are relatively smoother. Possible contributions to the experimental noise

were discussed in Chapter 6. Additionally, coarsening of the experimental dataset to attain

a step size identical to the mesh size employed for our CPFE simulations (∼ 1 µm) may have

led to inaccurate representation of the strain localizations. Nevertheless, our simulations

have reasonably predicted the hills and the valleys observed along the respective line pro-

files, especially for tensile deformation for both θ = 0◦ and θ = 90◦. For cyclic deformation,

the predicted line profiles are qualitatively similar to the experimental measurements, while

not capturing the local pixel-to-pixel variation in residual strains. These predictions could

further be improved by using a finer mesh size, along with consideration for the strain gra-

dients (cf. Chapters 3 and 4). Nonetheless, the qualitative comparison of these predictions

from the tensile and cyclic deformation simulations, with their experimental counterparts,

highlight the predictive capabilities of our modeling framework.

7.4.5 Hierarchy in the Development of Residual Strains

The results presented in Section 7.4.2 showed that the evolution of bulk lattice strains is

sensitive to the crystallographic orientation. The development of local residual strains has

been studied in Section 7.4.4, which also show a sensitivity to the grain’s crystallographic

orientation. However, their evolution also appears to be influenced by the local substructure.

The statistics of the residual lattice strain data are further analyzed here to establish the

orientation-dependent hierarchy (if any) from the bulk simulations for tensile deformation.

The crystallographic longitudinal and transverse lattice strains at different stages of the

tensile and cyclic deformation are fitted to Gaussian probability distribution functions. The

Gaussian distribution plots for the longitudinal (hkl) resolved lattice strains are shown in

Figure 7.19. In addition, the mean, µ, and the standard deviation, SD, of the probability

distribution functions fitted to the longitudinal and transverse resolved lattice strains have

been presented in Table 7.4 (for tensile loading) and Table 7.5 (for cyclic loading). A similar
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analysis has also been reported by Kanjarla et al. (2012) from their spatially-resolved crystal

plasticity simulations, however only for uniaxial tension.

Figure 7.19: Statistical analysis of longitudinal lattice strains predicted from the bulk
simulations fitted to Gaussian probability distribution functions after (a) εzz = 0.004, (b)
εzz = 0.01, (c) εzz = 0.25 during tensile deformation, and (d) N = 1, (e) N = 2, and
(f) N = 200 during cyclic deformation. The mean, µ, and the standard deviation, SD,
corresponding to the probability distribution functions have been presented in Table 7.4
(for tensile loading) and Table 7.5 (for cyclic loading). The red, green, blue and black dots

represent the (001), (311), (101) and (111) grain families, respectively.
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At any given stage, both the mean and the standard deviation of the lattice strain in the

elastically compliant (001) grain family are higher as compared to the respective quantities

for the other grain families during both tensile and cyclic deformation. Although lower

in magnitude, the value of the predicted standard deviation of the longitudinal strain,

ε001, is qualitatively comparable to those reported from the neutron diffraction experiments

during tensile deformation of a mildly-textured stainless steel by Kanjarla et al. (2012).

They performed full field crystal plasticity simulations using the Fast Fourier Transform

(FFT) method and also found that their simulated standard deviations of longitudinal lattice

strains are lower than the experimental measurements (Kanjarla et al., 2012). Presumably,

the predicted standard deviation may be higher if more number of elements are considered

per grain. Nonetheless, these standard distributions of stresses/strains can be used to

inform mean field crystal plasticity models, where the intragranular distribution of stresses

are utilized (cf. Wang et al. (2017); Patra and Tomé (2024)).

Further, it can be seen that the ratio of the (absolute) mean to the standard deviation,

|µ|/SD, is significantly lower for the transverse lattice strains in comparison to their lon-

gitudinal counterparts, especially under large tensile or cyclic deformation (cf. Table 7.4,

7.5). This indicates that there is significant dispersion of the transverse scattering vector

(Neil et al., 2010), resulting in poor prediction of the simulated lattice strains along the

transverse direction; essentially there are very few material points satisfying the tolerance

criterion in Equation 7.14 for the transverse direction.

As can be seen from the mean, µ, and the standard deviation, SD, values of the probability

distribution functions presented in Table 7.4, the longitudinal lattice strains follow the

hierarchy in the order: (001) > (311) > (101) > (111) grain families immediately after

the yield. At larger imposed deformations however, the hierarchy is in the order: (001) >

(311) > (111) > (101). This is also evident from the evolution of simulated lattice strains

as a function of the true stress, σzz, shown in Figure 7.8(e). The alterations are a result

of the relaxations noted in the (101) family with increasing tensile strains. On the other

hand, the µ and SD values presented in Table 7.5 for cyclic loading follows a hierarchy in

the order: (001) > (311) > (111) ∼ (101) from the end of the first loading cycle itself. The

evolution of lattice strains during cyclic deformation presented in Figure 7.10(e) are also

indicative that the lattice strain developments do not show any notable relaxation or strain

redistribution between the grain families, with the exception of some deviation in the (001)

family.

These observations indicate that there are two factors contributing to the development

of longitudinal lattice strains: (a) elastic stiffness, and (b) grain rotation (due to plastic

deformation). The elastic stiffness of the grain families are in the following order: E(001) <
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E(311) < E(101) < E(111). Generally, the stiffer grains are expected to accommodate lower

residual strains and vice-versa. While this expected hierarchy in the development of the

longitudinal strains is observed during the initial stages of tensile deformation, when grain

rotation is limited, the (101) grain family has lower residual strains than the (111) grain

family during subsequent stages. This is driven by the grain rotation, as is also evident

from the crystallographic orientation data reported earlier in Figure 7.13. Since the cyclic

deformation was performed for relatively low number of cycles and because of the previously

discussed strain reversals, no significant misorientation or textural softening is visible in the

microstructure (see GROD contours in Figure 7.17). In the absence of grain rotation, the

elastically stiffest (111) family showed similar longitudinal lattice strains as the (101) family

of grains.

Statistics of data from the Electron Backscatter Diffraction (EBSD) simulations were also

analyzed to study the hierarchy in local residual strain developments. While qualitative

trends remain the same as in our bulk simulations (cf. Figure 7.20 and Table 7.6), there are

some quantitative differences, which may be attributed to the limited statistics.

Figure 7.20: Statistical analysis of the simulated longitudinal local residual strains, εLD,
predicted from the EBSD mesh simulations in Section 7.4.4, after (a) εzz = 0.1 during

tensile deformation, and (b) N = 20 during cyclic deformation.

7.4.6 Effect of Crystallographic Texture on the Hierarchy of Lattice Strains

In order to explore the effect of crystallographic texture on the hierarchy of lattice strain

developments, simulations have been performed with two different textures, one with a

completely random texture and the other representative of a 90% cold reduction (Chowd-

hury et al., 2005). Uniaxial tension and cyclic deformation simulations are performed for

both these textures. The simulation setup, boundary conditions and model parameters
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Table 7.6: The mean, µ, and the standard deviation, SD, of the probability distribution
functions fitted to the simulated longitudinal local residual strains (εLD) for the specimen

deformed under (a) tensile (εzz = 0.1) and (b) cyclic loading (N = 20).

(a)
(hkl) µ SD |µ|/SD

(111) 890.13 889.13 1.01
(001) 2326.91 1921.88 1.21
(101) 899.44 1211.20 0.74
(311) 1544.40 982.71 1.57

(b)
(hkl) µ SD |µ|/SD

(111) 1196.90 524.66 2.28
(001) 2644.38 1201.13 2.20
(101) 1248.61 569.18 2.19
(311) 2064.74 604.83 3.41

are kept identical to those presented in Section 7.4.1. The input/starting crystallographic

textures corresponding to these simulations domains have been represented in terms of the

ϕ2 = 0◦, 45◦ and 65◦ ODF sections in Figure 7.21(a).A quantitative description of crystallo-

graphic textures is also obtained as the volume fraction of ideal orientations and fibers. The

anisotropy or texturing, in particular, is best represented by texture index (TI) (Van Houtte

et al., 2005; Raveendra et al., 2011):

TI =

∫
f(g)2dg (7.16)

where f(g) represents the numerical ODF value in a small Euler space segment of dg. TI

approaching 1 represents texture randomization, while TI > 1 provides relative texturing

or anisotropy (Raveendra et al., 2011). The experimental texture given in Figure 5.1 has a

TI of 1.94, while the random texture has a TI of 1.23 and the rolled texture has a TI of

3.04.

The mechanical response under tensile and cyclic deformation for these textures have been

presented in Figures 7.21(b, c), along with ones from experimental texture in Figure 7.1(b).

Further, the evolution of longitudinal lattice strains on the (001), (311), (101) and (111)

grain families corresponding to these simulation domains have been presented in Figures

7.21(d, e). Since the trends in lattice strain developments did not differ qualitatively be-

yond εzz = 0.2 under tensile and N=10 in cyclic loading (cf. Figure 7.8(e), 7.10(e)), we have

performed simulations only till these respective deformations. As can be seen, the lattice

strain predictions for the rolled texture is slightly lower at a given stress in comparison to

its randomly textured counterpart, which in turn is similar to the mildly textured material
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presented earlier in Figure 7.1(b), during both tensile and cyclic deformation. More impor-

tantly, a lattice strain hierarchy similar to the one noted in Tables 7.4 and 7.5 is observed for

all textures. This important observation suggests that while their relative magnitudes may

differ based on the input volume fractions of idealized orientations, the hierarchy in residual

strain developments with respect to different grain families are not influenced by the initial

texture of the microstructure. As discussed earlier, the role of neighboring grain orienta-

tions on the local residual strains has been studied previously (Abdolvand et al., 2018; Thool

et al., 2020; Louca et al., 2024). However, our results indicate that the role of neighboring

grain orientations on the overall hierarchy of the bulk lattice strain developments is limited;

it may only alter the relative magnitudes, while not affecting their respective order.

7.4.7 Discussion

The present study focused on exploring the residual strains in different grain families within

polycrystalline aggregates. Very often, the volume fraction of various texture components

can be tailored to suit certain applications. To this end, the texture of a material typically

develops or gets altered due to solidification, heat treatment, phase transformation and

plastic deformation (Suwas and Ray, 2014). Solidification, for example, is associated with

growth selection and texturing (Rappaz and Gandin, 1993; Suwas and Ray, 2014). Direc-

tionally solidified cubic metals typically display strong evidence of (001) texture, with grains

having their < 001 > axes parallel to the heat extraction direction (Suwas and Ray, 2014).

On the other hand, axisymmetric deformation processes such as cold drawing typically dis-

play a typical double fiber texture composed of the (001) and (111) grain families (English

and Chin, 1965). A range of material as well as deformation parameters (for e.g. Stacking

Fault Energy (SFE), drawing speed) influence the intensity ratio between the two compo-

nents (English and Chin, 1965; Verlinden et al., 2007). Similarly, uniaxially compressed FCC

metals often manifest a texture dominated by the (101) grain family (Kumar and Dawson,

2000). Further examples on application of thermomechanical processing for control of crys-

tallographic texture (and properties) range from obtaining strong ND|| < 111 > textures in

Body Centered Cubic (BCC) car body steel for improved formability to balance between

Cube and rolling texture components for earing control in FCC aluminum (Verlinden et al.,

2007).

The inferences derived from the present study may be useful in combined tailoring of the

texture and residual stress evolution in structural materials for desired anisotropic response.

The fraction of the compliant (001) grains may be maximized via processing in applications

where a compliant mechanical response is desired, for example, damping. Automotive engine
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Figure 7.21: (a) Representative initial crystallographic texture of randomly oriented and
rolled polycrystals presented in terms of the ϕ2 = 0◦, 45◦ and 65◦ Orientation Distribution
Function (ODF) sections. The blue markers highlight the typical texture components in
Face Centered Cubic (FCC) metals. (b, c) Predicted mechanical response with random and
rolled initial textures under tensile and cyclic deformation as compared with the simulated
response from our experimental texture presented in Figure 7.1. The hysteresis loop after
N=10 cycles is plotted for the latter. Evolution of the simulated longitudinal lattice strains
as a function of increasing (d) true stress, σzz, during tensile loading and (e) peak stress

during cyclic loading.
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components subjected to thermomechanical loading require materials with high damping

coefficients (Fontaine, 1980; Guesser and Martins, 2016; Pierce et al., 2019). While several

other microstructural properties may also influence the damping behavior of steels, such as,

carbon concentration, stacking faults, martensite fraction, etc. (Förster and Köster, 1939;

Talonen and Hänninen, 2004), the damping coefficient is higher for (001) grains as compared

to (101) or (111) grains (Manda et al., 2023). This is correlated with the compliant response

and higher residual strains of the (001) family of grains observed in our work. There are

some limited studies on the effect of pre-existing residual stresses on thermo-elastic damping

(Vahdat and Rezazadeh, 2011; Manda et al., 2023). However, the textural dependence and

its correlation with residual strains needs to be studied in detail in the future. Further,

with regards to cyclic deformation, lower magnitude of axial stresses within the elastically

compliant < 100 > orientations have been attributed to be an important factor influencing

the fatigue life of SS 316L with higher fraction of (100) grains (Blochwitz et al., 2008). On

the other hand, rolling/forging may be used in structural materials to increase the fraction of

(101) and (111) grains, where a stiffer material response is desired (Verlinden et al., 2007).

It should be noted that rolling/forging may also result in an increase in the dislocation

density, the effect of which on the residual strain developments have not been studied in

our work.

The novel contribution of our work lies in the use of combined modeling and experiments

to establish the factors governing the hierarchy in lattice strain developments. As discussed

earlier in Section 7.1, there are several studies in the literature that study the lattice strains

during tensile deformation. However, to the best of our knowledge, studies on the hierarchy

of lattice/residual strain developments during cyclic deformation and their comparison with

the tensile deformation counterparts are rather limited (cf. Jiang et al. (2015)). Moreover,

the works that study lattice strain developments only during cyclic deformation, focus only

on the initial few cycles (< 10) (Lorentzen et al., 2002; Wollmershauser et al., 2012; Saleh

et al., 2013).

The modeling framework itself has several advantages over existing models in the literature.

For example, our physically-based model accounts for both isotropic and kinematic hard-

ening due to dislocation densities. Further, it should be noted that the same set of model

parameters have been used for predicting tensile and cyclic deformation. Additionally, vali-

dation of the model has been performed by predicting the mechanical response under plane

strain deformation. Evolution of bulk lattice strains has generally been studied using the

mean-field crystal plasticity frameworks. This is primarily due to their computationally

efficiency as compared to the full-field counterparts. However, a drawback of these frame-

works lies in their inability to account for the local intragranular stresses and orientation
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gradients. As presented in Figures 7.8-7.13 and 7.19, the lattice rotations during plastic

deformation may alter the local residual strain developments and full field models are bet-

ter suited for capturing them. To the best of our knowledge, the lattice strain predictions

using full-field models have mostly been restricted to tensile deformation and very limited

studies exist for cyclic deformation (for example, Zheng et al. (2013)). However, these ex-

isting studies have not explored the factors contributing to redistribution of lattice strains

among different grain families during deformation, which may influence the hierarchy in

the lattice strain developments. Finally, prediction of local residual strains during tensile

and cyclic deformation, and their comparison with HR-EBSD counterparts is another novel

contribution of our work. Studies correlating the substructural developments with the local

residual strain measurements using HR-EBSD itself are fairly limited (Jiang et al., 2015;

Kartal et al., 2012; Sedaghat and Abdolvand, 2021), and our modeling framework, which

uses EBSD microstructures as input, can be used to predict the same.

In summary, the combined modeling and experimental methodology provides a novel, in-

depth analysis on the hierarchy of residual strain developments during tensile and cyclic

deformation.

7.5 Conclusions

We have presented a combined experimental and crystal plasticity modeling framework to

study the development of bulk lattice (residual) strains and local residual strains during ten-

sile and cyclic deformation. The bulk lattice strains were measured using X-Ray Diffraction,

while the local residual strains were measured using HR-EBSD. A dislocation density-based

crystal plasticity model, combined with a slip system-level Armstrong-Frederick type back-

stress model for directional hardening, was developed and implemented in the ρ-CP crystal

plasticity framework for predicting the residual strains during deformation. The model also

has consideration for processing-induced residual strains prior to deformation. Based on the

detailed analysis of the experimental and simulated results, following are the key conclusions

that can be drawn from the present study:

1. The predicted longitudinal lattice strains are qualitatively comparable with the XRD

measurements for both tensile and cyclic deformation, while the transverse lattice

strains are marginally underpredicted. The predicted local residual strains are also

qualitatively comparable with the HR-EBSD measurements, with evidence of localized

deformation at annealing twins, especially during cyclic deformation.
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2. There is relaxation in the longitudinal lattice strains for the (101) grain family, satu-

ration for the (111) and (311), and increase for the (001) grain family during tensile

deformation. In contrast, a saturation in the longitudinal lattice strain magnitudes

was noted for all grain families during cyclic deformation.

3. The texturally dominant (101) grain family exhibited the largest intragranular orienta-

tion gradients, SSD density and backstress, thus implying that these grains deformed

plastically to accommodate the imposed tensile deformation. In contrast, magnitudes

of these substructure variables were relatively lower in the cyclically deformed mi-

crostructures.

4. The elastically and plastically stiffer (111) family exhibited a much lower magnitude

of misorientation, SSD density and backstress, and did not show any relaxation in the

lattice strains during tensile and cyclic deformation.

5. Based on the analysis of the predicted mean and standard deviation of the longitudinal

residual strains from the bulk simulations, they follow the hierarchy in the following

order for the different grain families: (001) > (311) > (111) > (101) for tensile

deformation, while (001) > (311) > (111) ∼ (101) for cyclic deformation.

6. The factors contributing to the observed hierarchy in the longitudinal residual strains

are the elastic stiffness and the grain rotations (or lack thereof) for the respective

grain families during tensile and cyclic deformation.

7. The trends in the hierarchy of the residual strain developments are not influenced by

the initial texture of the polycrystalline aggregates.



Chapter 8

Summary and Conclusions

8.1 Summary of the Thesis

The thesis focused on developing experimentally informed mesoscale finite element frame-

works, in order to understand the correlation between the backstress, solute segregation

and residual strains in microstructures subjected to mechanical deformation. To achieve

this objective, each of the aspects were systematically introduced in (or coupled to) a fi-

nite deformation plasticity framework, followed by its validation with the corresponding

experimental or analytical dataset. Following this, the combined experimental and model-

ing framework was employed to examine various (practical) case studies, the outcomes of

which would help researchers in developing microstructures manifesting enhanced mechan-

ical properties.

The novel contributions of the thesis, in terms of model development are:

1. Taylor hardening based Strain Gradient Crystal Plasticity framework (SGCP) (see

Chapter 3).

2. Extension of SGCP model to Strain Gradient J2 Plasticity (SGP) framework, while

accounting for the crystal orientation based anisotropy (see Chapter 5).

3. Coupled Phase Field (PF)-SGP framework, accounting for the orientation-based anisotropy,

multi-grain interaction, anisotropic temperature-dependent elasticity, dislocation strength-

ening, solid solution strengthening, along with GND-induced directional backstress

(see Chapter 5).

222
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4. Lattice strain estimation module within a crystal plasticity framework, which uses a

Kocks-Mecking model for dislocation evolution, a Taylor hardening model for dislo-

cation strengthening and a slip system-level Armstrong-Frederick type backstress (see

Chapter 7).

Similarly, the novel contributions of the thesis in terms of modifications to existing experi-

mental methodologies are:

1. Establishing numerical convergence between the two (different) estimates of lattice

distortion ((∆θ/θ)-sensitive versus (∆d/d)-sensitive residual strains) (see Chapter 6).

2. Validation of the experimentally estimated scaling factor through kinematical and

dynamical pattern simulations of a virtually deformed cubic lattice (see Chapter 6).

8.2 Conclusions

Based on the work performed, the major conclusions from the different Chapters are sum-

marized as follows:

Chapter 3: Study of Grain Boundary Orientation Gradients

Chapter 3 studied the microstructural factors contributing to the formation of Near Bound-

ary Gradient Zones (NBGZs) in an Aluminum-Magnesium (Al-6 wt.% Mg) alloy using

combined experiments and modeling. Following are the main conclusions:

• The normalized width of the NBGZs, LNBGZD , was found to scale with the grain average

Schmid factor, i.e., the (plastically) hard grains display relatively smaller NBGZs in

comparison to the soft grains, as the deformation remains localized to a small region

in the vicinity of grain boundaries.

• A possibly strong relationship was observed between the LNBGZ and the mean grain

size, especially for the (plastically) soft grains.

Chapter 4: Effect of Precipitates on the Development of Near Boundary Gra-

dient Zones

Chapter 4 employed the SGCP framework to study the substructure evolution within the

NBGZs at precipitate decorated grain boundaries in an Aluminum-Copper (Al-4 wt.% Cu)

alloy subjected to compressive deformation. The hot-forged alloy displayed Al2Cu precipi-

tates at a majority of the grain boundaries. Following are the main conclusions:
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• Our combined modeling and experimental approach showed that the orientation de-

pendence of the NBGZ width is minimal for the (plastically) hard, Schmid factor≤0.35,

and intermediate, 0.35<Schmid factor≤0.45, grains in the presence of Al2Cu precip-

itates, i.e., the width of the normalized length of the NBGZs did not show a clear

dependence on the grain-average Schmid factor. The (plastically) soft grains, Schmid

factor≥0.45, however, did exhibit a much wider NBGZ, especially in the presence of

Al2Cu precipitates.

• The Cu segregation however, did not alter or deviate the orientation-dependent be-

havior of the NBGZ width, for either of the grain types (soft, intermediate and hard).

• The presence of a harder, non-deforming second phase decorating the grain bound-

aries played a much larger role over the crystallographic orientation, in governing the

deformation behavior within the NBGZs.

Chapter 5: Microstructural Factors Influencing the Tension-Compression Asym-

metry of Rapidly Solidified Alloys

Chapter 5 focused on the development of a novel coupled PF-SGP framework to study

the microstructural and mechanical aspects, in particular, the Tension-Compression (TC)

asymmetry, frequently observed in rapidly solidified microstructures. Following are the main

conclusions:

• The TC asymmetry, quantified in terms of the Strength Differential (SD) showed

that the model predictions were able to sufficiently predict the previously reported

experimental SDs (for Fe-Cr alloys).

• This behavior could be attributed to the negative component of backstress along

the transverse direction and positive component of backstress along the longitudinal

direction.

• The TC asymmetry was largely governed by the thermal distortion induced GND

densities, and hence the backstresses, which translate the yield surface.

Chapter 6: Diffraction-Based Multiscale Residual Strain Measurements
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A systematic comparison of the residual strains measured using the ∆d/d sensitive (micro-

Laue XRD and Transmission Electron Microscope (TEM)-based Precession Electron Diffrac-

tion (PED)) and (∆θ/θ) sensitive (High Resolution-Electron Backscatter Diffraction (HR-

EBSD) and Transmission Kikuchi Diffraction (HR-TKD)) was performed during progres-

sive, albeit interrupted tensile tests, on a Body Centered Cubic (BCC) Interstitial Free (IF)

steel. Following are the main conclusions:

• The measurements sensitive to changes in interplanar angle (∆θ/θ) provided quan-

titatively higher residual strain values than those sensitive to changes in interplanar

spacing (∆d/d). Further, it was seen that there appears to be a consistent scaling

factor between the two measurement types as residual strain increases.

• A scaling factor by which HR-EBSD underestimates (∆d/d)-based strain, compared to

(∆θ/θ)-based strain, was derived from pattern simulations. Interestingly, this scaling

factor was similar in magnitude to the difference between the micro-Laue XRD and

HR-EBSD based measurements (∼ 1.57).

• The scaling factor was further validated at sub-micron scales, by comparing and an-

alyzing the residual strains measured from identical locations using HR-TKD and

TEM-PED.

Chapter 7: Orientation-Dependent Residual Strains during Tensile and Cyclic

Deformation

Chapter 7 modified an existing dislocation density based crystal plasticity solver, ρ − CP ,

to predict the evolution of bulk (∆d/d-sensitive) lattice and local (∆θ/θ-sensitive) residual

strains during tensile and cyclic deformation of an austenitic stainless steel. Following are

the main conclusions:

• The simulated predictions of longitudinal lattice strains were nearly identical to those

obtained from our XRD-based d-sin2ψ measurements. The transverse lattice strains

were marginally underpredicted, albeit, the aggregate trends were similar to their ex-

perimental counterparts. Similarly, the predicted trends in local residual strains were

qualitatively identical to those of their experimental HR-EBSD based counterparts.

• The lattice strain relaxations in the (101) grain family, with increasing tensile strains,

were noted to be a result of the significant misorientation and orientation gradients

developing within those grains. These further enhanced with increasing plastic de-

formation, thus rendering the grain incapable of accommodating any further elastic

strains. The load shed was accommodated by the (001) grain family.
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• Such orientation gradients, and hence lattice strain relaxations, were not observed for

any of the grain families during cyclic deformation.

• Model predictions of bulk lattice strains as well as local residual strains showed the

following hierarchy among different grain families: (001) > (311) > (111) > (101) for

tensile deformation and (001) > (311) > (111) ∼ (101) for cyclic deformation. The

key factors that were found to influence the hierarchy were the elastic stiffness and

the grain rotation, during tensile as well as cyclic deformation.

In summary, the thesis made an attempt to explore the possible relationship and inter-

dependency between (mis)orientation and (mis)orientation gradients, segregation and resid-

ual strains in metallic systems, using a combination of novel modeling and experimental

techniques.

8.3 Future Scope

As can be seen in each of the Chapters, the thesis firstly introduces the proposed mesoscale

modeling framework, followed by its validation and application to a practical scenario. The

future scope can also be divided on similar lines as follows:

1. Improvements to the existing modeling framework:

• Chapter 3 introduced a Taylor hardening based SGCP framework to study the

grain boundary orientation gradients. Possible future research can be directed

towards application of higher order models (cf. Evers et al. (2004a,b)), since they

provide a realistic estimation of backstress based on the spatial distribution of

GNDs.

• Iterative algorithms to derive the GND configurations from the Nye tensor, with

physically realistic weights (for example, energy minimization) could provide re-

alistic GND density configurations. These can be physically verified using TEM-

PED based GND density measurements, since they provide an atomic-level res-

olution.

• The dislocation interaction parameter employed in Chapters 3 and 4, which ac-

counts for the hardening associated with interactions of dislocations gliding on

different slip systems can be derived from lower length-scale models, such as

Discrete Dislocation Dynamics (DDD).
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• Chapter 5 focuses on employing a PF-SGP for capturing the microstructural

developments during rapid solidification. A more accurate prediction of thermal

distortion induced heterogeneties can be obtained by introducing a PF-SGCP

type of framework. Alternatively, an entry-wise one norm can be used to estimate

GNDs in PF-SGCP, to reduce the computational expenses involved.

2. Model applications:

• The PF-SGP predicted solidified microstructure in Chapter 5 was cooled im-

mediately to the room temperature. In reality, additively manufactured mi-

crostructures undergo significant amount of thermal cycling during their (layer-

by-layer) deposition. Possible future research may employ such Boundary Condi-

tions (BCs) and then evaluate their effects on the post-solidification mechanical

properties.

• Employing a SGCP framework to evaluate the orientation-dependent residual

strains, in place of the Armstrong-Frederick model currently employed in Chapter

7.

• Estimating hydrostatic strains from the HR-EBSD based Kikuchi patterns, fol-

lowed by their validation using SGCP. Such a combined experimental and model-

ing framework can be used to examine the void propagation and hence the failure

behavior of ductile materials.

8.4 Significant Contributions from the Thesis

8.4.1 Journal Publications

8.4.1.1 Published

• Pai, N., Prakash, A., Samajdar, I., Patra, A., “Study of grain boundary orientation

gradients through combined experiments and strain gradient crystal plasticity model-

ing”, International Journal of Plasticity, Vol. 156, 2022, 103360.

• Pai, N., Manda, S., Sudhalkar, B., Syphus, B., Fullwood, D., de Kloe, R., Wright,

S., Patra, A., and Samajdar, I., “Diffraction-based multiscale residual strain measure-

ments”, Microscopy and Microanalysis, Vol. 30, 2024.

• Pai, N., Samajdar, I., and Patra., A., 2024. “Microstructural and mechanistic insights

into the tension-compression asymmetry of rapidly solidified Fe-Cr alloys: a phase field
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and strain gradient plasticity study”, Journal of the Mechanics and Physics of Solids,

Vol. 189, 2024, 105695.

• Pai, N., Samajdar, I., Patra., A., “Study of orientation-dependent residual strains

during tensile and cyclic deformation of an austenitic stainless steel”, International

Journal of Plasticity, Vol. 185, 2025, 104228.

8.4.2 Conference Presentations

• Pai, N.*, Prakash, A., Samajdar, I., Patra, A., “Study of near boundary gradient

zones in an aluminum alloy using strain gradient crystal plasticity and experiments”,

Virtual Presentation, MS & T 21, Columbus, USA, October 17-21, 2021.

• Pai, N.*, Samajdar, I., Patra, A., “Study of the effect of gradient plasticity on the

deformation of metallic systems via combined modeling and experiments”, 24th In-

ternational Conference on Computer Methods in Mechanics (CMM) & 42nd Solid

Mechanics Conference (SolMech), Swinoujscie, Poland, September 5-8, 2022.

• Pai, N.*, Samajdar, I., Patra, A., “Insights into the tension-compression asymmetry

of additively manufactured alloys: a combined phase field-strain gradient plasticity

study”, 29th International Conference on Processing and Fabrication of Advanced

Materials, Indian Institute of Technology Tirupati, September 6-8, 2023.

• Pai, N.*, Samajdar, I., Patra, A., “Exploring The relative magnitudes of diffraction-

based residual strain measurements”, International Conference on Texture of Materi-

als, 2024, Metz, France, June 30-July 6, 2024.

* indicates speaker.
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