
Indian Institute of Technology Bombay

Report for

PH303 : Supervised Learning Project

Semantic Table, Column & Cell Recognition
through Image Segmentation using TableNet

Submitted by:

Kandarp Solanki

Supervisor:

Prof. Biplab Banerjee

Abstract

This supervised learning project harnesses the power of DenseNet and TableNet for
precise table, column, and cell masking through image segmentation. The project’s focus lies
in automating the extraction of structured data from diverse unstructured documents. By
utilizing the advanced capabilities of DenseNet and Tablenet in table detection and
segmentation, we aim to enhance the precision of table extraction. This research has diverse
applications, including data mining, content analysis, and information retrieval, contributing
to more efficient decision-making and knowledge extraction in our data-centric world.

Contents

1 Introduction 1

2 Dataset and its preprocessing 2
2.1 Hardwares and Softwares Used . 2
2.2 Marmot Dataset . 2
2.3 Format of the Data . 2
2.4 Pre-Processing . 3

3 Model Pipeline 4
3.1 Definitions . 4
3.2 Model Architecture . 4

4 Observations 6
4.1 Exploratory Data Analysis (EDA) . 6
4.2 Training & Test Metrics . 7

4.2.1 Accuracy . 7
4.2.2 Loss . 7

5 Statistical Analysis & Future Goals 8
5.1 The Confusion Matrix . 8
5.2 Future Plans . 9

i

Chapter 1

Introduction

TableNet is a deep learning model that uses a common network to solve two major issues:

• Detection of tabular areas in a given image (Table detection)

• Extraction of information from the rows and columns of the detected table (Table
Structure Recognition)

The original TableNet model emphasises only on table and column extraction but this
project involved further extending this idea to cell extraction. Given the interdependence of
these tasks doing it with a single neural network is considered beneficial.

The architecture of the model is very elegant, similar to an encoder-decoder model with
the encoder usually encoding the positions and structural aspects of the table and the decoder
uses this information for accurate mask generation

Fig. DenseNet Model Architecture

1

Chapter 2

Dataset and its preprocessing

2.1 Hardwares and Softwares Used

Due to hardware limitations, we worked with Google Colab, which is an online collaborative
platform, for the entire project which gives access to free usage of T4 GPU on Google’s
computing platforms for faster computations. The data was accessed from my personal Google
Drive everytime the code is run so that the code is accessible to all.

2.2 Marmot Dataset

The dataset used in this entire project is the Marmot Table Recognition Data which is
used as a table detection dataset but does not contain ground truth1 values for column and
cell detection. The original Marmot dataset contains 1016 images in total out of which 509 are
English documents and rest are in Chinese (we use only the English one).

NOTE: This dataset was tried for table and column detection only whereas the cell
detection was carried out using data provided to us by PerpetualBlock2

2.3 Format of the Data

The data for table and column detection included images of .bmp (Bitmap Image File) and
data in XML file for table and column coordinates

The data sent by the company was a text file in the following format for each image:

{0,1,2,3} {x-coordinate} {y-coordinate} {x-width} {y-height}

All these parameters were given to us in relative terms i.e how much fraction (e.g 0.125) w.r.t
the height and width of the given image. {0,1,2,3} corresponds to Cell, Column, Description,
Table respectively.

1information that is known to be real or true, as opposed to information by inference
2It is a Partex company who funded us for this project

2

2.4 Pre-Processing

For Table/Column Masking

The data available to us was in a crude format so it required some pre-processing before it
could be converted into a user-friendly format.

Fig. How data is processed?

An XML (eXtensible Markup Language) file is a text-based document that uses tags to
structure data for storage and transport.

The XML file given to us contains a lot of information about the data/image and we do
not need all of it. We only need a certain branch or root of the entire data structure which
contains information about the bounding boxes i.e the four coordinates within which the tables
and columns are present. While doing this we also need to make sure that the image is reshaped
to a fixed scale which is 1024x1024 in our case. All the bounding boxes are thus made w.r.t to
these new coordinates after scaling

As an example, imagine if the size of the image below doubles in both
dimensions, the mask sizes happen to have the same effect

Figure 2.1: A typical example of masking, its ground truth and prediction

For Cell Masking

Since the data given to us for the cell masking was in a different format as mentioned earlier,
we had to write our own python script to generate a csv file which contained the organised
information which is needed by us. The code for the script is attached in the Appendix.

Take a note that all the file address while saving the csv file were given the same as that
of the drive as these paths will be used to access it when using Google Colab.

Figure 2.2: Table, Column and Cell Masks for a given table generated using the script

3

Chapter 3

Model Pipeline

3.1 Definitions

Here is a list of some common terms/methodologies that are used in the model pipeline:

• Convolutions - Convolution refers to reducing the dimension of the overall input such
that each new pixel now resembles a new collective value of the old pixels. The reverse
process is known as deconvolution, although it is lossy in nature.

• Kernels - Kernels can be considered like a moving matrix used while convolutions. It
assigns the center pixel the weighted dot product of the kernel matrix with the sub-region
of input data

• Strides - Strides define how many steps the kernel moves during a convolution

• Dropout - A Dropout layer is a mask that neglects/discards a fraction of values from
some of the neurons

• Pooling - Pooling of parameters refers to reducing the size of feature maps to reduce the
complexity of computation and make it faster

• Activation Functions - Decides whether the neuron should be activated or not and
upto what extent using a function of weighted sum and adding a bias term. It introduces
non-linearity

• Batch Normalization - Addition of extra layers in the neural network to make it faster
by performing some standardizing and normalising operations

3.2 Model Architecture
Encoder

For the encoder part, we used the pretrained DenseNet121 model. The weights of the
DenseNet121 model are set as non-trainable and will not be changed using training.

Figure 3.1: Encoder Pipeline of pre-trained DenseNet model

4

The summary of the encoder and decoder parts of the model is as below:

|-----------------------------|-------------------------|-----------|

| Layer (type) | Output Shape | Param # |

|-----------------------------|-------------------------|-----------|

| DenseNet | | |

| features | (256, 32, 32) | 0 |

| densenet_out_1 (Sequential) | (256, 64, 64) | 16,896 |

| densenet_out_2 (Sequential) | (512, 32, 32) | 984,576 |

| densenet_out_3 (Sequential) | (1,024, 32, 32) | 590,848 |

| TableDecoder | | |

| conv_7_table (Conv2d) | (256, 32, 32) | 590,080 |

| ReLU (ReLU) | (256, 32, 32) | 0 |

| upsample_1_table (ConvTran | (128, 64, 64) | 131,200 |

| ReLU (ReLU) | (128, 64, 64) | 0 |

| upsample_2_table (ConvTran | (256, 128, 128) | 491,776 |

| ReLU (ReLU) | (256, 128, 128) | 0 |

| upsample_3_table (ConvTran | (1, 1024, 1024) | 4,097 |

| ColumnDecoder | | |

| conv_8_column (Sequential) | (256, 32, 32) | 753,408 |

| ReLU (ReLU) | (256, 32, 32) | 0 |

| upsample_1_column (ConvTra | (128, 64, 64) | 131,200 |

| ReLU (ReLU) | (128, 64, 64) | 0 |

| upsample_2_column (ConvTra | (256, 128, 128) | 491,776 |

| ReLU (ReLU) | (256, 128, 128) | 0 |

| upsample_3_column (ConvTra | (1, 1024, 1024) | 4,097 |

| CellDecoder | | |

| conv_9_cell (Sequential) | (256, 32, 32) | 753,408 |

| ReLU (ReLU) | (256, 32, 32) | 0 |

| upsample_1_cell (ConvTrans | (128, 64, 64) | 131,200 |

| ReLU (ReLU) | (128, 64, 64) | 0 |

| upsample_2_cell (ConvTrans | (256, 128, 128) | 491,776 |

| ReLU (ReLU) | (256, 128, 128) | 0 |

| upsample_3_cell (ConvTrans | (1, 1024, 1024) | 4,097 |

| TableNet | | |

| base_model (DenseNet) | (1, 1024, 32, 32) | 0 |

| conv6 (Sequential) | (256, 32, 32) | 328,704 |

| ReLU (ReLU) | (256, 32, 32) | 0 |

| table_decoder (TableDecode | (1, 1024, 1024) | 1,242,081 |

| column_decoder (ColumnDeco | (1, 1024, 1024) | 1,242,081 |

| cell_decoder (CellDecoder) | (1, 1024, 1024) | 1,242,081 |

| Total Parameters | | 7,774,355 |

|-----------------------------|-------------------------|-----------|

Figure 3.2: Model Summary

5

Chapter 4

Observations

4.1 Exploratory Data Analysis (EDA)

Table and Column Encoder (first two) and Cell Encoder (later two)

Below are the plots for kernel density estimates of the histogram for the variation in heights
and widths across the dataset:

(a) Frequency v/s Height (b) Frequency v/s Width

Figure 4.1: KDE plots from Marmot Dataset

(a) Frequency v/s Height (b) Frequency v/s Width

Figure 4.2: KDE plots from Dataset by PerpetualBlock

6

4.2 Training & Test Metrics

Here are a few plots which depict the accuracy, loss over training and test data:

4.2.1 Accuracy

(a) Training Accuracy (b) Test Accuracy

4.2.2 Loss

(a) Training Loss (b) Test Loss

(a) Combined Loss

7

Chapter 5

Statistical Analysis & Future Goals

5.1 The Confusion Matrix

(a) Confusion Matrix

The confusion matrix is a table that is used to define the performance of a classification
algorithm.

It has four main performance indicators:

• Accuracy : Defined as True Positives + True Negatives over all outcomes

• Sensitivity/Recall : Defined as True Positives over True Positives + False Negatives

• Specificity : Defined as True Negatives over True Negatives + False Positives

• Precision : Defined as True Positives over True Positives + False Positives

Here is how our model performed on it:

(a) Performance of our Model

8

Although it did not perform fairly well on a few indicators, it did so very fairly when it
comes to accuracy. We might some fine tuning of our hyperparameters in order to achieve a
better stability to the results.

Moreover, the amount of data over which we worked on was significantly lesser (about 1̃0
times less) than what the Marmot dataset offers and still the model could achieve upto 93%,
94% and 88% accuracy for Table, Column and Cell detection respectively.

5.2 Future Plans

In future, we aim to develop a more robust model pipeline that simultaneously enhances
performance across all three verticals. Achieving balanced accuracy for these tasks can be
challenging with the same dataset, but we believe that through improved neural network
designs and proper data segmentation, we can achieve promising results even with a smaller
dataset. Our goal is to create specialized neural network architectures tailored to the unique
requirements of each vertical, allowing us to extract maximum value from the available data
and deliver superior results in the future.

9

Acknowledgements

I would like to express my heartfelt gratitude to Prof. Biplab Banerjee for his invaluable
guidance and unwavering support throughout the course of this project in the domain of
Semantic Table, Column & Cell Recognition through Image Segmentation using TableNet. His
profound expertise and mentorship have been instrumental in shaping this research endeavor
and have contributed significantly to its success. I am truly fortunate to have had the privilege
of working under his mentorship, which has enriched my understanding and passion for this
field. Also, a huge thanks to Mr. Mohd Hasan from CMiNDS who helped us with some
debugging issues and guided us during the project.

10

Appendix

Python Script for Data Processing (Cell Masking)

from PIL import Image

import csv

import pandas as pd

files = ["....all file names come here...."]

n = 1

temp_list = []

for i in files:

mask_path = f"/Users/kandarpsolanki/Downloads/SLP/labels/{i}.txt"

img_path = f"/Users/kandarpsolanki/Downloads/SLP/images/{i}.bmp"

image = Image.open(img_path)

(width,height) = image.size #(width,height)

img_path2 = f"/content/drive/MyDrive/marmot_processed_v2/image/{i}.bmp"

mask_coords = open(mask_path)

table_bboxes = []

col_bboxes = []

cell_bboxes = []

for x in mask_coords:

info = x.split()

if int(info[0]) == 0:

x_left_up = int(width*float(info[1]))

y_left_up = int(height*float(info[2]))

x_right_down = int(x_left_up + width*float(info[3]))

y_right_down = int(y_left_up + height*float(info[4]))

cell_bboxes.append([x_left_up,y_left_up,x_right_down,y_right_down])

if int(info[0]) == 1:

x_left_up = int(width*float(info[1]))

y_left_up = int(height*float(info[2]))

x_right_down = int(x_left_up + width*float(info[3]))

11

y_right_down = int(y_left_up + height*float(info[4]))

col_bboxes.append([x_left_up,y_left_up,x_right_down,y_right_down])

if int(info[0]) == 3:

x_left_up = int(width*float(info[1]))

y_left_up = int(height*float(info[2]))

x_right_down = int(x_left_up + width*float(info[3]))

y_right_down = int(y_left_up + height*float(info[4]))

table_bboxes.append([x_left_up,y_left_up,x_right_down,y_right_down])

table_mask_path = f"/content/drive/MyDrive/marmot_processed_v2/table_mask/{i}.png"

col_mask_path = f"/content/drive/MyDrive/marmot_processed_v2/col_mask/{i}.png"

cell_mask_path = f"/content/drive/MyDrive/marmot_processed_v2/cell_mask/{i}.png"

if len(table_bboxes) > 0:

hastable = 1

else:

hastable = 0

temp_list.append([img_path2, table_mask_path, col_mask_path, cell_mask_path,

height, width, hastable, len(table_bboxes), len(col_bboxes), len(cell_bboxes),

table_bboxes, col_bboxes, cell_bboxes])

df = pd.DataFrame(temp_list, columns=[’img_path’,’table_mask’,’col_mask’,’cell_mask’,

’original_height’,’original_width’,’hasTable’,’table_count’,’col_count’,’cell_count’,

’table_bboxes’, ’col_bboxes’,’cell_bboxes’])

df.to_csv("processed_data_1.csv", index=False)

print(’Done!’)

Python Script for Histogram Generation

import csv

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

file = open(’processed_data_1.csv’)

data = csv.reader(file)

heights = []

widths = []

tables = []

columns = []

cells = []

12

header = next(data)

for row in data:

try:

heights.append(int(row[3]))

except:

heights.append(0)

try:

widths.append(int(row[4]))

except:

widths.append(0)

try:

tables.append(int(row[6]))

except:

tables.append(0)

try:

columns.append(int(row[7]))

except:

columns.append(0)

try:

cells.append(int(row[9]))

except:

cells.append(0)

tables = np.array(tables)

columns = np.array(columns)

cells = np.array(cells)

labels, counts = np.unique(cells, return_counts=True)

plt.bar(labels, counts, align=’center’)

plt.gca().set_xticks(labels)

plt.xticks(rotation=90)

plt.hist(columns, bins = 25)

sns.kdeplot(heights, shade=True, color=’blue’)

Add labels and a title

plt.xlabel(’No. of Cells’)

plt.ylabel(’Frequency’)

plt.title(’Histogram of Number of Cells’)

Display the histogram

plt.show()

13

Bibliography

Ayush M., 2022, Table-Extraction, https://github.com/ayushm380/Table-Extraction

ES L., 2022, TableNet using PyTorch, https://github.com/LidorPrototype/

TableNetTable2df

Fetahu B., Anand A., Koutraki M., 2019, TableNet: An Approach for Determining Fine-grained
Relations for Wikipedia Tables (arXiv:1902.01740)

GIMP, Software for data visualisation

Paliwal S., D V., Rahul R., Sharma M., Vig L., 2020, TableNet: Deep Learning model for
end-to-end Table detection and Tabular data extraction from Scanned Document Images
(arXiv:2001.01469)

14

https://github.com/ayushm380/Table-Extraction
https://github.com/LidorPrototype/TableNetTable2df
https://github.com/LidorPrototype/TableNetTable2df
http://arxiv.org/abs/1902.01740
http://arxiv.org/abs/2001.01469

	Introduction
	Dataset and its preprocessing
	Hardwares and Softwares Used
	Marmot Dataset
	Format of the Data
	Pre-Processing

	Model Pipeline
	Definitions
	Model Architecture

	Observations
	Exploratory Data Analysis (EDA)
	Training & Test Metrics
	Accuracy
	Loss

	Statistical Analysis & Future Goals
	The Confusion Matrix
	Future Plans

