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EP 426: Physics of quantum devices
Course instructor : Kantimay Das Gupta
Lectures are held: Mon (8.30-9.25), Tue (9.30-10.25), Thu (10.30-11.25)

Course Contents:

1. Transport in large and small devices

• The Boltzmann transport equation (BTE)

• Using the BTE in simple cases

• What drives current

2. Electric potential, electrochemical potential, chemical potential, Fermi level...what are these?

• The band bending concept

• The self consistent band bending equations (Poisson-Schrodinger etc)

• Band bending near surfaces, interfaces

• MOSFET and the 2dimensional electron gas

3. Ballistic transport concept

• Application to 1D channels

• Quantum Hall effect

• Single electron transistor

•

4. Superconducting devices

• How a suoerconductor differs from a normal metal

• Josephson junction

• SQUID

5. Light emitting devices

• LED, junction laser

• VCSEL

• Quantum Cascade Laser

6. A bag of topics..

• How are mesoscopic or nano-structures made?

• Using Quantum devices to define the standard Ohm/Volt/Ampere. How and why?

• Resistance, capacitor and inductor. Is this set incomplete?

• Band structure of Si, Ge and GaAs

• How shape of the Fermi surface is expected to change with electron concentration. Why
metals have more complex fermi surfaces?

• various regions of the EM spectrum and length scales.
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Evaluation :

1. Class Quiz : 10-15%

2. Mid sem : 25-30%

3. Class Quiz/Term Paper : 20-25%

4. End sem : 30-40%
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This material is not a book or the complete course. It gives you some guidelines only. You should
always refer to the recommended books to see the standard development and data relating to a chapter.



4



Contents

1 Boltzmann Transport equation :
deviation from equilibrium and current flow 7

1.1 A ”handwaving” derivation of the equation . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The semiclassical Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Electric field only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 The temperature dependence of mobility, conductivity . . . . . . . . . . . . . . 12

1.4 Conservation of the phase space volume . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Electric and magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Moments of the transport equation: Continuity & Drift-diffusion . . . . . . . . . . . . 17

1.6.1 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.2 Drift-diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Relation of particle current to electrochemical potential and thermal gradients . . . . 19

1.8 The convective derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Charge densities, dopants, junctions and band-bending in semiconductors 23

2.1 Carrier concentration and doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 A few useful numbers about Si, Ge and GaAs . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Fermi Level in an intrinsic (undoped) semiconductor . . . . . . . . . . . . . . . . . . . 25

2.4 Fermi level in a doped semiconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Thermal ionisation (Saha equation) of the dopant system . . . . . . . . . . . . 30

2.4.2 General method of solving for the Fermi level . . . . . . . . . . . . . . . . . . . 30

2.5 Metal-semiconductor and semiconductor-semiconductor junctions . . . . . . . . . . . . 33

2.5.1 Situations with no current flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 How realistic are these calculations? . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.3 When is a contact not a ”Schottky” ? . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.4 Situations with varying Ef : what more is needed? . . . . . . . . . . . . . . . . 37

2.6 The tunnel diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 The Bipolar Junction Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 MOSFETs and GaAs-AlGaAs hetrostructures : accumulation of the 2-dimensional
electron gas 47

3.1 The MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 At what voltage will the MOSFET’s channel start forming ? . . . . . . . . . . 52

3.2 The GaAs-AlGaAs heterostructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Anderson’s rule, alignment of the bands at the heterointerface . . . . . . . . . 54

3.2.2 Band structure of the GaAs-AlGaAs heterostructure . . . . . . . . . . . . . . . 56

3.3 The envelope function approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 A handwaving justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Position dependent effective mass . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Using the envelope function : Fang Howard wavefunction at a heterinterface . . . . . . 61

5



6 CONTENTS

4 Thomas Fermi screening in the electron gas : Why does remote doping lead to
high mobilities? 63
4.1 Polarisation of the lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Jellium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Screened potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 The screened Coulomb potential . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Screening in the 2-dimensional electron gas . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.1 Finite thickness with Thomas-Fermi screening . . . . . . . . . . . . . . . . . . . 66

5 Quantum Hall effect : Basic physics and the edge state picture 71
5.1 Current flow in a rectangular ”Hall Bar”, the classical solution . . . . . . . . . . . . . 71

5.1.1 B=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 After a magnetic field is applied . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.3 Current flow directions and the equipotentials . . . . . . . . . . . . . . . . . . . 73
5.1.4 What is not correct in the classical solution? . . . . . . . . . . . . . . . . . . . 74

5.2 Quantum mechanical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.1 Degeneracy of each Landau level and the overlap of the wavefunctions . . . . . 75
5.2.2 Oscillation of EF as B increases . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 The states near the edge of the sample . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 The ”perfect” one-dimensionality of the edge states . . . . . . . . . . . . . . . . 77
5.2.5 Disorder broadening of the Landau levels . . . . . . . . . . . . . . . . . . . . . 80
5.2.6 Longitudinal resistance and ”Quantum” Hall effect . . . . . . . . . . . . . . . . 80

6 Conduction through a constriction: quantisation of conductance 83
6.1 How is such a constriction made? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Calculation of the conductance of a Quantum point contact (QPC) . . . . . . . . . . . 85

7 Superconductivity 89
7.1 What do we know experimentally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.1 It is a distinct thermodynamic phase . . . . . . . . . . . . . . . . . . . . . . . . 89
7.1.2 Evidence for a gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1.3 How an attractive e-e interaction becomes possible . . . . . . . . . . . . . . . . 94

7.2 Ginzburg Landau ”order parameter” theory . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2.1 Another way of writing the current density: flux quantization . . . . . . . . . . 98

7.3 The Cooper pair problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.1 Many pairs together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Josephson junctions 105
8.1 The RCSJ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1.1 The titled washboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.1.2 Two different steady states: role of the initial conditions . . . . . . . . . . . . . 112
8.1.3 Introducing the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.1.4 Principle of the Superconducting QUnatum Interference Device . . . . . . . . . 114

A Electromagnetic spectrum 119
A.1 Mott transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B Many particle systems 127
B.1 Determinant and permanent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.1.1 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.1.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.1.3 An important exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.1.4 The Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.2 How do all these help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



Chapter 1

Boltzmann Transport equation :
deviation from equilibrium and current
flow

References:

1. Chapter 12 & 16, Solid State Physics, N. W. Ashcroft and N.D. Mermin

2. page 61-67, Quantum Heterostructures, V. V. Mitin, V. A. Kochelap and M. A. Stroscio

3. A.H. Marshak and K. M. van Vliet, Electrical current in solids with position dependent band
structure, Solid State Electronics, page 417-427, 21, 1978

Boltzmann Transport equation (BTE) allows us to take a step out of equilibrium thermodynamics. In
general the concept of equilibrium implies that there is no net particle flow from one point of a system
to another. An equivalent statement is that the electrochemical potential is same throughout the
system. Yet, in reality, all electrical devices have currents flowing in them - if it didn’t it wouldn’t be
interesting at all. Often the effects of current flow are also irreversible -like Joule heating. We will see
how the presence of electro-magnetic fields, electrochemical potential gradients and thermal gradients
drive current. We will do so by trying to calculate the distribution function in a situation slightly away
from equilibrium. Our main target is to find expressions for current when ”external fields” are present.

1.1 A ”handwaving” derivation of the equation

Let’s consider the phase space with just two co-ordinates r,p. The distribution is represented by a
point as shown at time t. What happens to the points in the ”volume element” after a little while?
Unless they are scattered they change their co-ordinates according to the following rule:

r(t+ δt) = r(t) +
p

m
δt

p(t+ δt) = p(t) + F δt (1.1)

If this was all, then it wouldn’t have been interesting at all, because it would mean:

f(r(t) +
p

m
δt,p(t) + F δt, t+ δt)d3r′d3p′ = f(r(t),p(t), t)d3rd3p (1.2)

Now note the following:

7



8 CHAPTER 1. BTE: DEVIATION FROM EQUILIBRIUM & CURRENT FLOW

Figure 1.1: Flow of points in phase space.

• The volume element around the point distorts, but preserves its volume. Something that was
a square at time t, would become a parallelogram at t + δt. This would happen if the external
force is derivable from a potential and the two co-ordinates that we have chosen are canonically
conjugate. We will ignore this technicality at this point. Many text books on statistical physics,
treat this point carefully...

• The equality fails to hold, because some of the trajectories get scattered by collisions. Thus the
amount by which this equality fails to hold, must be attributed to collisions. This leads us to
the following

p

m
.∇f + F .∇pf +

∂f

∂t
=

df

dt
(1.3)

Now we take another step, to convert this classical equation into a semiclassical one. We change
momentum to wavevector. This indeed means that we are using the concept of phase space (clearly
defined momentum and position) in quantum mechanical scenario. An analysis of how far this can
give correct results, is non-trivial, but we will give an answer later.

1.2 The semiclassical Boltzmann equation

We denote the equilibrium distribution function by f0(r,k, t) When the distribution function deviates
from equilibrium, a ”restoring effect” arises in the system, that tries to push the distribution back
towards equilibrium. This implies that the collision integral on the right hand side of BTE is assumed
to have the form

df

dt

∣∣∣∣
collision

= −f − f
0

τ
(1.4)

Later on we will try to determine τ in terms of the scattering mechanisms in some systems. The best
justification of the relaxation time approximation is that it works in many cases!

We thus write the BTE as:

∂f

∂t
+
dr

dt
.∇rf +

dk

dt
.∇kf = −f − f

0

τ
(1.5)
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Figure 1.2: Displacement of the Fermi circle results in current flow.

If there are electric and magnetic fields in the system, the ”semiclassical” equation of motion would
be:

~
dk

dt
= q(E+ v ×B) (1.6)

We will also assume that f has no explicit time dependence and that ∇rf = 0 as well - which in
general means that there is no density gradient of particles in the system. This assumption is correct
if we are dealing with a piece of copper wire at constant temperature, but not necessarily correct
for a semiconductor or a even a piece of metal with a thermal gradient. Throughout the lectures we
will assume that the charge of each particle is ”q”. For the most common case of electrons in the
conduction band we would need to put q = −|e| to get the correct sign of the terms.

1.3 Electric field only

With these assumptions, equation 1.5 in presence of an electric field only reduces to

q

~
E.∇kf = −f − f

0

τ
(1.7)

Then we make the first order approximation by taking the derivative around the equilibrium value

f(k) = f0(k)− qτ

~
E.∇kf

0 (1.8)

= f0(k− qτ

~
E) (1.9)

This means that the equilibrium distribution function has retained its functional form but just got
shifted by a certain amount. Think of how the graph of a function f(x) would be related to f(x− a).
In the figure we have drawn it for a Fermi distribution in 2 dimensions. Note that if the relaxation
mechanism is strong then τ would be small. On the other hand if the particle suffers very little scat-
tering then τ would be large and the displacement of the Fermi circle (or sphere) would also be large.

PROBLEM: The free electron density in Copper is n=8.5× 1028m−3 and near room temperature the
relaxation time of most metals is of the order of 10−15 − 10−14 sec. From this data estimate the
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Figure 1.3: How does the product f0(1− f0) behave?

fractional shift of the distribution on the scale of the Fermi wavevector (kF ) for an electric field of
10V/m,( i.e. calculate ∆k/kF ).

Our target is to calculate the current produced by this state:

j = q
∑
k

vδf

=
2q

(2π)3

∫
d3k vδf (1.10)

To proceed we need to evaluate eqn 1.9 for the case of Fermi distribution.

f0 =
1

eβ(E−Ef ) + 1
(1.11)

∇kf
0 = −

(
1

eβ(E−Ef ) + 1

)2

eβ(E−Ef )∇kβ(E − Ef )

= −βf0(1− f0)∇kE

= −βf0(1− f0)~vg (1.12)

Notice that the Fermi level is not a function of k. The end result of 1.12 can also be written as :

∇kf
0 =

∂f0

∂E
~vg (1.13)

Equations 1.12 and 1.13 are important results as these derivatives occur frequently in transport related
physics. How does the product f0(1− f0) behave ? Since f0 drops sharply around Ef , (1− f0) must
rise sharply around Ef , producing a sharp peak.

PROBLEM : Certain combinations of the Fermi function, occur very frequently in expressions that
involve scattering or transitions. It is useful to be familiar with the combination f0(1− f0)
Make a rough sketch of how f0(1− f0) would look as a function of energy. How does the area under
the curve of f0(1− f0) vary with temperature?
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Using eqn 1.12 and eqn 1.9 we get

δf = qτβf0(1− f0)E.vg (1.14)

Notice that the change occurs only near the Fermi surface. This is the generic reason phenomena like
electrical or heat conduction are often referred to as a ”Fermi surface property”. Now we calculate
the current as defined in eqn 1.10

j =
q

4π3

∫
d3k vg

(
qτβf0(1− f0)E.vg

)
= nq

(
q

4π3n

∫
d3k τvg⊗vg

(
−∂f

0

∂E

))
.E (1.15)

Notice that the part within the large brackets is determined by equilibrium properties of the system
only. The outer product (⊗) of two vectors is an object with two indices and can be written out like
a matrix. For example

C = A⊗B implies (1.16)

Cij = AiBj (1.17)

We will call the quantity inside the bracket as mobility. But it is often not necessary to evaluate this
is full generality. We assume that the dispersion relation is spherically symmetric and evaluate the
expression for low temperature. Low temperature implies that the Fermi distribution has a sharp drop
near Ef and behaves like a step function at that point. The derivative of a step function is a (Dirac)
delta function which would pick out the contribution of the integrand around its peak. So we can write

lim
T→0
−∂f

0

∂E
= δ(E − Ef ) (1.18)

Let’s go through the steps for evaluating the mobility integral:

←→µ =
q

4π3n

∫
d3k τvg⊗vg

(
−∂f

0

∂E

)
(1.19)

=
q

n

∫
dE D(E)τvg⊗vg

(
−∂f

0

∂E

)
=

q

n

∫
dE D(E)τvg⊗vgδ(E − Ef ) as T→ 0 (1.20)

(1.21)

Now since vg = ~k/m, we can write:

µij =
q

n

∫
dE D(E) τ

(
~
m

)2

kikj δ(E − Ef ) (1.22)

This from works in all dimensions, provided the density n is interpreted correctly. Now µij will average
to zero if i ̸= j, due to symmetry. If we fix ki, we can find corresponding pairs of points at kj and −kj ,
which will add up to zero. So we need to calculate only the diagonal terms. Since there is nothing
to distinguish the x, y or z directions, all the diagonal components must be equal. This allows us to
write:

µii =
q

n

∫
dE D(E) τ

(
~
m

)2 k2x + k2y + k2z
3

δ(E − Ef )

=
q

3n

∫
dE D(E) τ

2E

m
δ(E − Ef ) (1.23)
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Figure 1.4: Along which direction do you expect the effective mass to be higher, at point 1 (along kx)
or point 2 (along ky)?

Using the expression for density of states in 3D, eqn 1.23 reduces to:

µii =
q

3π2mn

∫
dE k3 τ δ(E − Ef )

=
qτ

m
since k3F = 3π2n (1.24)

1.3.1 The temperature dependence of mobility, conductivity

The mobility is a temperature dependent quantity - the T dependence of conductivity for example
arises from changes in mobility as well as carrier density of a system. Usually scattering calculations
give us the scattering rate (τ(E)) or the collision cross section as a function of E. How do we use
this information to calculate µ(T ). Let’s consider the diagonal element (say µxx) from equation 1.15
which relates j and E

µij =

q

∞∫
0

dE D(E)τ(E)vivj

(
− ∂f
∂E

)
n

∴ µxx =

q

∞∫
0

dE D(E)τ(E)v2x

(
− ∂f
∂E

)
∞∫
0

dE D(E)f(E)

Now if we are working in d dimensions, then in general we have

D(E) ∝ Ed/2−1

E ∝ mv2x
d

2
(1.25)
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Using these two results and a partial integration of the denominator we get:

µxx =
2q

md

∞∫
0

dE Ed/2τ(E)

(
− ∂f
∂E

)
∞∫
0

dE
Ed/2

d/2

(
− ∂f
∂E

)

=
q

m

∞∫
0

dE Ed/2τ(E)
∂f

∂E

∞∫
0

dE Ed/2 ∂f

∂E

Since µ =
qτ

m
, we usually write,

⟨τ(T )⟩ =

∞∫
0

dE Ed/2τ(E)
∂f

∂E

∞∫
0

dE Ed/2 ∂f

∂E

(1.26)

τ(E) is often available from scattering calculations and the integral gives the energy range over which

we need to average it. The presence of the term
∂f

∂E
ensures that the important part is centred at

Fermi energy, the spread of the region increases with increasing temperature.

1.4 Conservation of the phase space volume

We will apply the BTE to a situation where the ”forces” will have some velocity dependence, like the
Lorentz force. So let’s prove that the ”volume” will still be conserved. Part of the proof is left as an
exercise. We will work with two variables only for simplicity. Consider the points (x, p) and a small
area element δxδp around it as before. What happens to the corner points after time δt ? Both ẋ and
ṗ can be functions of x and p, but we do not write all the functional dependances explicitly. See the
following table:

point time= t time= t+ δt

1→ 1′
(
x
p

) (
x+ ẋδt
p+ ṗδt

)

2→ 2′
(
x+ δx
p

)  x+ δx+

(
ẋ+

∂ẋ

∂x
δx

)
δt

p+

(
ṗ+

∂ṗ

∂x
δx

)
δt



4→ 4′
(

x
p+ δp

)  x+

(
ẋ+

∂ẋ

∂p
δp

)
δt

p+ δp+

(
ṗ+

∂ṗ

∂p
δp

)
δt


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PROBLEM: Show that the area element δxδp will become δx′δp′ after time δt where

δx′δp′ =
δx

(
1 +

∂ẋ

∂x
δt

)
∂ṗ

∂x
δxδt

∂ẋ

∂p
δpδt δp

(
1 +

∂ṗ

∂p
δt

) (1.27)

Then prove that if x and p are driven by a Hamiltonian such that ẋ = ∂H
∂p and ṗ = −∂H

∂x then the
first order part (in δt) of the expression will be zero. Since equations of motion in a magnetic field
can be written in Hamiltonian form as well with canonical momentum defined properly, we can still
use the equations.

1.5 Electric and magnetic field

Now let’s recall eqn 1.6 and allow a magnetic field. Eqn 1.8 that described the deviation of the
distribution function from equilibrium should now read :

f(k) = f0(k)− qτ

~
(E+ v ×B).∇kf

0 (1.28)

Now because the force term has explicit dependence on k we can no longer write down the solution by
inspection, as we did in eqn 1.9. However we now try a solution of the same form, with an unknown
vector Z. Our target is to write Z as a function of E and B, but free of k and vg. Thus we want Z,
such that

f(k) = f0(k− qτ

~
Z) (1.29)

Hence,

δf = −qτ
~
Z.∇kf

0 (1.30)

We now use the assumed form (eqn 1.30) with eqns 1.5 and 1.6. This gives:

q

~
(v ×B).

(
∇kf

0 +∇kδf
)
+
q

~
E.∇kf

0 = −δf
τ

(1.31)

We already know that ∇kf
0 points along vg and hence the first term in eqn 1.31 gives zero. This

leaves us with

q

~
(v ×B).∇kδf +

q

~
E.∇kf

0 =
q

~
Z.∇kf

0 (1.32)

Now we need to calculate ∇kδf .

∇kδf = ∇k
qτ

~
Z.∇kf

0

=
qτ

~
∇k

(
−βf0(1− f0)Z.~vg

)
= −βqτ

(
(1− f0)(Z.vg)∇kf

0 + f0(Z.vg)∇k(1− f0) + f0(1− f0)∇k(Z.vg)
)

(1.33)

Once again the first two terms in the RHS of 1.33 will give zero when dotted with v ×B as they are
∝ vg. The only term left is

∇kZ.vg = ∇kZ.
~k− qA

m
=

~
m
Z (1.34)
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In eqn 1.34, A denotes the vector potential of the magnetic field, vg is related to the canonical
momentum in presence of a magnetic field in the usual way. Combining eqns 1.33 and 1.34 we can
write:

(v ×B).∇kδf = −βqτf0(1− f0)(v ×B).
~
m
Z (1.35)

So eqn 1.32 now simplifies to:

− ~
m
βqτf0(1− f0)(v ×B).Z+ (E− Z).∇kf

0 = 0

∴ − ~
m
βqτf0(1− f0)(v ×B).Z+ (E− Z)βf0(1− f0)~vg = 0

∴ qτ

m
(vg ×B).Z+ (E− Z).vg = 0

∴ qτ

m
(B× Z).vg + (E− Z).vg = 0

∴ E = Z− qτ

m
B× Z (1.36)

We call Z as the Hall vector. When both E and B fields are present, this quantity in some way,
”replaces” the electric field in the transport equation. But we still need to express Z explicitly in
terms of E and B, with µ = qτ/m. The proof is left as an exercise.

Z =
E+ µB×E+ µ2(B.E)B

1 + µ2B2
(1.37)

PROBLEM: If E = Z−A× Z, then show that

Z =
E+A×E+ (A.E)A

1 +A2

Hint : Try A×E and A.E

Recall that the relation current with electric field was reduced to a simple (Drude) form for simple
parabolic E(k) dispersion. Following this we then write the expression for current in presence of a
magnetic field by replacing E by Z:

j = nqµZ = σ0Z (1.38)

A very general expression with arbitrary E and B can be written, but is not very useful. Rather, we
consider a situation where the magnetic field points along ẑ, and the electric field is in the x−y plane.
So we have :

E = Exx̂+ Eyŷ

B = B0ẑ

(1.39)

and hence:

Zx =
Ex − µB0Ey

1 + µ2B0
2

Zy =
Ey + µB0Ex

1 + µ2B0
2

Eqn 1.38 then can be written out in 2×2 matrix form as :(
jx
jy

)
=

σ0

1 + µ2B0
2

(
1 −µB0

µB0 1

)(
Ex

Ey

)
(1.40)
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Figure 1.5: Two device geometries commonly used in experiments with 2-dimensional systems

Eqn 1.40 can be inverted to give the resistivity matrix such that:(
Ex

Ey

)
=

(
ρ0

B0
nq

−B0
nq ρ0

)(
jx
jy

)
(1.41)

where we have written ρ0 for 1/σ0.

How do we relate 1.41 to experimental situations? Consider a rectangular block in the xy plane,
with the current injecting contacts placed as shown. Sufficiently away from the contacts, the current
component jy must vanish, because there are no current sourcing/withdrawing contacts on the long
sides. This allows us to interpret the ratio Ex/jx as the longitudinal voltage drop and Ey/jx as the
Hall (transverse) voltage. The off-diagonal terms are linear in B and offers the most common way of
measuring the electron density in a 2-dimensional system.

PROBLEM: Consider the ”Corbino-disk” geometry shown in figure. Current flow is between the inner
(central) contact and the outer (circumferential) contact. Show by symmetry arguments that one of
the components of the electric field (Ey in figure) must be zero. Can you roughly sketch the current
flow paths from the center to the circumference?

It is important to understand that resistance or conductance can no longer be specified by a single
number in presence of a magnetic field. They must be understood in a matrix sense. In fact by
inverting the resistivity matrix you can easily show that in a magnetic field both σxx and ρxx can be
simultaneously zero, which appears counter-intuitive at first glance - but there is no contradiction in it.

PROBLEM: Invert the matrix in the equation 5.11. Call this the conductivity matrix whose elements
are σij . What will be the value of ρxx if σxx = 0, when no magnetic field is present? How would your
answer be modified when a finite strong magnetic field is present?
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1.6 Moments of the transport equation: Continuity & Drift-diffusion

Taking the moments of a differential equation means multiplying both sides of the equation with some
function and integrating over all states/ space. How does that help? The integration ”removes” some
variable and results in a simpler looking equation. Of course the ”simpler” equation is no longer as
detailed or informative as the original one - but sometimes we may need focus on a broad feature
while removing some details. The BTE refers to the distribution function which is not always possible
(or necessary) to know. We show cases where focussing on quantities averaged over the distribution
f(r,k) is immensely useful. The simple 1D version reads:

1.6.1 Continuity equation

This is an expected result of course. However it is useful to show the process. The distribution function
f(r,k, t) is written as f for simplicity:

∂f

∂t
+
q

~
(E+ v ×B) .∇kf + v.∇rf =

df

dt

∣∣∣∣
collision

(1.42)

We integrating/sum over all k states. The first term in LHS gives∫
d3k

(2π)3
∂f

∂t
=
∂n(r)

∂t
(1.43)

where n(r) is the conventional particle density at r.

To evaluate the second term in LHS use the following vector identity. f is a scalar and A is a vector.

A.∇f = ∇.fA− f∇.A (1.44)

This implies:

(E+ v ×B) .∇kf = ∇k.f (E+ v ×B)− f∇k. (E+ v ×B) (1.45)

The first term can be converted to a surface integral. Because the surface will grow as k2, the fields
are finite and the Maxwell-Boltzmann and Fermi distributions go to zero as ∼ e−k2 , this integral will
vanish. The next term is also zero, provided we interpret v as the group velocity. The steps are left
as an exercise. Here E denotes energy.

∇k. (E+ v ×B) =
∂Ei

∂ki
+ εijk

∂

∂ki

∂E
∂kj

Bk

= 0 + εijk
∂2E
∂kikj

Bk

= 0 + 0 (1.46)

Now, the third term in LHS of 1.42 is∫
d3k

(2π)3
v.∇rf = ∇r.

∫
d3k

(2π)3
vf

= ∇r.n(r)⟨v⟩ (1.47)

The RHS of 1.42 must give zero when integrated over all k-space because the particles which are
scattered out of a certain volume must be appearing in some other volume.

Adding 1.43, 1.46, 1.47 gives

∂n(r)

∂t
+∇r.n(r)⟨v⟩ = 0 (1.48)
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1.6.2 Drift-diffusion equation

We multiply both sides of the BTE by velocity (or momentum) and integrating over all states. Obvi-
ously the RHS will give the general expression for current. The LHS will be formed of two or three
terms with distinct physical meaning. This is very extensively used in describing electronic transport
in metals and semiconductors. There are important assumptions which go into it and one needs to be
aware of those! The calculation is somewhat long, so we first do a simplified version in 1D with an
electric field only. Then we will show how to generalise it to 3D with both electric and magnetic field.

∂f

∂t
+
q

~
E
∂f

∂k
+ v

∂f

∂x
= −f − f

0

τ
(1.49)

multiply by v and integrate over all k. The first term in LHS of 1.49 gives:∫
dk

2π
v
∂f

∂t
=

∫
dk

2π

∂

∂t
fv

=
∂

∂t
n⟨v⟩ (1.50)

The second term in LHS of 1.49 gives with v =
~k
m

:∫
dk

2π
v
∂f

∂k
=

∫
dk

2π

(
∂

∂k
fv − f ∂v

∂k

)
= fv|∞−∞ −

~
m
n (1.51)

The third term in LHS of 1.49 gives:∫
dk

2π
v2
∂f

∂x
=

∂

∂x

∫
dk

2π
v2f

=
∂

∂x
n(x)⟨v2⟩

=
∂

∂x
n(x)

⟨
2E

m

⟩
=

kT

m

∂n(x)

∂x
(1.52)

Notice the use of thermal average kinetic energy in the last step. This will ultimately lead to a relation
between mobility and diffusion constant.
The RHS term :

−
∫
dk

2π
v
f − f0

τ
=

1

τ

∫
dk

2π
fv

=
1

τ
n⟨v⟩ (1.53)

Now we can put the last four result together, multiply with τ allover and write J = nq⟨v⟩ for the
electric current:

τ
∂

∂t
n⟨v⟩+ n⟨v⟩+ qτ

~
E

(
− ~
m
n

)
︸ ︷︷ ︸

drift:µ=
qτ

m

+ τ
kT

m

∂n(x)

∂x︸ ︷︷ ︸
diffusion:∝−D

∂n(x)

∂x

= 0 (1.54)

Notice that the ratio of the drift mobility to diffusion constant is
kT

q
, called the Einstein relation. This

is correct for a classical distribution only. Notice how ~ has disappeared, another indication that the
result is essentially classical. The relation between drift and diffusion components would be different
if full Fermi-Dirac distribution used. However at room temperatures in most devices this holds very
well for motion of electrons/holes in a band.
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Drift diffusion in 3D

PROBLEM: Now let us remove the simplifying assumptions and take the moment of the BTE after
multiplying with v. We need to work with

∫
d3k

(2π)3
v
∂f

∂t︸ ︷︷ ︸
LHS 1

+
q

~

∫
d3k

(2π)3
v (E+ v ×B) .∇kf︸ ︷︷ ︸

LHS 2

+

∫
d3k

(2π)3
vv.∇rf︸ ︷︷ ︸

LHS 3

= −
∫

d3k

(2π)3
v
f − f0

τ
(1.55)

Prove the following results. The algebra can be done using the ϵ-δ notation for handling indices of
vectors and tensors. The relation between velocity and the wavevector is mv = ~k− qA

1. LHS 1 : This gives

∂

∂t
n(r)⟨v⟩

2. LHS 2 : Notice the occurrence of the averaged velocity in the Lorentz term. The calculation is
somewhat non-trivial. Do it carefully! You should get

-
q

m
n(r) (E+ ⟨v⟩×B)

3. LHS 3 : The diffusion term requires averaging over the distribution. You should get

∇r.n(r)⟨vivj⟩

For Maxwell-Boltzmann distribution ⟨vivj⟩ =
kT

m
δij

4. RHS : This gives the current term

−n(r)⟨v⟩
τ

Adding all the results will give the drift diffusion relation.

1.7 Relation of particle current to electrochemical potential and
thermal gradients

The preceding sections may give you the impression that current (particle flow) must be associated
with electric field or a magnetic field. This is not true. There are very striking instances where there
is a strong electric field but no charge flow. Also at the end of this section we will be able to answer
the question - what does a voltmeter measure? We have more or less got accustomed to the idea
that connecting a voltmeter between two points would measure the line integral of the electric field
(”potential difference”) between the points. While this is indeed true in many circumstances there
are striking situations where it is not true. For example if you look near the surface of a metal or a
semiconductor or a p-n junction you will find very strong electric field at equilibrium. But a voltmeter
connected between the surface of a metal and somewhere inside would give zero. So would a voltmeter
connected across a p-n junction in equilibrium. The purpose of this section is to show that particle
flow is ultimately related to the gradients of the ”electrochemical potential” (Fermi level) and thermal
gradients (if any) in the system. It is an important conceptual point for treating electrons moving in
conduction band of a semiconductor that may have spatial variation due to changes in composition
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Figure 1.6: The band gap (Eg) may vary due to change in composition of the material. The electro-
chemical potential (Ef ) may vary due to externally applied potentials, like connecting a battery to
certain points of the device. The bottom of the conduction band is a profile of the scalar potential -
whose gradient gives the electric field at that point.

or effects of accumulated charges or external gates.

Recall the transport equation (eqn 1.5), which we wrote as:

∂f

∂t
+
dr

dt
.∇rf +

dk

dt
.∇kf = −f − f

0

τ

Now so far we have assumed that ∇rf = 0, and interpreted d~k/dt as the force on the particle. The
force was easily identified as arising from external electric and magnetic fields. When a particle moves
in a position dependent band structure, the identification of a ”force” on it is not easy - in fact even
conceptually it is not absolutely clear (see the paper by Marshak and van Vliet). However this is a
commonly encountered situation and an approximation based on Hamilton’s equations of motion does
work to a good extent.

Given a Hamiltonian H(r,p)The Hamilton’s (classical) equation of motion gives:

dr

dt
= ∇pH (1.56)

dp

dt
= −∇rH (1.57)

In a ”semiclassical” sense we assume that the expectation value of the Hamiltonian can be position-
dependent, then we can assign the following meaning to the derivatives. (Note that in a quantum
mechanical sense, this can of course be questioned. The reason is that the energy eigenvalues of a
Hamiltonian belong to the entire system and are never position dependent, as we are implying here.)

dr

dt
= ∇pH ≈ vg (1.58)

dp

dt
= −∇rH ≈ −∇rE (1.59)

Using eqns 1.58 and 1.59, the deviation function can be written as:
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δf = −τ
(
vg.∇rf

0 − 1

~
∇rE . ∇kf

0

)
(1.60)

The expression for current is then

j = −τ 2q

(2π)3

∫
d3kvg

(
vg.∇rf

0 − 1

~
∇rE . ∇kf

0

)
(1.61)

We have calculated the k-gradient of f0 before (eqns 1.12 & 1.13), similarly we find that,

∇rf
0 =

∂f0

∂E

(
∇r(E − Ef )−

E − Ef

T
∇rT

)
(1.62)

Note that E, Ef and T can all have position dependence - but only E has k dependence. Using eqns
1.13 & 1.62, we can write the current as

j = − 2q

(2π)3

∫
d3k vg

(
vg.

(
∇rE −∇rEf −

E − Ef

T
∇rT

)
−∇rE.vg

)
τ
∂f0

∂E

=
2q

(2π)3

∫
d3k vg

(
vg.∇rEf +

E − Ef

T
∇rT

)
τ
∂f0

∂E

= n
q

4π3n

∫
d3k

(
vg⊗vg τ

∂f0

∂E

)
.∇rEf

+
q

4π3

∫
d3k

(
vg⊗vg (E − Ef )τ

∂f0

∂E

)
.
∇rT

T
(1.63)

Note the cancelation of the first and the last terms in step 1. We have already defined the expression
in the first part before as mobility (eqns 1.15 & 1.19. The next part gives the particle flow (and hence
electric current) as result of a thermal gradient. This thermoelectric coefficient is conventionally
denoted with L. With the definitions

←→µ =
q

4π3n

∫
d3k vg⊗vgτ

(
−∂f

0

∂E

)
(1.64)

←→
L =

q

4π3

∫
d3k vg⊗vg(E − Ef )τ

(
−∂f

0

∂E

)
(1.65)

we can write

j = n←→µ .(−∇rEf ) +

←→
L

T
.(−∇rT ) (1.66)

To see the connection with the simple case of an electric field only we need to put Ef = qV , where
V is the scalar potential. In that case ∇rEf = −qE. This would lead to the results of section 1. In
general if the electrochemical potential and the bottom of the conduction band are parallel, one would
recover the proportionality of current and the electric field.

1.8 The convective derivative

The combination of derivatives that occurs in the BTE, had the form(
∂

∂t
+ v.∇

)
something (1.67)

This combination of derivatives will occur whenever we try to follow the rate of change of something
while ”moving with the flow”. This situation is very common in hydrodynamics. We will see that
the basic equation of hydrodynamics naturally contains this combination. Think of following a small
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incompressible element of the fluid along a streamline. The volume element which was at r at time t
would be found at r + δr after a time δt.

δr = vδt (1.68)

Then the change of velocity of the volume element is given by: r + δr is given by:

v(x+ vxδt, y + vyδt, z + vzδt))− v(x, y, z) (1.69)

This change in velocity must be accounted for by the forces acting on this volume element. We will
assume for simplicity that the liquid is incompressible. The forces acting on a fluid arise from three
sources - pressure, external forces like gravity, viscous drag due to the neighbouring volume elements

ρ

(
∂

∂t
+ v.∇

)
v = fpressure + fgravity + fviscosity (1.70)

It is easy to show that

fpressure = −∇P
fgravity = −∇ρgz (1.71)

The viscous drag requires a bit more work. The ith component of the force on an infinitesimal surface
ds immersed in a fluid is given by

fi = Sij dsj (1.72)

where Sij are the elements of the stress tensor. For an incompressible fluid of viscosity η it is:

Sij = η

(
∂vj
∂xi

+
∂vi
∂xj

)
(1.73)

To calculate the total force on a small volume element dxdydz we need to add the forces acting on
the six surfaces of the cube, taking opposite faces in pairs. The calculation is straightforward and the
final result is that

fviscous = η∇2v (1.74)

Putting the expression for all the forces together we get the equation(
∂

∂t
+ v.∇

)
v = −∇P

ρ
−∇gz + η∇2v (1.75)

This is the well known Navier-Stokes equation for incompressible flow. Indeed the simplifying assump-
tion of incompressibility is not entirely correct. No elastic waves like sound would have propagated in
the liquid if this was so. For a more detailed discussion see chapter 41 of Feynman lectures in physics
(vol 2).



Chapter 2

Charge densities, dopants, junctions
and band-bending in semiconductors

References:

1. Chapter 5 (4th edition), Solid State Electronic Devices, B. G. Streetman

2. Chapter 3 Semiconductor Physics, K Seeger

3. Greg Snider’s homepage has the tool used to calculate band structures.
See <www.nd.edu/∼gsnider>

Our target is to answer the following questions :

• How many carriers are there in the bands?

• How many dopants ionize? Where is the Fermi level? What is the driving equation?

• How can we qualitatively sketch the bending of the bands near a surface, metal-semiconductor
contact, p-n junctions and heterointerfaces?

• Finally, what (self consistent) equations relate the charge densities and band profiles?

2.1 Carrier concentration and doping

At T = 0 in a pure semiconductor, the conduction band is empty and the valence band is full. A
completely full or a completely empty band cannot carry current. We will see soon that under these
circumstances the Fermi energy lies in the gap between the valence and conduction band. The density
of states at the Fermi level is zero. The semiconductor is an insulator at this point.

In reality there is no qualitative distinction between semiconductors and insulators. The distinction
is that the bandgap of an insulator is large - e.g. Silicon oxide has Eg ∼ 9eV, Diamond has Eg ∼ 5eV
and so on. The bandgap of typical semiconductors is in the range of nearly zero to 3-4 eV. At very
high temperatures, if an insulator hasn’t already melted, it will act as a semiconductor.

Carriers in a semiconductor’s bands come from two sources:

1. Thermally excited electrons in conduction band and the corresponding vacancies left behind in
the valence band.

2. Some suitable foreign atoms called dopants which can put some electrons in CB or capture some
electrons from VB. Sometimes crystal defects can also play the role of foreign atoms.

23
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Consider a group V atom like Phosphorous replacing an atom of group IV Silicon in the lattice. It has
one more electron compared to Si. We keep aside the question about how to get the P atom to replace
the Si for the time being - but that is not a trivial question. A ”dopant” will not work as a dopant
if it does not sit in the right place. It is possible for a P atom to somehow go in as an ”interstitial”,
that will not work. Also the same atom may act as an acceptor or a donor in some cases. For example
if Si is incorporated in GaAs lattice, replacing a Ga atom, it will act as a donor. If it replaces an As
atom it will act as an acceptor. You can figure out the reason.

The crucial fact is that the binding energy of that remaining electron becomes very low. We give a very
simplified model - usually called the ”hydrogenic impurity model”. We assume that the outermost
electron in P behaves as if it is tied to a hypothetical nucleus - that is the P+ ion core. The binding
energy and Bohr radius of an H atom (1s state) is

E = − me4

8ε20h
2

(2.1)

aB = 4πε0
~2

me2
(2.2)

Now we make two crucial claims. Inside the ”medium” the free electron mass would be modified
such that m → meff and ε0 → ε0εr. Typically ϵr ∼ 10 − 15 for most semiconductor lattices and
meff ∼ 0.1m. That means the binding energy would reduce by a factor of ∼ 1000 and the Bohr
radius would increase by a factor of about ∼ 100. So instead of E = 13.6eV the binding energy will
be a few 1-10 meV, the Bohr radius will increase from 0.5Å to ∼ 50Å. This means that the electron
will be exploring something of the order of a 10×10×10 lattice units. This in retrospect justifies the
use of the lattice dielectric which is a quantity meaningful only if averaged over sum volume of the
lattice. Also the fact that the electron gets spread over a large area, means that replacing the free
electron mass with the band effective mass can be justified. If the binding energy drops to a few meV,
it is clear that at room temperature (kBT = 25meV) these can be almost fully ionised. The order of
magnitude of these numbers ensure that semiconductors can be useful at room temperature.

How can we make the arguments better for using the band effective mass? For a direct gap semicon-
ductor we proceed as follows: We need to treat the extra potential introduced by the impurity atom
as a ”perturbation” and then solve for the wave function.

H = H0 −
1

4πε0εr

e2

r
(2.3)

where H0 = T + V =

(
− ~2

2m
∇2 + V (r)

)
is the KE + lattice periodic part. m is the free electron

mass. The relevant solution to this must be formed out of the eigenfunctions ofH0, the Bloch functions
(mostly from near the bottom of the band). So we write (Cnk are the linear coefficients)

Ψ =
∑
n,k

Cnk un,ke
ik.r (2.4)

First justify that the following approximation should work.

Ψ ≈ un,0
∑
k

Cnk e
ik.r

︸ ︷︷ ︸
F (r)

(2.5)

For F (r), it leads to the effective equation -(
− ~2

2meff
∇2 +

1

4πε0εr

e2

r

)
F (r) = EF (r) (2.6)
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Work out how the meff appeared here. We have done very similar things before - so the steps are left
as an exercise. The justification of a similar model for indirect (and multiple valley) semiconductors
like Si is more involved (this was given by Luttinger). The summary of the result is that for direct
gap single valley (GaAs) the shallow donor level cluster around one number. See the figure 2.1. For
indirect gap Si, the clustering does not happen so well. We will in general take this numbers as
experimentally determined parameters.

2.2 A few useful numbers about Si, Ge and GaAs

Table 2.1: List of commonly used parameters of Silicon, Germanium and Gallium Arsenide

Silicon Germanium Gallium Arsenide

Atoms cm−3 5.0× 1022 4.4× 1022 4.4× 1022

Crystal structure Diamond Diamond Zincblende

Density (gm cm−3) 2.33 5.33 5.32

Dielectric constant 11.9 16 13.1

Electron affinity (eV) 4.1 4.0 4.1
Effective density of states in
conduction band at 300K:
Nc(cm

−3)
2.8× 1019 1.04× 1019 4.7× 1017

Effective density of states
in valence band at 300K:
Nv(cm

−3)
1.04× 1019 6.0× 1018 7.0× 1018

Band gap at 300K (eV) 1.12 0.66 1.42
Intrinsic carrier concentration at 300K:
n(cm−3)

1.5× 1010 2.4× 1013 1.8× 106

electron effective mass : in units of
m0, the free electron mass

0.98, 0.19 1.64, 0.082 0.067

hole effective mass : in units of m0,
the free electron mass

0.16, 0.49 0.044, 0.28 0.082, 0.45

Intrinsic electron mobility at 300K (cm2V−1s−1) 1350 3900 8500

Intrinsic hole mobility at 300K (cm2V−1s−1) 480 1900 400

Electron diffusion coefficient at 300K (cm2s−1) 35 100 220

Hole diffusion coefficient at 300K (cm2s−1) 12.5 50 10

2.3 Fermi Level in an intrinsic (undoped) semiconductor

If the material is undoped, then all the electrons in the conduction band (CB) must have been thermally
excited from the valence band (VB). This fact is sufficient to tell us where the (Ef ) should be. The
electron and hole densities must be,

n =

∫ ∞

EC

dE D(E)f(E) (2.7)

p =

∫ EV

−∞
dE D(E) (1− f(E)) (2.8)

Let us assume that the dispersion relations are very simple

Ee(k) = EC +
~2k2

2me
(2.9)

Eh(k) = EV −
~2k2

2mh
(2.10)
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where EC , EV denote the bottom and the top of the conduction and valence bands respectively
The density of states (in 3D), including spin degeneracy is then given by:

D(E) =
1

2π2

(
2me

~2

)3/2

(E − EC)
1/2 for E > EC (2.11)

D(E) =
1

2π2

(
2mh

~2

)3/2

(EV − E)1/2 for E < EV (2.12)

PROBLEM : Calculate the density of states in 2D and 1D for parabolic bands. Explain why it is
allright to take one of the limits to be infinity in equations 2.7 & 2.8, even though all bands have finite
extents.

Now to evaluate equations 2.7 & 2.8 we proceed as :

n =
1

2π2

(
2me

~2

)3/2 ∫ ∞

EC

dE (E −EC)
1/2 1

eβ(E−EF ) + 1

=
1

2π2

(
2me

~2

)3/2 1

β3/2

∫ ∞

0
du

u1/2

eue−β(EF−EC) + 1
where u = β(E − EC)

= 2

(
2πmekBT

h2

)3/2
(

2√
π

∫ ∞

0
du

u1/2

eueβ(EC−EF ) + 1

)
(2.13)

(2.14)

Now we identify the integral within the brackets as a Fermi-Dirac integral, defined as :

Fj(z) =
1

Γ(j + 1)

∫ ∞

0
dx

xj

ezex + 1
(2.15)

Further the ”effective density of states” in the conduction band is defined as

NC = 2

(
2πmekBT

h2

)3/2

(2.16)

Note however that the dimension of NC is not the same as D(E). With the definitions eqn 2.15 &
2.16, eqn 2.13 then reduces to

n = NCF1/2

(
EC − EF

kBT

)
(2.17)

You can prove that the number of holes is given by

p = NV F1/2

(
EF − EV

kBT

)
(2.18)

The Fermi-Dirac integrals appear often in physics. They are tabulated as ”special functions”. We
can show that if EF is reasonably below EC , such that EF−EC

kBT < −4 the integral is very closely

approximated by e
EF−EC

kBT . This is called the non-degenerate regime where the electron and hole
densities are given by

n = NCe
β(EF−EC) (2.19)

p = NV e
β(EV −EF ) (2.20)

For charge neutrality we must have ni = pi for undoped (intrinsic) semiconductors only. Multiplying
eqns 2.19 & 2.20

n2i = nipi = NCNV e
β(EC−EV )

∴ ni =
√
NCNV eβEg/2 (2.21)
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Clearly the intrinsic carrier density falls rapidly with increasing band gap. We can compare the result
with the data in table 2.1.

Note however that the product of the carrier densities is independent of the location of the Fermi level
even when n̸=p. This is a very important fact and allows us to write

np = n2i (2.22)

even when the source of the charges are dopants. In such cases (we will see in the next section) the
Fermi level moves away from its intrinsic position. The electron and hole densities can them become
vastly unequal - but they do so in such a way that the np product still remains the same. We now
solve eqns 2.19 & 2.20 for Ef and get the intrinsic Fermi level (Efi)

Efi =
EC + EV

2
+

3

4
kBT ln

mh

me
(2.23)

PROBLEM : Show that the deviation of the electron density (n) from intrinsic density (ni) and the
deviation of the Fermi level (Ef ) from the intrinsic Fermi level (Efi) are related as :

n = nie
β(Ef−Efi) (2.24)

2.4 Fermi level in a doped semiconductor

Figure 2.1: Impurity levels in Silicon and Gallium Arsenide (taken from the book by S.M. Sze). Notice
that the shallowest levels tend to cluster somewhat around a value.

We now come to the more practical situation, where there are dopants and ask: where is the Fermi
level? If there are dopants then n and p are no longer equal. In fact the number of carriers supplied
by ionised dopants can be several orders larger than the intrinsic carrier densities.

The fundamental point is that all the atoms of the host lattice and the dopants were initially neutral.
But inside the semiconductor there are now four sources of charge :
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• Negatively charged electrons in the conduction band (n)

• Unoccupied (positively charged) ionised donor atoms (N+
d )

• Negatively charged ionised acceptor atoms (N−
a )

• Unoccupied states (holes) in the valence band

The sum total of all these four must continue to be zero. To start with the valence band was full
and the conduction band was empty (intrinsic semiconductor), then we put in neutral donor atoms
(capable of giving out an electron) and neutral acceptor atoms (capable of capturing an electron). So
the sum total must remain zero.

Thus if we can write down the carrier concentrations in the conduction and valence band and calculate
the fraction of dopants which are ionised (as a function of Ef ) then we can have an equation where
Ef is the only unknown. This is how one determines the location of Ef

n+N−
a = p+N+

d (2.25)

We know how to write n and p as a function of Ef using equations 2.19 and 2.20. Now we ask, what is
the probability that a donor will ionise. This question is an interesting exercise in statistical physics.
The donor site (e.g Phosphorous in Silicon) can exist in four states

1. It may lose its electron (charge = +1 , energy = 0)

2. It may be occupied by a spin up electron (charge = 0, energy = ED)

3. It may be occupied by a spin down electron (charge = 0, energy = ED)

4. It may be occupied by one spin up and one spin down electron (charge = -1 , energy = 2ED+U
where ”U” is the large repulsive energy cost of putting two electrons on the same site, making
the state very improbable.)

The dopant densities are not very large compared to the density of atoms of the host lattice. It is
rarely more than 1 in 103 to 104. So we can treat each dopant atom in isolation and the electron can
be localised on the atom.1 Each dopant can exchange electrons with the ”sea” of conduction band
electrons. It is thus in equilibrium with a larger system and can exchange particles with it - thus its
temperature and chemical potential must be the same as that of the larger system.

So we write the partition function as (with µ, the chemical potential set as Ef )

ZG =
∑
E,N

e−β(E−µN)

= e−β(0−0) + e−β(ED−Ef ) + e−β(ED−Ef ) + e−β(2ED+U−2Ef )

≈ 1 + 2e−β(ED−Ef ) (2.26)

The mean occupancy (probability that the dopant is not ionised) is then,

1−
N+

D

ND
= 0.P (0) + 1.P (↑) + 1.P (↓) + 2.P (↑↓)

=
2e−β(ED−Ef )

ZG

=
2e−β(ED−Ef )

1 + 2e−β(ED−Ef )

=
1

1
2e

β(ED−Ef ) + 1
(2.27)

1However if the dopant densities are very high then the dopant states will not be localised. This condition is called
”Mott transition”. It is among the most studied problems in semiconductor physics.
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Note that this is not simply a Fermi-Dirac distribution. The fraction of ionised donors is

N+
D

ND
=

1

1 + 2e−β(ED−EF )
(2.28)

The similar expression for the fraction of ionised (negatively charged) acceptors is

N−
A

NA
=

1

1 + 4e−β(EF−EA)
(2.29)

The factor 4 is a result of the fact that the electron sitting on the acceptor could have come from four
possible places - spin up/down from heavy hole band, spin up/down from light hole band. The split
off band does not come into the picture because it is too far down.

One type of dopant only

If we neglect the valence band and the acceptors (which can be justified if only donors are present),
combining eqns 2.19 and 2.28 we get

NCe
β(Ef−EC) =

ND

1 + 2e−β(ED−Ef )
(2.30)

Ef is the only unknown in eqn 2.30 and can be solved (numerically if required).

PROBLEM : Show that the carrier density can now be obtained by solving the following equation: (
which is in turn obtained by using eqn 2.30 )

n2 + nNC
e−β∆

2
−NDNC

e−β∆

2
= 0 (2.31)

where ∆ = EC − ED.
The fermi level can be obtained by solving

x2 + x
e−β∆

2
− ND

NC

e−β∆

2
= 0 (2.32)

where x = eβ(Ef−EC)

If you put ND = 0 in either of the two equations you would get an unphysical answer. Why is this so?

PROBLEM :
In a system with ND donors, ND acceptors, N+

D donors and N−
A acceptors are ionised. Each donor

(acceptor) level has a degeneracy of gD (gA). There are n electrons in the conduction band and p
holes in the valence band. (In general gD = 2, but gA may be different from 2.). Then

N+
D =

ND

(gDn/NC) expβ(EC − ED) + 1
(2.33)

And the corresponding result for the acceptors:

N−
A =

NA

(gAp/NV ) expβ(EA − EV ) + 1
(2.34)

Here NC and NV are the conduction and valence band effective density of states which have been
defined earlier. Notice that the fermi energy does not appear in these relations.

A semiconductor may be doped with both (acceptors and donors) types of dopants. In a situation
where there are a large number of donors and a few acceptors (i.e ND >> NA), how would eqn 2.31
(the previous problem) be modified?
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2.4.1 Thermal ionisation (Saha equation) of the dopant system

It is instructive to calculate the fraction of ionised dopants in another way. We can think of the
problem as a thermal ionization of bound states - in a way that is very similar to the method of
calculating the ratio of ionised to unionised atoms (of a certain species) in a hot plasma. We want to
find the ”chemical equilibrium point” of the reaction:

atom + ionisation energy ↔ ionised atom + electron (2.35)

A certain fraction of atoms will exist in the dissociated state and a certain fraction will remain in the
undissociated state. The fraction which minimises the free energy of the entire system (at a certain
temperature) will be the equilibrium point.

Taking this approach we can calculate the ratio N+
D/ND by minimising the free energy of the entire

system of free electrons and the dopants. First we write the free energy so that the free electron
concentration n is the only variable.

Fsystem = Felectrons + Fdopants

Felectrons = −kT lnz
n

n!
where for a single electron

z =
∑

all states

e−βE

= V
2

h3

∫
d3p e−

βp2

2m

= 2V

(
2πmkT

h2

)3/2

(2.36)

Now since ND − n dopant sites are occupied we have for the internal energy (U) and entropy (S)

U = −∆(ND − n) (2.37)

S = k ln

(
2ND−n ND!

n!(ND − n)!

)
(2.38)

Fdopants = U − TS (2.39)

PROBLEM : Minimise Fsystem = Felectrons + Fdopants w.r.t n, using Stirling’s approximation for
factorials as needed and show that you get exactly the same result as eqn 2.31. This is essentially a
variant of the ”Saha ionisation” equation, applied to a situation where the atoms and ions are not
mobile, but only the electrons are.

2.4.2 General method of solving for the Fermi level

Consider a situation where a semiconductor is doped with ND donors and NA acceptors. We want
the general solution for the location of EF and all the carrier densities, ionisation probabilities.

Since the semiconductor is overall neutral we have using the charge neutrality condition

n+N−
A = p+N+

D (2.40)

NCF1/2

(
EC − EF

kBT

)
+

NA

1 + gAeβ(EA−EF )
= NV F1/2

(
EF − EV

kBT

)
+

ND

1 + gDeβ(EF−ED)
(2.41)

• here gA = 4 and gD = 2 are the acceptor and donor degeneracies. EA and ED are the acceptor
and donor levels.
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Figure 2.2: The LHS and RHS of eqn 2.41 are plotted for different temperatures. The intersection
point is the solution for EF .

• Since EF is the only unknown here, we can plot the LHS and RHS by treating EF as an inde-
pendent variable. The position where they intersect must be the solution. Figure ... illustrates
the situation.

• Notice that EF is temperature dependent.

• Once EF is determined all the quantities can be determined. In general this cannot be done
analytically. An example on numerical solution is given in Fig 2.2, 2.3.
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2.5 Metal-semiconductor and semiconductor-semiconductor junc-
tions

We now know the following important things :

1. How to calculate the charge density, if we know the location of Ef . Ignoring the holes and
acceptors for the time being to keep the number of terms to a minimum, we have

n(x)−N+
D (x) = NCe

β(Ef (x)−EC(x)) −ND
1

1 + 2e−β(ED(x)−Ef (x))
(2.42)

ρ(x) = −|e|(n(x)−N+
D (x)) (2.43)

2. The charge density is related to the electrostatic potential (V ) as

∇2V (x) = −ρ(x)
ϵrϵ0

(2.44)

3. The scalar potential is essentially the bottom of the conduction band.

4. In equilibrium Ef is constant, recall that current flow requires a gradient in the electrochemical
potential or Fermi level.

2.5.1 Situations with no current flow

Now let’s see how we can put this in practice - a (somewhat idealised) metal in contact with a semi-
conductor (see fig). The work function of a metal (ϕm in our discussion) is the energy an electron
sitting at the Fermi level of the metal needs to escape from inside the metal to outside (vacuum level).
2 Similarly ϕs is the work function of the semiconductor in question. The two objects are brought in
contact, so that they can exchange electrons. If |ϕs| < |ϕm|, then transferring an electron from the
semiconductor to the metal is energetically favourable.

There is a little complication though - in a semiconductor the Fermi level is often in a gap - thus no
electron may acctualy be right at the Fermi level. To account for this we define the electron affinity
(χ) of the semiconductor as the energy difference between the vacuum level and the bottom of the
conduction band of the semiconductor sufficiently deep inside.

When the two objects touch the conduction band and the Fermi level of the metal would be separated
by ϕB = ϕm − χ. Since deep inside the semiconductor (where the surface should have no effect) the
bottom of the band and the Fermi level must continue to be separated by ϕs − χ, this dictates that
the total drop of the conduction band of the semiconductor must be ϕm − ϕs

Charge separation must give rise to an extra electrostatic potential - and it is reasonable to expect
that the bands would start bending in a way that would result in a barrier preventing the flow after
some time. At this point the metal and the semiconductor’s Fermi level must be identical. Applying
the set of conditions that we just talked about produces the band diagram shown in Fig. 2.4.

Some charge has moved from the semiconductor to the metal. This charge came from the dopants
sitting considerably above Ef . If a dopant site is pushed above Ef then it must be charged, because
the electron cannot reside at a site sitting much above Ef . The bands in the metal didn’t have to
bend a lot to accomodate this extra charge, because the density of states of a metal near Ef is very
large.

To (numerically) solve eqns 2.42, 2.43 and 2.44 we can proceed as follows.

2This can be typically about 4-5 eV, it depends a lot on which crystal face we are considering and how clean the
surface is. Since we are going to ignore these aspects to highlight the basic concept, our discussion is a bit idealised here.
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Figure 2.4: The band bending near the surface of a n-type semiconductor to metal contact, where
|ϕs| < |ϕm|. The calculation has been done using a program written by Greg Snider (Notre Dam
University)

1. Since Ef is constant, everything can be measured relative to Ef , by setting Ef = 0.

2. The gradient of the scalar potential is the same as the gradient of the conduction band bottom
(EC).

3. We make a guess for EC(x) and use this to calculate the expected charge density by using eqns
2.42 and 2.43.

4. This calculated charge density should give a new guess for the potential via Poisson’s equation
(eqn 2.44).

5. We use this potential and go back to step 3.

6. The iterative process can continue till the change in two successive iterations becomes very small
(our convergence criteria)

7. But all these equations are differential equations - they need proper boundary conditions. In
the calculation of Fig. 2.4, we set the slope dEC/dx = 0 deep inside the material and EC = ϕB
at the other end. Choosing the correct boundary condition depends on the physical situation.

PROBLEM : Try to draw the band diagram of the metal-semiconductor contact when |ϕs| > |ϕm|
and the semiconductor is p-type. Where will the semiconductor accommodate the electrons flowing in?

Why doesn’t the depletion zone extend to the metal as well?

We now apply the same process to a p-n junction, see Fig. 2.5.
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Figure 2.5: The band bending near a p-n junction. Note that the junction becomes sharper at a higher
doping level. The Fermi energy also moves closer to the dopant level at higher doping concentration.
The calculation has been done using a program written by Greg Snider (Notre Dam University)
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2.5.2 How realistic are these calculations?

We remarked at the beginning of this section that there are some idealisations. The work function of a
metal in reality depends on which crystal face we are using, how clean it is etc. This means that if we
deposit a thin film of a metal (say gold on silicon) on a semiconductor, we can’t really take the values
for a crystal of gold and clean silicon and predict what the barrier will be. Also the density of states
near the surface of a semiconductor is modified by the presence of surface states - which ultimately
mean that the Schottky barrier needs to determined experimentally. However the band diagram of
the barrier that we drew and the principles for solving the band-bending are sufficiently generic.

2.5.3 When is a contact not a ”Schottky” ?

In the previous section we considered the work function of the metal to be larger |ϕs| < |ϕm| and the
semiconductor to be n-doped. As a consequence some electrons flowed from the semiconductor to the
metal. What if |ϕs| > |ϕm|. Clearly the band bending must be different, because if electrons flow
into the semiconductor then the dopant states and the conduction band cannot remain much above
the Fermi-level. But the dopants (if they drop below Ef must hold on to their own electrons (they
must be occupied). and the conduction band would have to accommodate the electrons. Under these
conditions no depletion zone can form and hence there should be no Schottky barrier.

Real ohmic contacts

In reality ohmic contacts on a semiconductor are made by depositing an alloy that often contains one
noble metal (Gold) and another element that can act as a dopant. For example an alloy of Gold-
Germanium is commonly used to make ohmic contacts to n-type Gallium Arsenide. After depositing
the metal the sample is generally annealed (heated to a high temperature) very rapidly so that the
Germanium diffuses into the surface, heavily dopes the region around it allowing the Gold to make a
contact with no barrier. The microscopic mechanisms of ohmic contact formation are not very simple
and you would find a good deal of research work happening on these.

Gold-Beryllium alloy can be used to contact p-type Gallium Arsenide.

Gold-Antimony alloy can be used to contact n-type Silicon...and so on.
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2.5.4 Situations with varying Ef : what more is needed?

We noted earlier that the current is related to the gradient of the electrochemical potential (in a
1-dimensional case) as

j = −n(x)µ
dEf (x)

dx
(2.45)

So we now have three variables to deal with - other than the charge density and the profile of the
bottom of the band. We also need to calculate the the profile of Ef (x).

We expect µ to be a function of n.

In general the product nµ would increase with increasing carrier density, it doesn’t necessarily imply
that µ will be larger at higher densities. However at least in a 1-dimensional situation it is easy to
see that wherever nµ is large, dµ

dx must be small. This reminds us of what to expect if we apply a
voltage across a string of resistances (in series). The largest voltage drop must occur across the largest
resistance, because the current through each of them is constant.

When the current flow is very small we can approximate the situation by saying that all the drop in
Ef must be across the most resistive region (like a barrier) if we can identify one. This is however an
approximation to get around the fact that the variation of mu with n is in general a hard and very
system dependent problem. An empirical approach is shown in Fig 2.6.

Mobility model

Empirical relations and estimates can be used to get mobility as a function of carrier density from
experimental data, here’s an example



38 CHAPTER 2. CARRIER DENSITIES, DOPANTS AND BAND-BENDING

Figure 2.6: The variation of mobility with doping and carrier density can be empirically modelled
from experimental data and used to solve the current equation numerically.
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PROBLEM : Band bending at the p-n junction. The total drop in the profile of the bands shown in
Fig. 2.5 can be calculated in two different ways. First let us see the method given in most text books.
The flow of charge through the junction can be thought to have a drift (forced by the electric field)
and a diffusion (forced by density gradient) component - at equilibrium, when the electrochemical
potential in constant, these two components must add upto zero. So we get for no electron current

Jdrift + Jdiffusion = 0

−neµdV
dx
−Dedn

dx
= 0 (2.46)

We have used the standard relation between current, diffusion constant and density gradient. (A full
justification of this set of equations require the Boltzmann transport formulation, which we haven’t
done.) Then solve the differential equation using D/µ = kT/e and the assumption that all dopants
are ionised. So that the electron density on the n-side is n = ND and on the p-side it is n = n2i /NA.
You should get the result for the total change in electrostatic potential as one moves from one side of
the junction to the other. The electron bands are higher on the p-side.

∆V =
kT

e
ln
NAND

n2i
(2.47)

Now think of the same in another way. Let us not mention diffusion constant at all, but use the
fact that the electrochemical potential (Ef ) is constant. Here the free energy of the electrons can be
written, including the electrostatic potential as

F = −kBT ln
zn

n!
+ neV (2.48)

where the electron density n(x) is a function of position. And

z = 2Ω

(
2πmkBT

h2

)3/2

(2.49)

is the partition function of a single free electron moving in the conduction band. Ω is the volume
which should drop out of the calculation. Since we assume full ionisation we van neglect the en-
tropy contribution coming from possible number of ways to distribute the bound electrons among the
dopants.
Differentiating this w.r.t. n to get the electrochemical potential, first write

Ef (x) =
∂F

∂n(x)
(2.50)

And then show that setting Ef (x) = constant leads to exactly the same condition as before. Convince
yourself that in both cases the approximations that we made are acctually identical. They are both
consequences of Boltzmann statistics applied to the free electron gas in the conduction band.

The reverse and forward biased metal-semiconductor junction

In Fig. 2.4 we plotted the band diagram of a metal-semiconductor junction with no voltage applied
(Ef = constant). No current flows at equilibrium. The tunnel rates from both sides balance each
other. Now imagine that the electron energies on the metal side is raised by connecting the metal the
negative terminal of a battery. The drop in the electrochemical potential must happen predominantly
over the depletion region. See Fig. 2.7

• Electrons which try to cross over from the metal to the semiconductor still see almost the same
barrier. The current that can pass through is Im→s = AT 2e−ϕB/kT , where A is a constant.
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Figure 2.7: Approximate band bending near a reverse biased metal-semiconductor junction. The
calculation has been done using a program written by Greg Snider (Notre Dam University)

• But those which try to cross from the semiconductor to the metal now see a higher barrier.
Typically tunnelling probability through a barrier would drop exponentially with the height of
the barrier. Is→m = AT 2e−(ϕB+V )/kT , where V is the voltage bias on the semiconductor w.r.t.
the metal. In this case V > 0. Remember that positive voltage bias lowers electron energies.

• Thus only the reverse saturation current now flows

What happens when the electron energies in the metal are lowered? See Fig. 2.8

• Electrons which try to cross over from the metal to the semiconductor still see almost the same
barrier. Im→s remains the same.

• But those which try to cross from the semiconductor to the metal now see a lower barrier.
Typically tunnelling probability through a barrier would increase exponentially as the height of
the barrier is lowered. Is→m = AT 2e−(ϕB−V )/kT

• A large number of electrons can now flow from the semiconductor to the metal. We take the
difference of the left going and the right going currents to get the total current which is the
well known diode equation : I = I0(e

eV/kT − 1), where I0, the reverse saturation current, is
determined by the height of the Schottky barrier.
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Figure 2.8: Approximate band bending near a forward biased metal-semiconductor junction. The
calculation has been done using a program written by Greg Snider (Notre Dam University)
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Figure 2.9: The difference is behaviour is at the low bias region, below what would be a typical cut-in
voltage of the diode - typically ∼ 0.6-0.7 V

2.6 The tunnel diode

We saw in the previous sections that the depletion zone separating the p-n sides gets narrower as
the doping levels are increased. This is because the larger doping concentration allows the storage of
larger amount of charge in the same thickness and hence allows sharper band slopes.

But this is not the only effect of increasing the doping. There can be a point after which the electro-
chemical potential itself moves into the conduction band and the doped semiconductor behaves almost
like a metal. Of course for this to happen, the discrete energy level of the the bound state would spread
out into a continuum (like a band) that overlaps with the conduction band. What happens if we form
a diode using very highly doped p and n sides? The answer is non-trivial.

Of course the structure forms a diode, but its characteristics are quite different a low bias. See the
schematic of what happens first in Fig. 2.9.

1. First, at zero (or very small) bias the structure behaves just like a resistance. Notice the band
structure shown in Fig. 2.10, at zero (or very small) there can be transfer of carriers, by
tunnelling. This is because there are plenty of filled levels in the n-side which are aligned with
the empty levels (holes) on the p-side. So the necessary conditions for tunnelling (thin barriers
and equal energy filled and empty states) are met.

2. Now let us increase the forward bias by say about 100 mV, keeping it sufficiently below the
cut-in voltage of a typical junction. The drop in the electrochemical potential would take place
over the depletion region, and remain almost flat beyond that. But now the filled states on the
n-side are getting aligned with the unfilled states on the p-sides which are close to the top of
the valence band. The density of states near the end of the band is small. This would start to
prevent tunnelling.

3. If the bias is increased still more the bottom of the CB on n-side will move past the top of the
VB on the p-side. At this point no filled states are lined up with any empty state. This means
that can be very little current flow.

4. This is a strikingly different behaviour, compared to the ordinary diode. In fact the current will
fall as the voltage is increased - that means the differential resistance is negative. This is the so
called NDR region - which makes the tunnel diode special.

5. Now let us increase the voltage even further, so that the barrier in the CB itself comes down.
From this point onwards it is an ordinary diode, in fact all the interesting things in a tunnel
diode happens between zero and ∼ 500mV.
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Figure 2.10: The band structure and the relative location of the Fermi energy at various points of the
tunnel diode’s I-V curve

6. The tunneling process, which distinguishes this device is also very fast. This is not obvious at
first glance ! In fact the tunnel diodes can be used to make remarkably simple oscillators working
at a few GHz. Historically this was the first solid state device to be able to do so.

Now consider the simple circuit block shown in the Fig 2.11. We will claim that it will oscillate if the
dc bias point is chosen to lie in the NDR region. Let us follow the line of argument carefully

1. When it is first switched on the voltage starts increasing across tunnel diode + inductor. At this
point becuase the TD is just like a resistance and the transient behaviour is that of an ordinary
LR circuit.

2. Then the voltage tries to cross the turning point (peak in the I-V), and move down the curve.
The current tries to decrease and hence the LdI

dt drop across the inductor pulls the lower end
of the TD to negative values. This means that the total drop across TD is now larger than the
peak voltage.

3. But the I-V of the TD at large voltages must jump to the rightmost section (normal diode-like).
That is the only way to satisfy Kirchoff’s laws and the TD’s characteristic.

4. But this is not a stable state. If the current tried to remain steady it cannot - because then
the drop across the inductor is zero and the bias is not sufficient to hold it there. The current
cannot continue to increase either - that would make the drop across TD+L larger than the bias
voltage too!
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Figure 2.11: A simplified schematic of a tunnel diode oscillator. The bias point is in the NDR segment
of the I-V curve. This is done by choosing V , R1 and R2.

5. The TD must now move towards the bias point by sliding down along the curve. It does it till
such time it again encounters a turning point, where it touches the bottom of the valley.

6. By a similar logic we can show that the only possibility is to jump back to the initial section of
the I-V curve, near zero. The whole cycle will now repeat.

Figure 2.12: An equivalent circuit for tunnel diode. The figure is taken from: ”Modeling of tunnel
diode oscillators” Craig T. Van Degrift and David P. Love Review of Scientific Instrumentation, 52,
712 (1981)

But why is this process very fast? Let’s compare this circuit with another very simple oscillator made
out of connecting the output of a NOT-gate to its own input! This also oscillates, but the fastest
oscillation is determined the propagation delay through the transistors of the NOT-gate. This is a
drift-diffusion driven process, not a tunneling process. The oscillations of the operating point of the
TD can occur much faster, becuase it does not involve the full passage of a stream of electrons from
the input to output - that is necessary for a thermionic valve or a transistor to work.

Fig. 2.11 is a bit oversimplified, a realistic model would have to include junction capacitances of the
diode itself and the connecting coaxial cable etc. All realistic models of high frequency circuits need to
include these. The oscillation frequency would be set by the LC combinations present in the circuit,
see Fig. 2.12
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2.6.1 The Bipolar Junction Transistor

We know how a BJT is biased and used, let’s look at its band diagram and review a few salient points.

Figure 2.13: Band bending in a npn bipolar junction transistor under normal bias conditions. Notice
the typical IC − VCE curve of a transistor for a fixed IB. How does the band profile shown lead to
that kind of IV?

• First notice the typical size and doping levels given in the schematic Fig 2.13. The base-emitter
junction is forward biased, the base-collector junction is reverse-biased. Notice that the base is
very thin - it is an essential feature. Why?

• See the following data (INSPEC database) for lifetimes and diffusion Lengths of Minority Car-
riers in Silicon

ND

(cm−3)
lifetime
(sec)

Diffusion
length
(cm)

NA

(cm−3)
lifetime
(sec)

Diffusion
length
(cm)

1.60E+21 2.164E-12 1.708E-06 1.20E+21 7.095E-12 2.679E-06

7.38E+19 9.635E-10 3.029E-05 1.70E+20 3.001E-10 2.565E-05

4.53E+18 1.384E-07 5.136E-04 8.49E+18 2.767E-08 3.144E-04

7.84E+16 1.606E-05 9.687E-03 2.77E+17 1.038E-06 4.630E-03

• The width of the base is comparable with the diffusion length - this is critical to its operation.
Consider an electron injected through the emitter. The forward biased emitter junction injects
electrons into the p-type base. A small fraction (often < 1%) recombines and exits through the

base lead. The fraction which passes through is denoted by α =
IC
IE
≈ 1

• The rest shoots through and drops into the collector. Notice that once minority carriers are
somehow injected into the base, it only needs to ”fall” in energy as it moves towards the collector.
Irrespective of how large the VCB reverse bias is, the current will remain almost the same over
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a large range - this is the active region of the transistor. The collector current is thus almost
entirely fixed by the VBE

IC = constant.

eeVBE

kT − 1

 (2.51)

This equation is called the Ebers-Moll equation. IC is thus very sensitive to VBE and also to
temperature. Since VBE is a forward bias, it cannot be very different from a typical diode-drop,
which is ≈ 0.7 volts for Silicon. However just like the massive gain of an op-amp is not generally
used directly, this sensitive dependence is also not used directly. Usually feedback or some other
aspect of design will have to ensure that sensitivity does not lead to instability.

• Because of the extra resistive drops in the body of the emitter, it is difficult to accurately
determine the true baseemitter junction voltage. But IB can be measured with certainty. So

this is commonly used as the variable parameter rather than VBE . Obviously IC =
α

1− α
IB.

This ratio IC/IB is usually called β or hFE and may have a typical value around 100. The
subscript FE denotes ”Forward biased Emitter”.

• It should be clear to you at this point that two back-to-back diodes don’t make a transistor. The
flight of the injected carriers through the base and its drop into the collector would not happen
if the base is ”thick”.

• However as VCB increases, the depletion region penetrates more and more into the base. There
will be a point when the entire base region will be depleted - this ”punch-through” sets the
maximum voltage the transistor can handle.

• Since the carriers have to diffuse through the base region, its time of passage sets the maximum
frequency at which transistor action is still possible.

• The maximum dissipation happens at the CB interface. That is why the collector needs to be
heat sunk properly. In metal-bodied packages and power transistors, the large metallic body is in
good thermal contact with the collector. You should be able to understand why ”body-collector
notch-emitter” is typical for metallic transistor packages.

• Finally you would notice that the collector doping is less than the emitter doping. This ensures
that the reverse biased CB junction does not see a very narrow depletion region where the field
can become too strong.

• If you connect a transistor with its collector and emitter terminals interchanged, then it would
still work as a transistor, but not a well designed one.
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MOSFETs and GaAs-AlGaAs
hetrostructures : accumulation of the
2-dimensional electron gas
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2. Chapter 9 Physics of low-dimesnional semiconductors J.H. Davies

3. Greg Snider’s homepage has the tool used to calculate band structures.
See <www.nd.edu/∼gsnider>

3.1 The MOSFET

The Metal-Oxide-Semiconductor Field effect transistor is like a capacitor. One plate is a Silicon
substrate(p-doped for n-channel MOSFET - it will become clear why) itself. The dielectric is 10-
100nm of SiO2. The other plate is a layer of metal (the gate). Electrical contacts are made by
implanting necessary dopants at selective places (see Fig/ any book on semiconductor devices).

In the band structure examples that follow, it was assumed that the acceptor concentration is Na =
1×1017cm−3 Notice how the bands progressively bend downwards, finally allowing enough electrons to
accumulate in an originally p-type substrate. The Fermi level on two sides of the oxide are taken to be
constant. This works because of the very high resistance of the oxide layer, the ”drop” must happen
across the oxide. The exact details of how it drops is not important because the oxide is devoid of
electrons. For the purpose of the simulations, we will assume that the drop is linear.

This obviously means that the MOSFET’s terminals are connected to a battery, whose voltage is being
increased in steps, as we track the bending of the bands.

47



48 CHAPTER 3. MOSFET, HEMT & THE 2DEG

0 200 400 600 800
-3

-2

-1

0

1

2

3

4

5

E
F

SEMICONDUCTOR (P-TYPE)

O
X

ID
E

 

 

E
c 

(e
V

)

Y (Ang.)

M
E

TA
L

CB

VB

E
F

Figure 3.1: MOSFET in Accumulation region. Gate is negatively biased w.r.t the silicon and attracts
more holes
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Figure 3.2: MOSFET in Accumulation region. Gate is negatively biased w.r.t the silicon and attracts
more holes.the parameters have been chosen to give a near flatband condition
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Figure 3.3: MOSFET with no bias.
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Figure 3.4: MOSFET in depletion region.
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Figure 3.5: MOSFET in depletion region.
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Figure 3.6: MOSFET in inversion region.
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Figure 3.7: MOSFET in inversion region.
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3.1.1 At what voltage will the MOSFET’s channel start forming ?

Figure 3.9: MOSFET bands where the intrinsic level dips below the Ef by exactly the same amount
by which it was above Ef in the bulk.

In Fig. 3.9 the MOSFET is biased by an amount ∆µ = Ef,gate − Ef,bulk. Since there is no current
flow perpendicular to the surface we assume that Ef is constant inside. Deep inside the surface the
hole density is given by :

p = nie
β(Ei−Ef ) (3.1)

If we assume that all carriers there came from the dopants (Na cm−3), then we get, with reference to
the Fig. 3.9

ϕ =
kT

e
ln
Na

ni
(3.2)

We have made a simplifying assumption that the depletion zone is sharp, and after the depletion zone
the bands are flat. As the bias on the gate increases the battery puts more positive charge on the
gate. The corresponding negative charge must go into the Si. But there are only two places where the
Si can accommodate the negative charge. It either goes to the conduction band (if it allowed by the
relative location of EC w.r.t Ef or it can sit on some acceptor site. Initially the conduction band can’t
accommodate any electrons because it is far above Ef . So the negative charge injected by the battery
must sit on acceptor sites. But the number of charge per unit volume that can be accommodated
this way is limited by the number of acceptors (Na cm−3). So as more charge comes in the depletion
zone must get wider and thus making the band bending start from deeper inside the Si. This bending
would be roughly parabolic, as a consequence of Poisson’s eqn. It is clear that if the bending begins
deep enough inside the Si then at the surface the bands may dip sufficiently so that the conduction
band has appreciable probablility of having electrons. This is the ”inversion” region of the MOSFET,
where the thin layer of electrons (the channel) is separated from the p-type bulk by the depletion
region.

The depletion region width at threshold is assumed to be ”w” and it contains an amount of charge
Q = −|e|Naw. In the depletion region, we have for the electrostatic potential V ,

d2V

dx2
=
|e|Na

ϵ0ϵr
(3.3)
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It is convenient to set the origin temporarily to where the bending just begins (see fig 3.9). Then
solving eqn 3.3 gives :

2ϕ =
|e|Naw

2

2ϵ0ϵr
(3.4)

=
Q2

2ϵ0ϵrNa|e|
(3.5)

Now we calculate how much energy (U) is stored in the electric field in the oxide and the Silicon ,
between 0 and w.

U = Uoxide + USi (3.6)

=
Q2

2Cox
+
ϵ0ϵr
2

∫ w

0
dx E2 (3.7)

=
Q2

2Cox
+

Q3

6ϵ0ϵrNa
(3.8)

This energy must be a consequence of the work done by the battery in creating the electrochemical
potential difference ∆µ between the gate and the Si substrate. Hence we must have∫ Qth

0

µ

e
dQ =

Q2

2Cox
+

Q3

6ϵ0ϵrNa
(3.9)

Differentiating w.r.t Qth, we get

∆µ(Qth)

e
=

Qth

Cox
+

Q2
th

2ϵ0ϵrNa|e|
(3.10)

=
(4ϵ0ϵrNa|e|ϕ)1/2

Cox
+

2kT

e
ln
Na

ni
(3.11)

In the last step we have used eqn 3.5. We implicitly assumed that at the beginning, when the battery
was not connected the bands were flat. This is not entirely correct and the voltage required to get
to the flatband condition is usually a device parameter that depends on several design factors. The
result should be interpreted as the excess voltage required after reaching the flatband condition : i.e.
V − Vfb
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3.2 The GaAs-AlGaAs heterostructure

A heterostructure is a generic name for two different semiconductors grown on top of each other.
Experimentally it is different from depositing a thin film of one material on top of another. The het-
erostructure growth process usually involves growing one type of material in a vacuum chamber, then
growing the other one without breaking the vacuum. The interface where the composition changes may
be ”atomically sharp”. This is near impossible to achieve by depositing one type of material on another.

While many such combinations can be tried two of these systems stand out, because of their close
lattice match. See Fig 3.10.

• The GaAs-AlxGa1−xAs system over the full range of composition, a favourite for high mobility
2DEGs, 1D-channels, quantum dots.

• The In0.53Ga0.47As-In0.52Al0.48As-InP system , used for high speed electronics

Figure 3.10: Energy gap and lattice constants of some semiconductors. To make a heterostructure with
a smooth interface we must choose a pair with very close lattice matching. Otherwise the interface
will have lots of strains and dislocations.

3.2.1 Anderson’s rule, alignment of the bands at the heterointerface

Now, when we put two semiconductors with dissimilar band gaps side by side, an obvious question
is how should the difference in the gap be distributed between the conduction and valence bands?
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Without knowing this we cannot draw the band diagram, because we do not know where to place the
CB of GaAs w.r.t to AlGaAs, for example, when they are in contact.

The question has no easy answer, in fact the answer needs to be found experimentally. There is
however one historical attempt : Recall that the electron affinity of a semiconductor is defined as the
energy needed to take an electron from the bottom of the conduction band to the vacuum level. The
reason we talk about electron affinity (χ) rather than work function (Φ) is that (Φ) is measured from
the Fermi level. For a semiconductor the location of the Fermi level depends on doping. Thus if we
align the vacuum levels, then the obvious picture suggests that ∆χ should translate to ∆EC . Does
this work? For GaAs-AlGaAs, we know experimentally that χGaAs = 4.07eV and χAlGaAs = 3.74eV.
So the ∆EC = 0.33eV should be expected. In reality it is about 0.25 eV.

Type I, II and III band alignments

• Type 1: The smaller gap is ”within” the larger gap, so that there is a barrier fro both electron
and hole motion if we approach from the side of the smaller gap material. e.g GaAs-AlGas

• Type 2: The smaller gap is only partially intercepted , so it is a barrier for electrons but a
”drop” for holes or vice-versa. e.g InAs-AlSb

• Type 3: The gaps don’t intercept at all. e.g GaSb-InAs

The concept of remote doping

The idea that the ionised dopants and the carriers may be separated in space is a very remarkable
one - it allows us to increase the mobility of carriers in the channel by almost 10,000 times and the
number is still increasing. We will analyse, how this increase comes about later (We need to develop
simple theories of screening and Coulomb scattering before that). First we see how the band structure
looks as a consequence of remote doping.
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3.2.2 Band structure of the GaAs-AlGaAs heterostructure

The schottky barrier at the surface of GaAs as well as the substrate end is assumed to be 0.7 V. This
means that at the two ends the conduction band of GaAs will be 0.7V above the Fermi level. Since the
device is not connected to any voltage source, we must have the Fermi level to be constant through the
device. As discussed earlier, since we are essentially solving differential equations, it is necessary to
provide sufficient boundary conditions. The height of the barrier provides that information. Without
specifying this we couldn’t have solved the equations numerically. In the following band diagrams we
have assumed a structure with length units in Å and doping in cm−3.

surface schottky=0.7 V

------------------------------------------

GaAs t=167 Å
------------------------------------------

AlGaAs t=400 Å x=0.33 Nd=5×1017 cm−3

------------------------------------------

AlGaAs t=400 Å x=0.33

------------------------------------------

GaAs t=1000 Å
------------------------------------------

GaAs t=2000 Å
------------------------------------------

substrate schottky=0.7 V
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Figure 3.11: Band structure and electron wavefunction with a doping of 5×1017cm−3 over 40nm and
then a 40nm spacer. The AlGaAs has an Al fraction of 0.33. The dopant level is approximately 30
meV below the conduction band - it is a shallow donor.
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And then increased the doping
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Figure 3.12: Band structure and electron wavefunction with a doping of 1×1018cm−3 over 40nm and
then a 40nm spacer. The AlGaAs has an Al fraction of 0.33.The dopant level is approximately 30
meV below the conduction band - it is a shallow donor.

Notice that if the dopants are to be fully ionised then the donor levels must be well above the Fermi
energy and the bands in the doped region will be approximately parabolic. Similarly to a good first
approximation the bands in the region between the 2D electron gas and the dopants must be linear
(Poisson’s equation with no charge density...). In Fig. 3.12 the doping was sufficiently high to pull the
donor levels very close to the Fermi energy and you can see the ”flattening” of the bands over a small
region. If the doping is increased even further a pocket of electrons will start gathering there and the
doped region will start behaving somewhat like a bulk conducting region. Such ”parallel conducting”
layers are usually undesirable in heterostructures.
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PROBLEM : Sketch qualitatively how the band structure would look at threshold of electron accu-
mulation. You only need to apply Gauss’s law qualitatively to do this - you don’t need a computer!

3.3 The envelope function approximation

When we solve the self consistent equations for getting the band bottom and the charge density
classically it is clear that we are :

• Allowing the Fermi level to be constant - or known at every point.

• Writing the charge density at a point as a sum total of the ionised dopant charge + free electrons.

ρ(x) = |e|N+
D (x)− |e|n(x)

N+
D (x) =

ND(x)

1 + 1
2 exp

(
EF−ED

kT

)
n(x) = Nc(x) exp

(
EF − EC

kT

)
d2EC

dx2
= −|e|ρ(x)

ϵ0ϵr
(3.12)

• This set of equation would give us the classical solution for the charge density. The only quantum
mechanical bit that enters here is the concept of a Fermi level.

But looking at the band structure it becomes clear that the free electron density is confined in narrow
regions. That means, quantum mechanical confinement etc should be taken into account. How should
it be done.

First we must define clearly how we can introduce a wavefunction in the problem. Clearly it is a bit
different from a single particle problem. Besides the full potential seen by the electrons should have
parts coming from the ”fast” variation of the atomic cores and a the slower part from the variation
due to dopants/ defects/extra charge density/gates etc. We really need a solution to[

p2

2m0
+ Vlattice(r) + Vslow(r)

]
Ψ(r) = EΨ(r) (3.13)

where V (r) is the sum total of all the other potentials. We want to factor out the fast variations
due to the lattice atom cores and get a function (envelope) that gives the slow variation. We give an
outline of how to do it1. We have not introduced any concept of an effective mass yet. But we write
the full wavefunction as a product of band-edge Bloch functions (which vary rapidly) and a slowly
varying function as follows:

Ψ(r) =
∑
n

χn(r)un,k=0(r) (3.14)

where un,k=0(r) are the band-edge Bloch functions. For simplicity we have kept only the band index
and omitted the spin index. Now:

• We substitute this in the full Schrodinger equation 3.13 and left multiply with u∗n,k=0(r)

1For full details and references see the book: ”SpinOrbit Coupling Effects in Two-Dimensional Electron and Hole
Systems”. Roland Winkler, Springer tracts in modern physics, vol 191 (2003)
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• Then integrate over one unit cell, assuming that ψn(r) is reasonably slowly varying and can be
pulled out of the integral.

• This will result in a matrix equation for all possible combinations of the band index.

• We restrict them to a few - or just one.

• A second order perturbation then gives, with the assumption of parabolic bands, the effective
mass (mn for the n-th band), envelope function hamiltonian:

[
p2

2mn
+ V (r)

]
ψ(r) = Eψ(r) (3.15)

Notice that the free electron mass has gotten replaced with the band effective mass. It is not at all
obvious at first glance that would happen and the whole calculation is not very trivial either. But the
final result is immensely useful. It is worth keeping in mind that it has its limits of validity. Notice
that we have also ignored the presence of many electrons by ignoring electron-electron interaction. A
justification of this (or its extent of validity) was analysed by Kohn2.

3.3.1 A handwaving justification

Let us treat a simplified 1-d situation. We can (without any approximation) write Ψ(x) as

Ψ(x) =

π
a∫

−π
a

χ(k)un,ke
ikx dk

2π
(3.16)

Notice that the integration runs over one Brillouin zone and hence includes all wavefunctions of the
same band. The approximation will have to be carefully done. In the Hamiltonian there is a derivative
operator, we can’t throw away the fast bits before the derivative has acted on it. One the other hand
while doing an integration that may be fine. The hamiltonian 3.13is

H =
p2

2m0
+ Vlattice(r) + Vslow(r)

= T + Vlattice + Vslow

= H0 + Vslow (3.17)

Now apply H0 on the full wavefunction 3.16.

H0Ψ(x) = H0

π
a∫

−π
a

χ(k)un,ke
ikx dk

2π

=

π
a∫

−π
a

χ(k)εn,kun,ke
ikx dk

2π
(3.18)

≈ un,k=0

π
a∫

−π
a

χ(k)εn,ke
ikx dk

2π
(3.19)

Now note:

• The approximation utilised the fact that near the band edge, the Bloch-functions don’t change
very fast and we can write unk≈un0 and that χ(x) does not contain very fast (large k) compo-
nents. The two assumptions are very crucial but not inconsistent.

2W. Kohn, Physical Review, 105(2), 509516 (1957)
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• εnk is a polynomial in k.

• What happens when we multiply the fourier transform of a function (in this case χ(k)) with a
power of k and take the inverse transform?

• If the concerned power is kn then is same as taking the nth derivative of the function and then
taking its transform.

Hence the last equation can be written fully in real-space (quite strikingly!) as

H0Ψ(x) = un,k=0εn(−i
d

dx
)χ(x) (3.20)

where εn(−i d
dx) means that the variable k has been substituted by the momentum operator (except

for the ~). Since near the band extremum we can approximate the dispersion by a second order term
( k2 ) in the effective mass approximation, we can see the origin of the effective mass term in eqn. 3.15.

The action of Vslow on Ψ(x) is easy to approximate

VslowΨ(x) = Vslow

π
a∫

−π
a

χ(k)un,ke
ikx dk

2π

≈ Vslowun,0(x)

π
a∫

−π
a

χ(k)eikx
dk

2π

= Vslowun,0χ(x) (3.21)

and so the action of the hamiltonian 3.17 now reduces to

un,0(x)ε(−i
d

dx
)χ(x) + un,0(x)Vslow(x)χ(x) = un,0(x)Eχ(x)[

p2

2meff
+ Vslow

]
χ(x) = Eχ(x) (3.22)

By keeping terms upto second order in the expansion of ε(−i d
dx) the EFA result follows, because un,0

cancels from each side. It is striking how the form of the Schrodinger equation is retained.

3.3.2 Position dependent effective mass

Now we will state without proof two important results about what happens near the boundary of two
semiconductors. Without this we can’t get useful results from a differential equation! Also important
is the question, what happens when meff varies with position. This will happen if the composition of
the semiconductor changes.
first, the correct boundary conditions (at an interface A-B assumed to be at x = 0) are

χA(0) = χB(0) (3.23)

1

mA

dχA

dx
=

1

mA

dχB

dx
(3.24)

Infact the envelope function gets a kink at an interface if mA ̸=mB

Second, the correct way to write the EFA ”Schrodinger” equation, so that it is in the ”Sturm-Liouville”
form, is to include the effective mass within the derivative. This would ensure that the equation has
real eigenvalues etc.

− ~2

2m0

d

dx

[
1

m(x)

dχ

dx

]
+ Vslowχ(x) = Eχ(x) (3.25)
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All the ”wavefunctions” are normalised to unity over the allowed interval. We denote each eigenvalue
by Ej . Now we can write down the set of equations that can be solved to get a quantum version of
the bands and charge densities at the interface in place of the set of equations 3.12:

ρ(x) = |e|N+
D (x)− |e|n(x)

N+
D (x) =

ND(x)

1 + 1
2 exp(

Ef−ED

kT )

n(x) =
∑
j

|χj(x)|2
m∗

π~2

∫ ∞

Ej

dE

1 + exp
E−Ef

kT

d2EC

dx2
= −|e|ρ(x)

ϵ0ϵr
(3.26)

• There is a possibility of more than one subbands being occupied if either the temperature or the
electron density is high enough.

• We need to put in the discontinuity of EC(x) at the heterointerface wherever needed.

3.4 Using the envelope function : Fang Howard wavefunction at a
heterinterface

Most of the times interfacial wavefunctions are solved numerically. Self consistent schemes however
don’t yield analytic results in general. There are times when an analytic expression helps - even if it
is a bit approximate. The Fang-Howard wavefunction is such a case, it is also an example where the
interaction between electrons are taken care to an extent. This was originally developed for MOS-
FETs but is applicable to almost any heterointrface where a 2DEG accumulates, with some limitations.

We know that the potential profile is roughly triangular and so a generic shape of χ can be guessed,
which rises and then falls roughly as shown. We will try a variational approach, including electron-
electron interaction.

χ(z) =

(
b3

2

)1/2

ze−bz/2 (3.27)

Hence the charge density is given by:

ρ(z) = −en2D|χ(z)|2 = −en2D
b3

2
z2e−bz (3.28)

The function has a single variational parameter and the b3 is necessary on dimensional grounds (can
you see why?) The potential energy (called the Hartree potential energy here) must be

VH(z) = −eϕH(z) (3.29)

where

d2ϕH(z)

dz2
= −ρ(z)

ϵ0ϵr

= −en2D
ϵ0ϵr

b3

2
z2e−bz

∴ ϕH(z) = −en2D
ϵ0ϵr

[
6− (b2z2 + 4bz + 6)e−bz

]
(3.30)
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where we have used the boundary conditions

dϕ

dz
= 0 as z →∞ (3.31)

ϕ(z = 0) = 0 (3.32)

Now

• There is no external potential in the system. So The hamiltonian for each electron is simply
H = T + VH .

• So the obvious step would be to calculate the energy expectation and minimize it w.r.t the only
free parameter b.

• But this is wrong. What we want to minimize is the total energy of the system. If we simply
add the kinetic and potential energy parts calculated for a single particle and add it n times, we
double count the potential energy. The Coulomb potential needs to be counted per pair.

• This means that we should minimise ⟨T ⟩+ ⟨VH⟩/2

This is left as an exercise to show that

⟨T ⟩ =
~2b2

8m
(3.33)

⟨VH⟩ =
33e2n2D
16ϵ0ϵrb

(3.34)

PROBLEM : Prove the two results: by calculating the expectation values

Which leads to

b =

(
33me2n2D
8~2ϵ0ϵr

)1/3

(3.35)

The one electron energy level (the lowest subband) is given by:

ε1 =

[
5

16

(
33

2

)2/3
][

~2

2m

(
e2n2D
ϵ0ϵr

)]1/3
(3.36)

• Notice that the shape of the wavefunction is strongly dependent on the electron density. if n2D
is large then b is large and the wavefunction is narrow. That means that at low densities the
envelope is actually more spread out.

• This may be counterintuitive at first glance but is absolutely correct! This is an important point
for calculating screening and scattering, as we will see later.

• One weakness of this approach is that we have assumed there is no leakage of the wavefn into
the larger bandgap material. This is not entirely correct for the GaAs-AlGaAs interface becuase
the barrier is not very high (about 250 meV typically). However there is no simple analytic
way of adding this bit. So we often decide to live with this bit of inaccuracy for the sake of the
remarkable simplicity of the Fang-Howard wavefunction.
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Thomas Fermi screening in the
electron gas : Why does remote doping
lead to high mobilities?
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We want to be able to understand why in a heterostructure much higher mobilities are possible com-
pared to bulk GaAs or MOSFETS. For this we need to develop some background to understand
scattering due to impurities and how screening due to free electrons work.

4.1 Polarisation of the lattice

All elementary electrostatics books have something about dielectrics. In a dielectric there are no free
electrons i.e nothing in the conduction band (CB). Each lattice site has atoms with bound electrons.
When an external electric field (or potential) is applied, the electron wavefunction around the atom
shifts a little bit. The result is that (in most cases) each atom becomes like a small dipole. The total
dipole moment per unit volume is related to the polarisation (P) as

∇.P = −ρinduced (4.1)

P = ϵ0χE (4.2)

If there are free charges then something more must happen, because the free charges in the CB would
reorganise themselves more readily in response to a potential. We are going to consider a situation
where the external potential is due to some fixed charges - like impurities or surface gates. Thus the
external field does not vary with time, it is a ”static” response that we want to calculate.

4.1.1 Jellium

The bulk material is electrically neutral, because the charge of the free electron gas is exactly cancelled
by the positively charged lattice. To simplify things we totally ignore the crystal structure or discreet-
ness of the lattice at this point. We assume that there is an uniform background (like a block of jelly)
in which the electrons move. The equivalent positive charge is spread out in an average structureless
way.

63
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4.1.2 Screened potential

Consider now the following basic problem. An external charge ρext is placed in a sea of electrons. As
a result some charge redistribution will take place creating an additional charge density ρind. Let us
assume that initially the potential was zero everywhere. The potential must now satisfy

∇2V = −ρext + ρind
ϵ

(4.3)

where ϵ = ϵ0ϵr.
Notice that we can solve this, if we relate ρind to something known. Recall that in equilibrium with
no battery connected to the system, the Fermi level (Ef ) must be constant. But if the electrostatic
potential varies, then the bottom of the CB also varies, as shown in Fig 4.1. In a place where the
bottom of the CB is high some electrons must be pushed out. How many?

Figure 4.1: Whenever the conduction band rises (electrostatic potential is lower) some electrons are
pushed out. If the electrostatic potential is higher, then more electrons tend to gather there. This is
because the potential is defined with a positive charge in mind.

δn = D(Ef )eV (4.4)

∴ ρind = −e2D(Ef )V (4.5)

WhereD(Ef ) is the density of states at the Fermi level. Here the implicit assumption is that eV << Ef

and that the potential varies slowly, on the scale of 1/kF
We then write eqn 4.3 in a solvable form

∇2V −
e2D(Ef )V

ϵ
= −ρext

ϵ
(4.6)

∇2V − q2TFV = −ρext
ϵ

(4.7)

Where we introduced the Thomas Fermi wavevector

qTF =

(
e2D(Ef )

ϵ

)1/2

(4.8)

Eqn 4.7 is solved by using Fourier transforms. In general the ∇2 operator becomes multiplication by
−q2 in Fourier space.

V (r) =
1

(2π)3

∫
d3q Ṽ (q)e−iq.r (4.9)

ρ(r) =
1

(2π)3

∫
d3q ρ̃(q)e−iq.r (4.10)

Using the fourier components we now write:
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−q2Ṽ (q)− q2TF Ṽ (q) = − ρ̃ext(q)
ϵ

(4.11)

Hence

Ṽ (q) =
ρ̃(q)

ϵ(q2 + q2TF )
=

Ṽext(q)

1 +
q2TF
q2

(4.12)

We have thus related the external potential to the total potential and the induced charge density by
eqns 4.12 and 4.5.

PROBLEM : Due to the D(Ef ) factor, the Thomas-Fermi wavevector depends on the dimensionality
of the system. Show that in 3D :

q2TF =
1

π2
me2

ϵ~2
kf =

4

π

kf
aB

(4.13)

where aB is the Bohr radius of the system.

Extent of validity of the Thomas Fermi approximation

The expression for screening that ewe deduced is valid for small q, as q approaches 2kf the the method
no longer gives correct results.

4.1.3 The screened Coulomb potential

What will be the total potential due to a single point charge placed in a sea of electrons? For a point
charge (e) at the origin ρ(r) = eδ(r). Hence the fourier transform is just a constant ρ̃(q) = 1. Eqn.
4.12 give

Ṽ (q) =
e

ϵ(q2 + q2TF )
(4.14)

The transform can be done by using a simple contour integral and gives

V (r) ∼ e

r
e−qTF r (4.15)

The only ”pole” that will contribute to the integral is at z = +iqTF

4.2 Screening in the 2-dimensional electron gas

The 2DEG in a MOSFET or a GaAs-AlGaAs heterostructure is quasi 2-dimensional only, it is really a
thin layer embedded in 3D and has to be treated as such. The 2DEG does not imply a 2-dimensional
electrodynamics, where Gauss’s law would have to replaced by an integration over a circle instead of
a sphere!

We will calculate the 2D Fourier transform of a static point charge placed at z = z0, the charge
distribution (not the wavefunction) of the 2DEG is given by f(z), r is the in plane co-ordinate.

V (r, z) =
1

4πϵ

e√
r2 + (z − z0)2

(4.16)

Now, the important point is that it needs to be averaged over the charge distribution in the z-direction.
This is needed because the electron (in the 2DEG) may be probabilistically found at any z with the
probability f(z). We write this averaging leads to:
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V (r) =
e

4πϵ

∫
dz

1√
r2 + (z − z0)2

f(z) (4.17)

V (k) =
e

4πϵ

∫
d2reik.r

∫
dz

1√
r2 + (z − z0)2

f(z) (4.18)

V (k) =
e

4πϵ

π∫
−π

dθeikr cos θ
∫
dz

∞∫
0

rdr
1√

r2 + (z − z0)2
f(z) (4.19)

=
e

2ϵ

∫
dz

∞∫
0

rdr
J0(kr)√

r2 + (z − z0)2
f(z) (4.20)

The bessel function oscillates with a decreasing amplitude and goes to zero at infinity. Since the
integral ends up taking in many periods, that nearly cancel each other, the final result ends up being
quite small - a bit striking at first glance. The result, using a standard integral (Gradshetyn & Ryzhik
6.554.1):

∞∫
0

dr
rJ0(kr)√

r2 + (z − z0)2
=
e−k|z−z0|

k
(4.21)

So we get the unscreened potential

V uns(k) =
e

2ϵk

∫
dze−k|z−z0|f(z) (4.22)

Let’s define this quantity as

V (k, z0) ≡
e

2ϵk

∫
dze−k|z−z0|f(z) (4.23)

This gives the Fourier components of the unscreened potential. If, the 2DEG is of zero thickness, then

f(z) = δ(z) (4.24)

V (k) =
e

2ϵk
e−k|z0| (4.25)

Now, we already notice a striking fact that the unscreened potential itself decreases exponentially as
it is moved away from the plane of the 2DEG. We can already have a feeling that ”remote doping”
dramatically reduces the strength of the ionised impurity scattering.

PROBLEM : In a Gallium Arsenide quantum well, the mobility of the 2-dimensional electron gas is
found to be 30×106cm2V−1s−1 at a density of 2×1011cm−2. Given that the effective mass of these
electrons is 0.067m0, What is the mean free path?

4.2.1 Finite thickness with Thomas-Fermi screening

Now consider finite thickness with screening. It is algebrically somewhat messy due to the averaging
we need to do at each step - but conceptually no different from what we have done earlier.

∇2V (r, z) = −1

ϵ
(ρext + ρind) (4.26)

The induced charge density is written as

ρind(r) = −e[N(V (r))−N(0)]f(z) (4.27)
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Figure 4.2: Notice the huge improvement in mobility over the years. The figure is taken from the
paper by L.N. Pfieffer, Physica E 20, 57 (2003) The mobility of electrons in pure metals like Gold,
Silver is much lower than that in heterostructures. A pure metal film would have higher conductivity,
because it has a much much higher density of electrons.

Thomas-Fermi approximation gives

ρind(r, z) = −e2V (r)
dN

dEF
f(z) (4.28)

Now we define the Thomas Fermi wavevector (2D)

qTF =
e2

2ϵ

dN

dEF
(4.29)

ρind(r) = −2ϵqTFV (r)f(z) (4.30)

Here V (r) denotes the full potential at that location, not the external potential only. The equation
we now need to solve is
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∇2V (r, z)− 2qTFV (r)f(z) = −ρext
ϵ

(4.31)

Assume that the dielectric constant at the GaAs-AlGaAs interface doesn’t change (ϵr≈13). This is
not correct for a Si-SiO2 interface. Si has a much larger ϵr So the analytic relations for a MOSFET
would look more complicated.

We can write the equation in terms of Fourier components (notice how we handle the z part of the
Laplacian)

V (r, z) =
1

(2π)2

∫
d2kV (k, z)e−ik.r (4.32)

∇2V (r, z) =
1

(2π)2

∫
d2k

(
d2

dz2
− k2

)
V (k, z)e−ik.r (4.33)

V (r) =

∫
dz′f(z′)

1

(2π)2

∫
d2kV (k, z′)e−ik.r (4.34)

ρext(r) = eδ2(r)δ(z − z0)

=
e

(2π)2

∫
d2ke−ik.rδ(z − z0) (4.35)

So we get: (
d2

dz2
− k2

)
V (k, z)− 2qTF f(z)

∫
dz′f(z′)V (k, z′) = −e

ϵ
δ(z − z0) (4.36)

(
d2

dz2
− k2

)
V (k, z) = 2qTF f(z)

∫
dz′f(z′)V (k, z′)− e

ϵ
δ(z − z0) (4.37)

To get an explicit solution, we need to use the ”Green’s function” technique. We first solve (use
Fourier transform and then the back transform requires a contour integral as before)(

d2

dz2
− k2

)
G(z − z′′) = δ(z − z′′) (4.38)

The solution is

G(z − z′′) = − 1

2k
e−k|z−z′′| (4.39)

and hence

V (k, z) =

∫
dz′′G(z − z′′)

[
2qTF f(z

′′)

∫
dz′f(z′)V (k, z′)− e

ϵ
δ(z′′ − z0)

]
(4.40)

V (k, z) = 2qTF

∫
dz′′

∫
dz′G(z − z′′)f(z′)f(z′′)V (k, z′)− e

ϵ
G(z − z0) (4.41)

But we need the value of V (k, z) averaged over f(z), which requires another integration after multi-
plying both sides by f(z).

∫
dzf(z)V (k, z) = 2qTF

∫
dzf(z)

∫
dz′′

∫
dz′G(z − z′′)f(z′)f(z′′)V (k, z′)

−e
ϵ

∫
dzf(z)G(z − z0) (4.42)

The integral on z′ can be pulled out, so that
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V (k) = 2qTF

∫
dz

∫
dz′′f(z)G(z − z′′)f(z′′)

∫
dz′f(z′)V (k, z′)

−e
ϵ

∫
dzf(z)G(z − z0) (4.43)

= −qTF

k

∫
dz

∫
dz′′f(z)e−k|z−z′′|f(z′′)V (k)− e

2ϵk

∫
dzf(z)e−k|z−z0| (4.44)

Where we have used the definition of the Green’s function from eqn 4.39

V (k) =
V uns(k)

1 + (qTF /k)F (k)
(4.45)

where the Form factor and the Thomas-Fermi dielectric function is defined as

F (k) =

∫
dz

∫
dz′′f(z)e−k|z−z′′|f(z′′) (4.46)

ϵ(q) = 1 +
qTF

k
F (k) (4.47)

The -ve sign of G(z − z′′) has been absorbed in the definition of the Form factor, such that F (k) = 1
for f(z) = δ(z)

(4.48)
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Chapter 5

Quantum Hall effect : Basic physics
and the edge state picture

References:

1. Chapter on Quantum Hall Effect Physics of low-dimesnional semiconductors J.H. Davies

2. The Quantum Hall Effect: Novel Excitations and Broken Symmetries, S.M. Girvin,
arXiv:condmat-mat 9907002 [Les Houches Lecture notes 1998]

5.1 Current flow in a rectangular ”Hall Bar”, the classical solution

Consider a rectangular bar of material (as shown in Fig. 5.1) that contains a 2-dimensional electron
gas. There are two ohmic contacts at the two ends that we use to pass current through it. We will
solve for the current (and electric field) in the rectangle, with and without a perpendicular magnetic
field. The rectangle is in the x-y plane and the magnetic field (B) is uniform and along z axis only.

5.1.1 B=0

The hall bar has a length L and width W . We apply a potential V0 as shown then we want to solve
for the potential distribution (and electric field) inside the Hall bar.
We have

∇.j = 0 (5.1)

j = σ0E (5.2)

E = −∇V (5.3)

∴ ∇2V = 0 (5.4)

What are the boundary conditions?

V (x, 0) = 0 (5.5)

V (x, L) = V0 (5.6)

jx(−W/2, y) = 0 (5.7)

jx(W/2, y) = 0 (5.8)

Also the electric field is zero in the metal contacts (i.e the contacts are equipotential metal surfaces),
as that is assumed to have a much higher conductivity than the 2DEG layer.
The solution is obvious :

V (x, y) =
V0
L
y (5.9)
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5.1.2 After a magnetic field is applied

We know that the relation between j and E in a magnetic field (B = B0ẑ) is given by:(
jx
jy

)
=

σ0

1 + µ2B0
2

(
1 −µB0

µB0 1

)(
Ex

Ey

)
(5.10)

or (
Ex

Ey

)
=

(
ρ0

B0
nq

−B0
nq ρ0

)(
jx
jy

)
(5.11)

Clearly j and E are no longer parallel to each other. What is the angle (δ) between them?

Figure 5.1: The ohmic contacts keep two ends parallel to the x-axis at the same potential.

PROBLEM : Show (using 5.11) that the Hall angle is given by

tan δ =
B0/nq

ρ0
(5.12)

This is true at all points. On the edges, where (jx=0) must hold, since no current is leaking out of the
Hall bar, the current must point only in the y direction and hence the E must make an angle δ with
the y axis. As the magnetic field is made very large, this angle should tend to π/2. Unfortunately
the solution can no longer be written down so easily. An analytic solution can be written in terms of
Z = x+ iy, as

Ey(x, y) + iEx(x, y) = exp(f(Z)) (5.13)

f(Z) =
∑

n(odd)

4δ

nπ

sinh
(
nπZ
L

)
cosh

(
nπW
2L

) (5.14)

The solution and the method to obtain it is given by R.W. Rendell and S.M. Girvin, Physical Review
B, 23, 6610 (1981). It is done using a method of solving the Laplace’s equation using a complex
transform called a ”conformal map”, that we don’t discuss here1.

1Most texts on Mathematical Physics, has a chapter on this method, see for example Pipes and Harvill.
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Just outside the contacts the electric field only has Ey component (since the electric field must be
perpendicular to the equipotential metal), but Ey = 0 on the sides when δ ≈ π/2. This forces a jump
at two corners (see Fig. 5.2) or a mathematical singularity of the solutions. Rather than analysing
the series summation, we plot out the current density and infer some physically important aspects.
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Figure 5.2: Each vector is proportional to the value of j at that point. The dimensions were taken to
be L = 3 and W = 1. The electric field is aligned along j when δ = 0, but is almost perpendicular to
j when δ approaches π/2.

5.1.3 Current flow directions and the equipotentials

There are several consequences of this current distribution that may be quite counter-intuitive.

• In Fig 5.2 the plot with δ = 0 is easily understandable. The equipotentials must be parallel to
the x-axis. The electric field is only along y and so the current (only jy exists) is perpendicular
to the equipotentials.

• But the situation is dramatically different when δ ≈ π/2. The electric field is now perpendicular
to the current flow. Hence the current flows along equipotentials. A consequence of this is that
there is no voltage drop as one follows the current!

• Thus two voltage probes placed at two points on the (long) side may measure no voltage drop.

• The current density at the corner is very high.

• All the current emanates from the edge of the ohmic contacts (the points of mathematical
singularity of the series solution) and carries with it the potential of the contact.
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• We did not require much ”quantum” physics to establish the important fact that almost dissi-
pationless channels can arise in a strong magnetic field, irrespective of the amount of disorder
initially present. The zero field resistance ρ0 dropped out of our consideration.

• The two-probe resistance measured between the ohmic-contacts and the Hall voltage measured
between the opposite sides of the Hall bar will be the same.

• The Hall voltage measurement does not require that the Hall voltage probes be exactly opposite
to each other.

5.1.4 What is not correct in the classical solution?

The classical solution predicts that the current is distributed over a wide area of the sample. This is
not correct. In reality the states slightly far (∼ 100 nm or so) from the edge are not current carrying
states when the Hall angle reaches close to π/2. We need to look at the Schrodinger equation at this
point.

5.2 Quantum mechanical solution

To describe a charged particle (e)in a 2D plane we can choose the following vector potential and then
the Hamiltonian

A = B0xŷ (5.15)

H =
1

2m

(
p2x + (py + eB0x)

2
)

(5.16)

Notice that in this case

p.A = A.p = B0xpy (5.17)

We can now separate the variables by using the obvious solution

ψ(x, y) = eikyfk(x) (5.18)

So we have the eigenvalue equation for fk(x)[
p2x
2m

+
1

2m
(~k + eB0x)

2

]
fk(x) = Efk(x) (5.19)

This has the form of a harmonic oscillator equation whose center is shifted from x = 0. With the
identifications

ω =
eB0

m
(5.20)

x0 =
~k
eB0

(5.21)

We can write eqn 5.19 as [
p2x
2m

+
mω2

2
(x+ x0)

2

]
fk(x) = Efk(x) (5.22)

The solution to this equation is very well known.

En = (n+
1

2
)~ω (5.23)
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These energy levels are called the Landau levels. How much is the shift of the center of he wavefunc-
tions?

x0 =
~k
eB0

= kℓ2 (5.24)

ℓ2 =
~
eB0

(5.25)

ℓ ≈ 257Å√
B

(5.26)

5.2.1 Degeneracy of each Landau level and the overlap of the wavefunctions

Each level has a large degeneracy, because the eigenvalue is independent of k. Consider a sample of
dimension L×W as before. We must have x0 within the sample limits, so the number of possible
states N must be

N =
L

2π

W/ℓ2∫
0

d k

=
LW

2π

eB

~

= LW
eB

h
(5.27)

So the degeneracy is eB/h per unit area of the sample. The spatial width of the nth harmonic oscillator
wavefunctions is about

√
nℓ and the separation between the centers of the wavefunctions is

δx0 =
2π

L
ℓ2 (5.28)

So for a typical sample size of L∼1mm, the sates are very strongly overlapping.

5.2.2 Oscillation of EF as B increases

Consider for the moment a spinless collection of particles - n particles per unit area in 2D. In zero
magnetic field we must have

D(E) =
m

2π~2

N =
m

2π~2
Ef (0) (5.29)

When a magnetic field is applied the index of the highest occupied Landau level (not the number of
occupied levels, which must be at least 1) is

νmax =

[
N

eB/h

]
(5.30)

Where the [ ] denotes the largest integer contained in the expression. Hence the Fermi energy must
be

Ef (B) =

(
νmax +

1

2

)
~ω (5.31)

=

(
1

2
+

[
N

eB/h

])
~eB
m

(5.32)

So we can write with

x =
~eB/m
Ef (0)

=
eB/h

N
(5.33)

Ef (B)

Ef (0)
=

(
1

2
+

[
1

x

])
x (5.34)
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Figure 5.3: The Fermi level of the the 2DEG (with its number density fixed) oscillates as the magnetic
field is increased. Each level rises in energy and becomes more degenerate, linearly with increasing
field. This kind of oscillation indeed occurs. It was experimentally demonstrated in a Si MOSFET by
Pudalov et al Sov. Phys. JETP 62, 1079 (1985)

5.2.3 The states near the edge of the sample

While calculating the degeneracy of each Landau level we didn’t pay any particular attention to the
small number of states that lie very close (within ∼ ℓ) to the edge. That doesn’t introduce any error in
the calculation because the number of such states can only scale as the perimeter whereas the number
of states in the bulk (i.e sufficiently inside) of the L×W sample scales as the area.

But there is a time when the presence of such small number of states become important. That is the
time when the Fermi level is moving from one Landau level to the next. Let us consider a situation
where the field is just high enough to put all the particles are in the lowest Landau level. Now, if
we reduce the field a little then the degeneracy of the lowest level is no longer enough, so the Fermi
energy (the highest occupied state at T=0) is expected to jump to the next higher state.

But now, recall that in any finite sample the edges must be like a potential barrier (see Fig. ). A
potential barrier appropriate for a sample with 2 edges, can be modelled by an ”U-shaped” potential,
with a flat bottom (the bulk region) and steeply rising edges containing the electrons from ”falling
out” of the sample. The functional form of the rise near the edges is unimportant. It is not necessary
at all for the rise to by symmetrical on the two edges. As we have done earlier, we will assume that
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Figure 5.4: The energy of the states (Landau level) must rise as the location (x0 = kℓ2) approach the
edges. The figure has been highly exaggerated to show this effect near the edges. But the important
point is that when the Fermi energy tries to jump from one Landau level to another, it has to pass
through a region when the density of states is zero in the bulk and the only current carrying states
are in two narrow strips near to edges. These strips behave like one dimensional channels.

we can now make the eigenvalues position dependent. (see Fig. ). But we exploit the fact that the
position dependence of the (harmonic oscillator) eigenfunctions is related to the ky.

En(x) = (n+ 1/2)~ω + U(x0) (5.35)

or En(k) = (n+ 1/2)~ω + U(kℓ2) (5.36)

So between jumping from one landau level to the next one, the Fermi energy moves through the states
near the edge. In the bulk during this time the conductivity drop to zero.

Group velocity of the edge states

The group velocity is given by vg = 1
~
dE
dk . Notice that this implies vg is zero the bulk. But as the

energy of the states (due to the rise in the confining potential) rises near the edges, the derivative w.r.t
k sees this rise, because k = x0/ℓ

2. This means that vg must have opposite signs in the two edges.
These are the left going and right going edge states.

Since there are no current carrying states in the bulk, and there is a strong magnetic field, both σxx
and ρxx must now be very small, thus making the Hall angle δ very close to π/2. This is the quantum
Hall state.

The narrow strips of current carrying regions are all that connects the ohmic contacts. There is a
remarkable analogy between these states and one dimensional conduction that we will now see.

5.2.4 The ”perfect” one-dimensionality of the edge states

The current crossing any transverse plane placed in the path of a 1D-channel can be written as the
difference between the number of particles crossing from left to right (IL→R) and from right to left
(IR→L).
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Figure 5.5: Explanation of the various terms in the expression for current. Note the similarity with
the simple expression for current j = env.

IL→R = e

∞∫
−∞

dE D(E) f(E, µL)vg(E)T (E)

IR→L = e

∞∫
−∞

dE D(E) f(E, µR)vg(E)T (E)

I = e

∞∫
−∞

dE [f(E, µL)− f(E,µR)] vg(E)T (E) (5.37)

• Some particles are launched from the left lead (L). They share the electrochemical potential of
the left lead.

• We can write the current due to these as shown in the set of equations 5.37.

• Note that we have ignored the question whether there are empty states for these to go to in the
other lead. The crucial assumption is that the particles will find a way (equilibrate) with the
lead when they reach it. The leads are connected to external voltage source which will force its
electrochemical potential.

• There is a subtle difference between the formula we just wrote and a similar looking formula for
tunneling conductance that involves thin barriers etc.

• Also note that the factor T (E) is the ratio of two fluxes, it is not a matrix element.

The difference between the electrochemical potentials can be written by taking µL = µ − eV/2 and
µR = µ+ eV/2. If this is small then we can write

f(E, µ+ eV/2)− f(E,µ+ eV/2) ≈ ∂f(E,µ)

∂µ
eV = −eV ∂f(E, µ)

∂E
(5.38)
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Figure 5.6: Which region contributes to the expression for the current integral?

because we know that in the Fermi function only the combination E−µ occurs. Note that the deriva-
tive of the Fermi function w.r.t. energy has again appeared quite naturally.

At T = 0 the difference between the Fermi functions on the two sides is non-zero only in the small
interval between µL and µR. So we can simplify the eqn 5.37 to:

I = e

µL∫
µR

dED(E)vg(E)T (E) (5.39)

= e

µL∫
µR

dE

(
1

π

dk

dE

)(
1

~
dE

dk

)
T (E) (5.40)

=
2e2

h
(VL − VR)T (E) (5.41)

Note how the fortuitous cancelation of the density of states factor and group velocity works - but only
in 1 dimension, making it somewhat special. If we wrote an expression for conductance (G = I/V )
is 2-dimensions, then the carrier concentration would have appeared in the expression, like σ = neµ,
that we have seen many times. But the cancelation of the density of states with group velocity took
care of that.

Now consider the factor T (E), A left mover can be sometimes scattered to a right moving state in
the channel, because they can physically occupy the same space. This means that T (E) cannot be
guaranteed to be 1, because there can be some backscattering.
In the hall bar, however, the edge channels have been pulled apart to the opposite edges of the hall
bar. A edge state on the top (Fig. 5.7) has no amplitude to exist or to get scattered to the bottom
edge. The left and right going states are separated by typically 10-100 microns.

Referring to Fig. 5.4, there can be more than 1 edge states on the same edge and some electrons may
be scattered from one channel to the other. But this causes no loss of current as the particles keep
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Figure 5.7: The essential difference between the 1D channel in a micro-constriction and the ”edge
states” of a Hall bar is that the left and right movers are spatially separated in the Hall bar by the
width of the Hall bar - which may be even millimeters wide.

moving in the same direction. The contribution of a channel to the conductivity didn’t depend on
how many carriers are there in the channel.

Now, say we raise the potential of the left ohmic contact by an amount eV . The ohmic contact and
the edge state emanating from it share the same chemical potential. In the quantum hall state, the
potential difference between the current injecting contacts is same as the potential difference between
the opposite edges - which is the Hall voltage. If the number of excess carriers injected is δn,

δn = ND(E)eδV (5.42)

I = (evg) [ND(E)eδV ] (5.43)

=
e

~
dE

dk
N

1

2π

dk

dE
eδV (5.44)

∴ RH =
δV

I
=

h

Ne2
(5.45)

An exact result independent of disorder and sample mobility.

5.2.5 Disorder broadening of the Landau levels

Over what extent in magnetic field would this special state exist? This is important because in reality
that would determine how easy it is to observe the state. We have already calculated the degeneracy
of each Landau level - but in reality these (eB/h) states are not concentrated in a zero width delta
function. There are small random variations of the potential (bottom of the conduction band) through
out the sample that result in a small spread of the energy of the eigenstates. See Fig. 5.8 for the
density of states would look in a real sample. For example in a GaAs-AlGaAs heterostructure the
Landau level gap is about 20kB/ Tesla and the width of each state might be about ∼ 1kB, resulting
from random disorder.

5.2.6 Longitudinal resistance and ”Quantum” Hall effect

The exactness of the quantum Hall effect was discovered in 1980 [K. von Klitzing, G. Dorda and M.
Pepper, Physical Review Letters, 45, 494 (1980)] in Silicon MOSFETs. However the phenomena can
be observed in any 2 dimensional electronic system (satisfying certain criteria). The data shown in
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Figure 5.8: The effect of disorder makes each delta-function in the density of states broaden over
an energy range equivalent to 1-2 Kelvin. It also turns out that the states which suffer maximum
displacement and are pushed towards the band tails, are localised. They cannot carry current wand
when the Fermi level resides in these states the ”bulk” continues to be non-conducting. When the
Fermi level lies in the extended (free electron like) states, then the bulk of the sample conducts and
the Hall voltage is not quantised - because the transport is not edge-state controlled.

Fig. 5.9 comes from a GaAs-AlGaAs heterostructure. The oscillations in the longitudinal resistance
are called ”Shubnikov de-Haas” oscillations and contain a wealth of interesting physics that you can
read about in the references given at the beginning.

The information about how disordered the sample is hasn’t been completely lost though. You can
reason it out that the width of the Hall plateau (the interval in magnetic field over which the plateau
exists) is a measure of the disorder. Large width means lower mobility! In fact in extremely ”clean”
samples the width of the Hall plateaus will become very small - a somewhat counter-intuitive result.
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Figure 5.9: Experimental data from a GaAs-AlGaAs heterostructure, showing the longitudinal resis-
tance (red) and hall resistance (black). Notice that the zeros of ρxx coincide with the quantum hall
plateaus. These are the times when the Fermi level lies in the localised states in the band tails. The
fact that ρxx and σxx are simultaneously zero comes from the nature of the conductivity matrix, as
we have discussed before. The numbers along with the plateaus denote how many Landau levels are
filled at that point, and hence the number of edge states in the system as well.



Chapter 6

Conduction through a constriction:
quantisation of conductance

References:
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der Marel and C.T. Foxon, Phys. Rev. Lett., 60, 848 (1988)

We saw in the last set of lectures that the remote doping method can lead to very high mobilities.
This means that due to long mean free paths, we can think of interference between electron paths and
ballistic conduction. In this lecture we will see how (using a GaAs-AlGaAs heterostructure) one can
design a narrow constriction through which electrons may be transmitted without scattering. This is
possible because in GaAs-AlGaAs hetrostructures the mean free path of the electrons can easily be
about ∼ 10 microns, enabling lithographic gates and other features to be of smaller size than the mean
free path. A striking ”quantum” consequence of this is that at low temperature the quantisation of
conductance of a constriction. Typically such a constriction would be ∼ 0.5micron in length and of
the order of Fermi wavelength in width. This effect was first experimentally shown in 1988-89.

6.1 How is such a constriction made?

Microconstrictions are now-a-days easily made by photolithography and electron-beam lithography.
The following pictures should give you an idea about how these are made (explanations of the steps
in lecture).
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Figure 6.1: (left)Hall bar with optical gates which connects to the finer features later on. The hall
bar is about 1mm long. (right) Expanded view of the split-gate region

Figure 6.2: Another picture describing the process.



6.2. CALCULATION OF THE CONDUCTANCE OF A QUANTUM POINT CONTACT (QPC)85

6.2 Calculation of the conductance of a Quantum point contact
(QPC)

Assume that the electrochemical potential drop is only over the constriction. The 2DEG on both sides
are unperturbed and their populations follow the Fermi distribution. The electrochemical potentials
differ by an amount eV across the QPC. The current density j can be written in general as

j = ne⟨v⟩ (6.1)

However here v is not the drift velocity. Because we are dealing with ballistic conductance, we can
take the velocity components from the Fermi circle. This is an important point to notice.

Figure 6.3: Schematic of the split gate, the effective width of the constriction will depend on the gate
voltage.

The number of state contributing to this conduction process will be

n = D(Ef )eV =
m

π~2
eV (6.2)

Hence we can write for the conductance (G) using eqn 6.1 (we need to retain only jx) as

jx =
m

π~2
eV.e.

~
m
⟨kx⟩ (6.3)

∴ G =
Wjx
V

(6.4)

=
e2

π~
W ⟨kx⟩ (6.5)

We will average over the full Fermi circle with a factor of 1/2 to take care of the fact that only half of
the electrons there contribute to current in the +x direction.

Now, we make the crucial assumption that only those wavevectors are allowed to pass for which ky is
such that

ky =
nπ

W
where (6.6)

n = ±1,±2..... (6.7)

We assume that these modes will not mix (scatter from one to the other) as they pass through the
constriction.

The Fermi surface average ⟨kx⟩ is :
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Figure 6.4: The allowed modes come from the right going part of the Fermi circle and the quantisation
condition is set by ky = ±nπ

W . For a typical density of n≈1×1011cm−2, the Fermi wavelength λf =
2π/kf would be about 100nm.

⟨kx⟩ =
1

2π

2π∫
0

dθ|kfcosθ|
∞∑
−∞

δ

(
Wkf sin θ

π
− n

)
(6.8)

=
1

2W

2π∫
0

dθ
Wkfcosθ

π

∞∑
−∞

δ

(
Wkf sin θ

π
− n

)
(6.9)

=
2

W

π/2∫
0

dθ
Wkfcosθ

π
δ

(
Wkf sin θ

π
− n

)
(6.10)

=
2

W

Wkf/π∫
0

dx δ(x− n) (6.11)

=
2

W

[
Wkf
π

]
(6.12)

Now remembering the factor of 1/2 and using eqn 6.12, where [ ] denotes the largest integer contained
in the expression, eqn 6.5 gives

G =
2e2

h

[
Wkf
π

]
(6.13)

Note the following points:

• Thus G is quantised in units of 2e2

h = 78µS, which is approximately 12.8kΩ in resistance units.

• If W , the width of the constriction, is very small (W < π/kf ), then no channel can come
into conductance. Only when W and the Fermi wavelength (λf ) start becoming comparable,
conduction starts.

• If W is very large, then we get the classical limit (called the Sharvin formula),

Gclassical =
2e2

h

Wkf
π

(6.14)
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Figure 6.5: The measured conductance of a split gate at low temperatures (T=30mK). Note the quan-
tisation of conductance. The sharpness of the quantisation will be smeared out at higher temperatures.

1-d channel in a magnetic field

Figure 6.6: The orientation of the channel and the magnetic field.
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PROBLEM : The energy of an electron in a 1-d channel is the sum total of the energy of confinement
in one direction (like particle in a box) and the kinetic energy of travelling wave in the direction of
motion. So the allowed energies are

En =
~2

2m

[
k2x +

(nπ
W

)2]
(6.15)

if the confinement is taken to be a hard wall type. Here W is the width of the channel and for each
value of n we have n− 1 nodes and these are called successive subbands. However for the rest of the
problem, consider the confinement to be parabolic (harmonic oscillator type) in the y direction. This is
easier to handle mathematically. You should be able to write down the allowed energies at once. Next,
consider a 1-d channel placed in a perpendicular magnetic field as shown. The confinement is provided
by a parabolic potential (electrostatic). The confining potential, the magnetic vector potential and
the wavefunction can be written as

V (y) =
1

2
mω2

0y
2 (6.16)

A = (−By, 0, 0) (6.17)

ψ(x, y) ∼ eikxfk(y) (6.18)

Show that under these conditions the energy levels are given by:

En =
~2k2

2m

(
1

1 + (ωc/ω0)2

)
+

(
n+

1

2

)
~
√
ω2
c + ω2

0 (6.19)

where ωc = eB/m is the cyclotron frequency. Notice that near k = 0 the magnetic field raises the
energy of the subband bottom, by making the apparent confinement steeper.

Try to solve it for a magnetic field that is in plane and parallel to the channel.

Try to solve it for a magnetic field that is in plane and perpendicular to the channel.



Chapter 7

Superconductivity

References:

1. Superconductivity of metals and alloys, P. G. de-Gennes. W. A Benjamin publishers (1966)

2. Statistical mechanics R. P. Feynman. Advanced Book classics. (2nd ed, 1998). See also the
Feynman lectures, vol 3 for a special lecture on superconductivity.

3. Introduction to superconductivity, M. Tinkham, McGraw Hill publishers. This is a standard and
extensive textbook for superconductivity.

4. Solid State Physics, chap 18, by G. Grosso and G.P. Parravicini, Elsevier (Singapore).

We will try to present a very brief account leading to the microscopic theory. Ultimately we want to
be able to see what happens at the junction between two superconductors, in a not too handwaving
manner. We will show most of the important steps of the argument, but not try to deduce everything.

The experimental discovery of superconductivity (zero resistance state in Mercury) and Bohr’s analy-
sis of the hydrogen atom happened around the same time. However nearly 50 years of development of
quantum mechanics and statistical physics was needed before the explanation of this striking phenom-
ena emerged. But superconductivity is not a very rare phenomena, infact there are more naturally
superconducting elements (in the periodic table) than ferromagnetic elements.

7.1 What do we know experimentally

7.1.1 It is a distinct thermodynamic phase

1. Some materials (like Hg, Sn, Al, Nb and many more) loose their electrical resistance when cooled
below a certain temperature. Among naturally occurring elements (under atmospheric pressure)
Nb has the highest TC , 9.3K. There are quite a few in the range 1-10K.

2. Interestingly very good conductors like Au, Cu, Ag do not become superconducting.

3. Superconductivity is distinct thermodynamically from infinite conductivity. The following ex-
periment tells us why:

Consider a very long coil of radius R and N turns/mt , surrounding a very long cylinder of a super-
conducting material of radius r. The setup is initially above TC . A current I is maintained in the coil
by a constant current source.

89
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• Initially there is an uniform axial field B = µ0NI in the coil and we assume that it is the same
inside the material also. It amounts to saying that the magnetic permeability of the material is
1, which is often a very good approximation.

• We find that below TC the superconductor expels the magnetic field, provided the magnetic field
is less than a critical value B < BC .

• This means that the flux through the coil has changed by

∆ϕ = πr2BCN (7.1)

• Let us consider the Helmholtz free energy of the system before and after the transition. During
the time the flux was changing, because the current was kept constant, the system did some
work on the external (battery) that was maintaining the current. We have by adding the energy
of the magnetic field and the material, (all quantities are to be interpreted as per unit length)

Fi = Fn + πR2BC
2

2µ0
(7.2)

Ff = Fs + π(R2 − r2)BC
2

2µ0
(7.3)

Ff∫
Fi

dF = I

ϕf∫
ϕi

dϕ

dt
dt (7.4)

Ff − Fi = NI(−πr2BC) (7.5)

= −πr2BC

(
BC

µ0

)
(7.6)

∴ Fs − Fn = −µ0HC
2

2
in SI (7.7)

= −HC
2

8π
in cgs (7.8)

• The free energy difference between the two phases is thus reduced to an easily measurable
quantity, the critical field. The various derivatives of free energy can now be used to compute
many relevant quantities (entropy, latent heat and specific heat..)

∆F = Fn − Fs = −µ0HC
2

2
(7.9)

∴ Sn − Ss = −d∆F
dT

= −µ0HC
dHC

dT
(7.10)

∆L = T (Sn − Ss) = −µ0HCT
dHC

dT
(7.11)

∆Cv = Cn − Cs = −µ0T
(
dHC

dT

)2

(7.12)

PROBLEM : Complete the derivations of the equations given above

• Note that the superconducting transition is of second order (no latent heat) in zero magnetic
field.

• Experiments show that the quantity Fn − Fs is of the order of (kBT )2

EF
per electron, which is

clearly very small compared to EF since the temperatures involved are a few kelvin only. Thus
the superconducting state differs from the normal state by a very small amount of energy.
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• The energy involved must be of the order of kBTc. At 10K, this is less than 1 meV. In frequency
units, this would mean about 1011 Hz.

• Superconductivity is not the same as perfect conductivity in the sense that we cannot get the
flux expulsion result (Meissner effect) by puttting σ → ∞ in Maxwell’s equations. That would
tell us that the flux through a loop of infinite conductivity should stay frozen. You should be
able to prove this result.

See Fig. 7.1 for the specific heat change at the transition. The electronic specific heat of the normal
metal is linear with T as expected for free electrons obeying Fermi statistics.

PROBLEM : Why is an exponential specific evidence of a gap? Consider a two level system with two
energy levels E1 = 0 and E2 = E. The partition function is simple to write it is Z = 1 + e−βE . Now
calculate the Helmholtz free energy, F , and then Cv from the second derivative of F , using standard
thermodynamic relations. Remember Cv must be positive. You should get

Cv

k
=

(
E

kT

)2 e−βE

(1 + e−βE)2
(7.13)

How does this behave at low temperatures? If there is a gap just above the ground state, then at low
temperature we can get an idea of the system’s behaviour by just considering the two lowest states as
we have done here.

7.1.2 Evidence for a gap

• Absorption of radiation: Superconductors absorb microwave radiation of λ∼1mm. See Fig.

• Tunneling experiments show that the density of states has a gap.

See fig. 7.3 to get an idea what tunneling experiments tell us.
These two taken together suggest that pairing plays a role, because the gap that we get from tunneling
experiments is half the gap shown by the radiation absorption experiments.

Significance of a gap

A gap in the energy spectrum means that low energy excitations cannot be absorbed by the system
or the system cannot give up small amounts of energy. This needs to be understood very carefully.
Every bandgap does not lead to superconductivity - if it did, then a full valence band (as in instrinsic
semiconductors) would become superconducting with a huge (few eV) gap! Clearly that does not
happen.

• We must be able to build a current carrying configuration out of sates just below the gap. That
isn’t possible if we use all the electrons in a band. If we displace a full band of electrons then
we don’t get any net current, because the sum of the group velocities of all the states over one
full period (Brillouin zone) is always zero.

• An overall shift of the occupied states in k-space is needed to build a current carrying state.
This is possible to do in a metal or something that has a partially filled band. Once this has
been done the presence of a gap prevents the current carrying state from decaying in small bits
and pieces. Of course ifI sufficient energy (in the form of kinetic energy of the critical current,
or radiation etc) is available then a decay of that state will occur.

• From experiments we find that the gap varies with temperature and at T = 0 has a value

2∆(T = 0) = 3.52kBTC (7.14)
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Figure 7.1: The change in specific heat as one passes the transition. The figure is take from P.G.
de-Gennes’s book.
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Figure 7.2: Millimeter wave bbsorption data from ”Millimeter Wave Absorption in Superconducting
Aluminum. I. Temperature Dependence of the Energy Gap”, by M. A. Biondi and M. P. Garfunkel.
Physical Review B, 116, 853 (1959). The curve obtained at the longest wavelength, 19.05 mm, resem-
bles the lower frequency microwave data in that there is a rather abrupt decrease in the absorption
as the temperature falls slightly below T, and the absorption tends essentially to zero as t approaches
zero. At successively shorter wavelengths (higher photon energies) the absorption falls more and more
slowly as the temperature is reduced below Tc. However, for all photon energies less than 3.08kBTc
the absorption electively approaches zero as t→0. In terms of an energy gap picture, the absence
of absorption at absolute zero indicates that these photon energies (hν < 3.08kBT ) are too small
to span the gap. Similarly, the substantial absorption at absolute zero indicated by the curves for
hν > 3.63kBTc, indicates that these photon energies induce transitions of electrons across the forbid-
den gap. I have added the blue dotted line to show the expected behviour of the resistance, if the
measurement was done with zero frequency (dc).
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Figure 7.3: What does a tunneling experiment tell us? If the density of states on one side is simple
then the resulting I-V is predominantly controlled by the density of states of the more complex side.

7.1.3 How an attractive e-e interaction becomes possible

We have encountered screening before. It tends to reduce the interaction strength between charges in
a medium. Now could there be situations where the sign of the interaction gets changed? The presence
of electrons in a polarisable lattice can give rise to such a possibility if the consider the screening of
a time varying field. Technically it is called dynamic screening. Let us give a plausibility argument.
This is not a proof.

Consider a system of metallic electrons in a lattice. We introduce an little extra charge δρ and as a
result the charge density of the electrons change by an amount ρe and the charge carried by the ions
(lattice) ρl. We must have

∇2V = −δρ+ ρe + ρl
ϵ0

(7.15)

Each ion of mass M carries a charge (+Ze) and there are n per unit volume. So we can write the
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Figure 7.4: Observation by LT-STM of the superconducting energy gap variation with temperature
in a 5-nm-thick NbN epi-layer deposited on R-plane sapphire. Inset: measurement at 1.6K of the
quasiparticle density of state versus voltage (or energy) indicating completely empty electronic states
below 1.5 meV and of the clear superconducting energy gap at 2.38 meV. The gap is well fitted
by the BCS model with a pair-breaking parameter Γ = 0.02. The data is from ”Fabrication of a
superconducting niobium nitride hot electron bolometer for single-photon counting”. by R Romestain,
B Delaet, P Renaud-Goud, I Wang, C Jorel, J-C Villegier and J-Ph Poizat, in New Journal of Physics
6, 129 (2004).

equation of motion of the ions as:

M
dvl
dt

= eE (7.16)

∴ djl
dt

=
nZe2

M
E (7.17)

But ion current and ion charge density must be related by the continuity equation. So

∂ρl
∂t

= −∇.j

∂2ρl
∂t2

= −nZe
2

M
∇.E

=
nZe2

Mε0
(δρ+ ρe + ρl) (7.18)

Notice that a plasma frequency of the lattice ions has emerged, call ωl =
√

nZe2

Mϵ0
Now if we assume

that the external potential has a time variation ∼ eiωt. Further we approximate the response of the
electrons by its static response - like the Thomas Fermi case. The justification is that the lattice
plasma frequency is much smaller than the electron plasma frequency. With these approximations we
get

ω2ρl(q, ω) = ω2
l [δρ(q, ω) + ρe(q, 0) + ρl(q, ω)] (7.19)
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Using the Thomas-Fermi screening (kTF is the Thomas-fermi wavevector) that we had introduced
earlier we can write the relation between the electronic charge density and the total density as

ρe =
k2TF

q2
(ρe + ρl + δρ) (7.20)

We now have enough information to find the ratio

ε(q, ω) =
δρ

ρe + ρl + δρ
(7.21)

It is left as an exercise to show that the result is

1

ε(q, ω)
=

1

1 +
q2TF
q2

(
1 +

ω2
q

ω2 − ω2
q

)
(7.22)

where we have written

ω2
q =

q2

k2TF + q2
ω2
l (7.23)

Notice that there is the possibility of the screening changing sign for some range of frequencies. Thus
the scattering between two electrons will look like as if they are via an attractive potential. If the
phonon part is neglected then we get back the familiar Thomas-Fermi result.

Meissner effect and the gap

Let us for the moment assume that somehow the superconductor can be described by a wavefunction
and the standard expressions for current apply. We will have more to say on this later. Following the
argument of London we can write , (since there is no dissipation)

mẍ = −eE (7.24)

j = −neẋ (7.25)

E = −∂A
∂t

(7.26)

The set of equations imply that
dj

dt
= −ne

2

m

∂A

∂t
(7.27)

we can then integrate this with the const of integration set to zero. We must then satisfy the boundary
condition that j⊥ = 0 at the boundary, so that A⊥ = 0 as well. This choice of ”guage” is called the
transverse gauge. You can show that this (along with ∇×B = µ0j) leads to

∇2A =
A

λL
2 (7.28)

where λL = m/ne2 has dimensions of length. The solution of the equation is clearly an exponen-
tial decay of the field as one enters the superconductor with a characteristic decay length (called
the penetration depth) given by λL. This is a number of the order of few hundred angstroms for
superconducting metals.

7.2 Ginzburg Landau ”order parameter” theory

Microscopic theories start by trying to write down the wavefunction containing the co-ordinates of
all (∼ 1023) particles and then deducing the value of observables from that wavefunction. There is
another approach to many-body problems that we often encounter. In this approach we reduce the
number of co-ordinates right from the beginning by trying to describe the system with an order pa-
rameter or a density functional.
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In particular the ”order parameter” is simply a function of co-ordinates that has a finite value (may
or may not be spatially constant) in the interesting phase and is zero in the normal phase. Like
the wavefunction, the order parameter is not an observable, but can be used to calculate them. The
procedure is typically :

• We somehow make a physically motivated guess of the form of free energy, that is functionally
dependent on the order parameter. Recall the difference between a function and a functional.

• This is just like writing down the Lagarangian or Hamiltonian of a system. The only ”proof”
that we are correct is that the predictions made on the basis of this turn out to be correct.

In this case Landau and Ginzburg proposed that for a superconductor with an order parameter ψ(r)
the free energy density can be written as (T < Tc):

F [ψ(r)] = Fn + α|ψ(r)|2 + β|ψ(r)|4 + 1

2m
|(−i~∇+ qA)ψ(r)|2 + B2

2µ0
(7.29)

Now we have to minimise it in the same way one minimises a lagrangian density. Here the field variable
is ψ(r). The answer we get looks very similar to the form of the Schrodinger equation

αψ(r) + β|ψ(r)|2ψ(r) + 1

2m
(−i~∇+ qA)2ψ(r) = 0

∴
[

1

2m
(−i~∇+ qA)2 + β|ψ(r)|2

]
ψ(r) = −αψ(r) (7.30)

Associated with this is a particle current density

j =
1

2

[(
−i~∇− qA

m
ψ(r)

)∗
ψ + ψ∗

(
−i~∇− qA

m
ψ(r)

)]
(7.31)

There is no reason a-priori reason to believe that the charge and mass that appear in the equation
would be the free electron charge and mass. Now with this expression for current density let us take
another look at the Meisner effect. Suppose there is no magnetic field (A = 0) initially. Then we must
have the current to be zero everywhere.

j(A = 0) =
q

2

[(
−i~∇
m

ψ(r)

)∗
ψ + ψ∗

(
−i~∇
m

ψ(r)

)]
= 0 (7.32)

If we assume that ψ(r) is not affected when a magnetic field is turned on, then

j(A) =
q

2

[(
−i~∇− qA

m
ψ(r)

)∗
ψ + ψ∗

(
−i~∇− qA

m
ψ(r)

)]
=

q

2

[(
−i~∇
m

ψ(r)

)∗
ψ + ψ∗

(
−i~∇
m

ψ(r)

)]
− q2

m
ψ(r)∗ψ(r)A

= 0− q2

m
ψ(r)∗ψ(r)A (7.33)

Thus the ”rigidity” of the wavefunction against a magnetic field can lead to the Meissner effect. There
is a little more that it points to. From perturbation theory we know that the change in the ground
state wavefunction due to perturbation can be written as :

ψ(r,A) = ψ(r, 0) +
∑
n ̸=0

⟨n|Hpert|0⟩
En − E0

|n⟩ (7.34)

If there is a considerable gap between the ground state and the first excited state then the ground
state wavefunction may change only very little. The rigidity of the wavefunction is an indicator of the
existence of a gap, not a proof of it.
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7.2.1 Another way of writing the current density: flux quantization

Any wavefunction can be written as

ψ(r) =
√
ρ(r)eiθ(r) (7.35)

It is left as an exercise to show that the equation 7.31 then looks much simpler, written in terms of
the phase gradient

j =
q~
m
ρ
(
∇θ − q

~
A
)

(7.36)

A striking prediction now results from the following consideration.

• Say T > Tc. We take a ring of a superconducting material and apply a magnetic field along the
axis.

• We now cool the ring to T < Tc. The field is kept the same during cooldown.

• Clearly surface currents would be set up which cancel the magnetic field in the interior exactly.
This is the Meisner effect.

• We now switch off the external field. The surface currents cannot decay and the field created by
them would give rise to a magnetic moment.

• What can we say about the field that now threads the hollow of the ring?

Consider a loop deep inside the body of the ring and a closed loop enclosing the hollow of the ring.
Since j = 0, we must have

∇θ =
q

~
A

∴
∮
∇θ.dl =

q

~

∮
A.dl

∴ 2nπ =
q

~

∫
area

B.ds

∴ 2nπ =
q

~
Φhole (7.37)

Unless the loop integral of the phase is 2nπ the wavefunction will not be single valued. This forces
the flux through the loop to be quantised. So far we have not said what the charge q is. But a
measurement can now tell us this information. Experimentally we find q = 2e, a striking proof of
pairing. The quantization of flux happens in units of

Φ0 =
h

2e
= 2.07×10−15Weber

= 2.07×10−7gauss.cm2 (7.38)

Another macroscopic wavefunction

We mention in the passing another example where a single wavefunction can be used to describe a
macroscopic system. This describes a Bose-Einstein condensate. This phenomena does have close
links with superconductivity but is not exactly the same. The equation is called the Gross-Pitaevskii
equation.

For N bosons interacting via a contact potential only, we can write

H =

N∑
i=1

(
~2

2m
∇2 + V (ri)

)
+
∑
i<j

4π~2as
m

δ(ri − rj) (7.39)
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The number of particles is conserved, and we can define a chemical potential µ. Then the system
can be described with a single co-ordinate wavefunction that resembles the Schrodinger equation with
non-linear terms. (

~2

2m
∇2 + V (r) + g|ψ(r)|2

)
ψ(r) = µψ(r) (7.40)

where V (r) is the external potential (like the potential of a trap for cold atoms),

g =
4π~2as
m

(7.41)

describes the strength of the inter particle interaction. The normalisation is such that∫
|ψ(r|2dV = N (7.42)

Notice the similarity with the GL equation. The similarity arises because the Free energy of these
systems can be (successfully) described with similar looking functional expressions. Minimsation of
that w.r.t. the wavefunction leads to the non-linear Schrodinger equation.

7.3 The Cooper pair problem

See the brief introduction to N-particle systems at this point.

The key insight so far has been that a pairing is somehow involved. But pairing requires an attrac-
tive interaction. even if we can find a source of lattice deformation mediated attraction between two
electrons, a crucial problem remains. In 3D one requires a minimum strength of a potential before a
bound state can occur. This argument was important when we analysed the Mott transition. What
Cooper showed, was that under certain conditions (that requires the presence of a filled Fermi sea)
there can be paired states of two electrons with arbitrarily weak interaction between them. This is
a crucial step and requires us to work with the anti-symmetrized wavefunction of two electrons with
k > kF . We write

(
p2
1

2m
+

p2
2

2m
+ V (r1 − r2)

)
Ψ(r1σ1, r2σ2) = EΨ(r1σ1, r2σ2) (7.43)

The normalised single particle states are like

ϕk,α(r) =
1√
V
eik.rα (7.44)

where α or β denote the spin functions. Ψ is a Slater determinant built out of these states. Now recall
that of the Slater dets that can be formed out of states with zero total momentum

• The S = 0 state has symmetric spatial part and antisymmteric spin part.

• The S = 1 state has antisymmetric spatial part and symmteric spin part.

So the most general Ψ with S = 0 and K = 0 can be written as

Ψ =
∑
k

g(k)
1

V
eik.(r1−r2) 1√

2
[α1β2− α2β1] (7.45)

with g(k) = g(−k)
We could have written out a general Sz = −1 state as

Ψ =
∑
k

g(k)
1

V
eik.(r1−r2)β1β2 (7.46)
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with with g(k) = −g(−k).

Now we force the two electrons to stay above the Fermi sea, by requiring that

g(k) = 0 for k < kF (7.47)

We also want an attractive potential between electrons:

V (r1 − r2) < 0 (7.48)

if both k1 and k2 lies within a shell of width ~ωD just above EF .

We must be able to solve for g(k) to be able to make any more progress. Convert eqn 7.43 to an
integral problem by

• Insert the general wavefunction eqn 7.45 into equation 7.43.

• left multiply with 1√
V
eik(r1−r2)

• Integrate over r1 and r2 and sum over the spin indices

We get

(2εk − E) g(k) +
∑
k′

Vkk′g(k′) = 0 (7.49)

where εk = ~2k2/2m are the single particle energy levels. We also have

Vkk′ =

∫ ∫
1

V
e−ik.(r1−r2)V (r1 − r2)

1

V
eik

′.(r1−r2)d3r1d
3r2 (7.50)

EF < εk, εk′ < EF + ~ωD (7.51)

Further

Vkk′ = −V0
N

if εF < εk, εk′ < εF + ~ωD (7.52)

= 0 otherwise (7.53)

With these simplifications we get:

(2εk − E) g(k)− V0
N

∑
k′

g(k′) = 0 (7.54)

Notice that if g(k) is antisymmetric in k then the sum will vanish. And the solutions would simply
be the εk . So only the energies of the Sz = 0 states can be modified, though we didn’t put any spin
dependent interaction by hand. We can also see that if we force the spins to align with a magnetic
field, then this new state cannot be favoured.

Now we write the solution for g(k), then sum both terms of eqn 7.54 over k to get a solution for E.
It is left as an exercise to complete the algebra. Then we convert the sum over k to an integral over
ε following the usual process and introducing the normal density of states for a metal. We get

V0
N

∑
k

1

2εk −E
= 1 (7.55)

V0
N

εF+~ωD∫
εF

D(ε)
1

2ε− E
dε = 1 (7.56)
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Now the question is does this give solutions with E > 0? According to the way we have written the
equations, the binding energy would be 2εf − E.

V0
N

εF+~ωD∫
εF

D(ε)
1

2ε− E
dε = 1

∴ 1

2
V0
D(εF )

N
ln

2εF + 2~ωD − E
2εF −E

= 1 (7.57)

∴ 2εF − E = ~ωD
e−1/V0n(ϵF )

sinh 1/V0n(ϵF )
(7.58)

≈ 2~ωDe
−2/V0n(εF ) if V0n(εF ) << 1 (7.59)

The result tells us

• Even if V0 is very small we are going to get a solution. The blocking of all the states below εf
have removed the constraint of a minimum strength of potential, even in 3D.

• The binding energy is not an analytic function of V0 - hence we could not have got this result
by expanding a complicated potential and treating it perturbatively.

• If there is a large V0, arising from electron-lattice interaction, it would favour the bound state.
In a loose sense, it tells us why very good metals (less electron-lattice coupling) like gold, copper
etc. are not found to be superconducting.

7.3.1 Many pairs together

It can be shown that the size of a pair, is much large than the mean separation of the electrons in the
metal. Thus if such a state at all forms, many pairs would be strongly overlapping and we must have
a way of treating them all at once. Here we must use the many body states, using the creation and
annihilation operators we have introduced (see the appendix).

The normal metal and a single Cooper pair

The normal metal (Fermi sea at T = 0) with N electrons, can be described by:

|ΨN ⟩ =
k<kF∏

k

c†k↑ c†−k↓|0⟩ (7.60)

We can then write a single Cooper pair as

|ΨCooper Pair⟩ =
∑
k

g(k)c†k↑ c†−k↓|ΨN ⟩ (7.61)

We did not need to specify k > kF in the last expression - can you see why?

The Hamiltonian

We write the hamiltonian using the creation/annihilation operators

H =
∑
k

εk

(
c†k↑ ck↑ + c†−k↓ck↓

)
+
∑
kk′

Vkk′c†k↑ c†−k↓c−k′↓ck′↑ (7.62)



102 CHAPTER 7. SUPERCONDUCTIVITY

The Bardeen Cooper Schrieffer (BCS) wavefunction

A variational wavefunction was written by BCS and then minimised. The wavefunction is a not a
fixed N wavefunction. It is written with an infinite number of variational parameters uk, vk as

|ΨBCS⟩ =
∏
k

(
uk + vk c

†
k↑c

†
−k↓

)
|0⟩ (7.63)

We state the following without proof, but you an work it out...

• uk, vk are real and even.

• u2k + v2k = 1 ensures that the state |ΨBCS⟩ is normalised to 1.

• vk represents the probability that the state (k ↑,−k ↓) is occupied

• It follows that uk will represent the probability that it is unoccupied.

• The normal metal has

uk = 0 vk = 1 for k < kF
uk = 1 vk = 0 for k > kF

(7.64)

The BCS state does not have a fixed number of particles. The number operator is

N̂ =
∑
k

(
c†k↑ck↑ + c†−k↓c−k↓

)
(7.65)

Now for the superconducting wavefunction we need to

• minimise ⟨ΨBCS |H|ΨBCS⟩ subject to the constraint ⟨ΨBCS |N̂ |ΨBCS⟩ = N .

This clearly is a ”Lagrange multiplier” problem. The procedure and the result are now very well
known - we will use the final result and skip the procedure. Just note that our variables are uk, vk
and the multiplier itself - which turns out to be the chemical potential (µ) of the system. µ is fixed
by N.

The values of the gap, uk and vk

Figure 7.5: The solution of the variational parameters obtained after optimising the BCS Hamiltonian.
Notice how the region of interest turns out to be around the Fermi level of the normal metal.
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The single particle energy gap is given by

∆(0) = 2~ωDe
− 1

V0n(εF ) = 1.76kBTc (7.66)

∆(T ) = 3.06kBTc

√
1− T

Tc
for T≈Tc (7.67)

The solution for the variational parameters are (see fig 7.5

u2k =
1

2

[
1 +

εk − µ√
(εk − µ)2 +∆2

]

v2k =
1

2

[
1− εk − µ√

(εk − µ)2 +∆2

]
(7.68)

The expectation value of the pair creation operator distinguishes the normal state from the supercon-
ducting state

⟨ΨBCS |c†k↑c
†
−k↓|ΨBCS⟩ = ukvk =

1

2

∆(T )√
(εk − µ)2 +∆(T )2

(7.69)

This quantity is zero in the normal state, but in the superconducting state it is different in a shell
of width ∆, around the chemical potential. From the free electron dispersion this width in energy
translates to a width in k

δE = ∆ =
~kF
m

δk = ~vF δk (7.70)

Thus the pair wavefunction will have a spatial width (called the coherence length ξ0 ) of the order

ξ0 =
~2kF
πm∆

(7.71)

In superconductors like Pb, Sn, Nb etc. ξ0 ∼ 1000Å. The spatial extent of a Cooper pair is thus very
large compared to the mean separation between the pairs. The states are thus strongly overlapping,
they could not have been treated in isolation.
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Chapter 8

Josephson junctions

The junction between a superconductor and a normal metal can show qualitatively different conduc-
tance characteristics depending on how strong the barrier is. We just show a picture of this phenomena
but would not analyse it further.

Figure 8.1: Differential conductance vs voltage for various barrier strengths Z at T=0. This quantity
is proportional to the transmission coefficient for electric current for particles at E=eV. The figure
is taken from ”Transition from metallic to tunneling regimes in superconducting microconstrictions:
Excess current, charge imbalance, and supercurrent conversion”, by G. E. Blonder, M. Tinkham, and
T. M. Klapwijk, Physical Review B, 25, 4515 (1982). Notice how the beahviour for subgap bias is
markedly different depending on how strong the barrier is.

Now what happens in a superconductor-superconductor (SS) junction? The barrier seperating the

105
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Figure 8.2: The Josephson current, normal state resistance and the normal (tunnel) current in the
junction.

two regions can be thin or thick. One may guess that there will be two components of the current.
Single electrons may tunnel if the voltage excitation is high enough. Also Cooper pairs may tunnel
at voltage biases below the gap. Josephson junctions are essentially S-N-S or S-I-S junctions where a
significant amount of the current is carried by the Cooper pairs.

We want to be able to calculate the I-V characteristics. But how do we setup the problem? We
will give an overview of how to do it using the macroscopic (Landau Ginzburg order parameter) and
microscopic (BCS wavefunction and tunnelling) viewpoints. It is easier to derive the basic result
using the Landau-Ginzburg method. We do that first. After this we will drive the same using the
microscopic picture.

Josephson junction from the Ginzburg-Landau order parameter

See the figure 8.3. The order parameters from the left and right decay in the barrier. So that in the
barrier we can write, as a reasonable guess in the barrier region

ψ(z) = ψ1e
−βz + ψ2e

β(z−b) (8.1)

where β is the damping in the barrier region. But this implies a current of the form

J(z) = − i~e
2m

[
ψ∗dψ

dz
− ψdψ

∗

dz

]
= − i~e

m
βe−bβ(ψ∗

1ψ2 − ψ∗
2ψ1)

=
2~e
m
βe−bβ |ψ1| |ψ2| sin(θ1 − θ2) (8.2)

We have assumed, via the expression for current that there is no magnetic field. We will have to
put that in later. Now consider a voltage applied across the junction. The relative energy difference
between the Cooper pairs must be 2eV . In analogy with the time dependent Schrodinger equation,
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Figure 8.3: The decay of the order parameter in the barrier.

we expect that the time variation of the relative phase ϕ = θ1 − θ2 to be

I = IC sinϕ (8.3)

dϕ

dt
=

2eV

~
(8.4)

An alternative derivation (see the Feynman lectures) is set as a problem.

The macroscopic approach tells us that the decay of the order parameter into the barrier lets it connect
or couple with the wavefunction on the otherwise. Hence the particle exchange is possible. But it
does not tell us things like

1. The relation of the critical current and the gap size.

2. Relative values of the normal to supercurrent.

The microscopic view : using BCS

Here we give the outline of a derivation given by deGennes and Ferrel. We do not calculate every matrix
element on the way - but will state the final result in some cases. Originally the striking prediction of
a supercurrent at zero voltage across the junction was made by Josephson. The hamiltonian for the
system (S + S′) is given by the uncoupled and the ”tunneling” parts

H = HSS′ +HT (8.5)

HT =
∑
kl

(
Tklc

†
kSclS′ + T †

klc
†
lS′ckS

)
(8.6)

Note that the c and c† are electron creation and annihilation operators not pair creator/annihilator.
Thus to transfer a pair (two electrons) we would have to look for a second order process - ensuring
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two actions by the operator. Let us write a state with ν pairs in S and N − ν pairs in S′. We assume
that altogether there are 2N electrons in S + S′. Let:

Ψν = ΦS′

2(N−ν)Φ
S
2ν (8.7)

HSS′Ψν = EνΨν (8.8)

Tunneling has been ignored till now. What is the cost of transferring two electrons from one side to
the other? by definition:

Eν − Eν−1 = 2(ES
F − ES′

F ) (8.9)

This difference can be fixed by an external battery. We now need to calculate the second order
connection between the states with one pair less (or more)

J0 =
∑
kl,k′l′

⟨ν + 1|Tklc†kSclS′ |I⟩ 1

E − EI
⟨I|Tk′l′c†k′Scl′S′ |ν⟩ (8.10)

• The intermediate state |I⟩ contains 2ν+1 electrons on side S and 2(N − ν)− 1 electrons on the
side S′ where the extra electron has an wavevectror k′.

• Then the second action of HT on |I⟩ creates another electron with wavevectror k.

• The final state onto which this is projected has ν + 1 pairs on side S.

• This would imply that we only need to keep terms k′ = −k and l′ = −l.

Using the BCS wavefunction and the excited states (with one extra unpaired particle) we can show
that

J0 = −4
∑
kl

|Tkl|2
ukvkulvl
εk + εl

(8.11)

Thus to second order in HT there is a connection between the states Ψν and Ψν+1 and we can write:

HΨν = EΨν + J0(Ψν+1 +Ψν−1) (8.12)

The eigenfunction of H would then be a linear combination of many Ψν . In a very similar way, the
tight binding wavefunctions are linear combinations of wavefunctions centered at many sites. In fact
the mathematical similarity of this problem with the nearest neighbour tight binding is striking. The
index ν takes the place of the site index. We use it in the following way, by introducing a variable k,
such that

•
Ψk =

∑
ν

eikνΨν (8.13)

The variables k and ν appear in the same fashion as x and p.

• The energy eigenvalues of this ”tight binding” hamiltonian must be

E(k) = E0 + 2J0 cos k (8.14)

• Then the ”wave packet” formed with states built around a certain k value will move with a
group velocity

d

dt
⟨~k⟩ = −2J0 sin k (8.15)

• It follows that the current is

I = −2e2J0
~

sin k (8.16)
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• If there is a chemical potential difference between the two sides, then we can apply the analogy
of an electric field acting on the ”Bloch electrons”

d

dt
⟨~k⟩ = 2eV (8.17)

• Finally, notice that all these effects will vanish if the product ukvk = 0. Hence none of these
happen in the normal state.

8.1 The RCSJ model

p-n junctions and heterointerfaces form the fundamental building blocks of semiconductor electronics,
Josephson junctions are the basic components od superconducting circuits. We need to understand
its current-voltage characteristics.

The equations governing a single junction shunted by a capacitor and a resistance, are discussed
in detail in several textbooks [Tinkham 1996]. This is the model that we will use in this chapter.
The current flowing through the junction has three components- the “supercurrent” (Is) caused by
the phase difference (ϕ) across the junction, the current through the resistance (R) caused by the
potential difference(V ) and the current through the capacitor (C). The externally impressed voltage
causes ϕ to change with time :

Is = Ic sinϕ (8.18)

dϕ

dt
=

2eV

~
(8.19)

Using 8.18&8.19 show that the coupling energy between the two superconductors forming the junction
is given by ∫

IsV dt = const.− EJ cos∆ϕ where EJ≡
~Ic
2e

(8.20)

The total current should be:

I =
V

R
+ Ic sinϕ+ C

dV

dt
(8.21)

By introducing the variables

i = I/Ic

ω =
2e

~
IcR

τ = ωt

β = ωRC

we get

βϕ̈+ ϕ̇+ sinϕ = i (8.22)

The parameter β is called the “Stewart-McCumber” parameter.The dots denote differentiation w.r.t
to τ , β is the single parameter that characterises the behaviour of the junction. The fast variations of

the phase occur with a frequency ω ∼ 1012 Hz, what the voltmeter measures is an average value of
.
ϕ

over several cycles. If we sweep the current through a junction then the voltage jumps from zero to
IR as I crosses Ic. If the current is then reduced below Ic, the voltage reduces to zero at a lower value
of current called the retrapping current (Ir). The ratio Ir/Ic depends only on β. Figure 8.4 shows
numerically calculated I-V traces of a single junction for various values of β. The physical reasons
behind the hysteretic behaviour are described in several textbooks, (e.g.see Tinkham’s book). We



110 CHAPTER 8. JOSEPHSON JUNCTIONS
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Figure 8.4: Numerically calculated I-V of a Josephson-junction for various values of β. The width
of the hysteresis increases with increasing β. From the observed ratio of the retrapping current and
critical current, it is possible to infer the value of β. For β ≈ 10 or more, the curve of Ir/Ic to β can
be approximated by Ir = 4Ic/(π

√
β).

describe the tilted washboard model.

PROBLEM : Another way of scaling the junction equation is as follows. Introduce the variables:

i =
I

Ic

ωp =

√
2eIc
~C

Q = ωpRC

τ = ωpt

Show that this leads to the equation

d2ϕ

dτ2
+

1

Q

dϕ

dτ
+ sinϕ =

I

Ic
(8.23)

This emphasizes the dissipative term (using the parameter Q), whereas eqn. 8.22 emphasized a mass
like inertia term. Notice that the scaling of the time variable is different in the two cases. From the
definitions show that:

β = Q2 (8.24)

Obviously a small Q means that the second derivative (inertia) term is less important, large β means
that the dissipative part (comes from the resistance) is less important.

8.1.1 The titled washboard

Both eqns. 8.22 and 8.23 admit a mechanical analogy. We have one term which looks like mass×acceleration,
one term like frictional/viscous dissipation and a force like term derivable from a position dependent
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potential

u(ϕ) = −iϕ− cosϕ scaled units (8.25)

U(ϕ) = −EJ cosϕ−
~I
2e
ϕ unscaled units (8.26)

• This potential has an overall slope given by the drive current and an oscillating part.

• If I < Ic then a solution with ϕ = constant is possible. This is the part where there is current
flow without a voltage drop. Let us start driving the RCSJ with a constant current source,
starting from I = 0.

• now we use the mechanical analogy. As the potential tilts more and more a particle trapped at
one of the many minimas of the ”titled washboard” will spill out and start moving. ϕ can no
longer be constant and there will be a voltage across the junction.

• The equations if numerically solved will give a rapidly oscillating ϕ(t). This fast oscillations are
not important. The voltmeter will measured the time averaged ϕ. It can be shown that in this
(normal) state the I − V behaviour of the junction is nearly that of a resistance.

• Now let us start decreasing the current. Will it drop back to zero right at Ic? This depends on
the value of β (or Q, depending on how we have scaled the equations).

• First consider the case of small inertia or large dissipation. Under these circumstances, the ϕ̈
can be ignored. The equation 8.23 is then exactly integrable.

dϕ

dt
=

2eIcR

~

(
I

Ic
− sinϕ

)
(8.27)

Now calculate how much time it would take for the phase to change by 2π. Let us say this time
is T .

• The average voltage measured by a voltmeter across the junction will then by

2e

~
⟨V ⟩ = 2π

T
(8.28)

It is left as a problem to show that for I > Ic

⟨V ⟩ = R
√
I2 − I2c (8.29)

• Thus for small β or small Q, the equation is approximately solvable in closed form. This is
called the OVERDAMPED case. Physically it means that the capacitance of the junction can
be ignored. In electrical circuits capacitors and inductors often behave like mass, because some
charge or current in those elements can store energy, very much like a mass ”stores” some kinetic
energy when it moves.

• See the curve for β = 0.1 in figure 8.4 and try to relate it with what we just calculated. There
is no hysteresis in this limit.

• This is important to note that the jump between the zero voltage and resistive states can occur
in about a picosecond. Josephson junction is the fastest known switch.

• The next point is to understand what happens when the capacitance and resistance must be
simultaneously taken into account. We will continue to assume that we are at T = 0. This
assumption has entered in a slightly subtle way in our analysis. We have ignored any thermal
fluctuation that can round off the transition or cause the ”particle” to escape from the bottom
of one cycle of the titled washboard.
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• Again we begin in the same way and start increasing the current from I = 0. At Ic the current
jumps to the normal state and nearly follows the normal state line. Then we start decreasing
the current. This is equivalent to starting to reduce the tilt of the washboard and try to trap
the particle again. But now that there is a mass term the particle will not stop at the same tilt
that set it running.

• This happens because the acceleration due to the slope of the washboard must be less than the
dissipation in every cycle, so that the system takes away some energy from the particle in every
cycle. Only then will the particle be retrapped. The retrapping current, Ir, at which it happens
is related to Ic for large β approximately by:

Ir
Ic
≈ 4

π
√
β

(8.30)

hence the I − V in this case (β >> 1) can be highly hysteretic. See the fig. 8.4 again.

• Now, how can we understand at what current it will retrap? When we asked whether the particle
will start rolling, if placed initially at rest at a local minima. Now we ask whether a particle
places at a local maxima with near zero kinetic energy, will be able to reach the next maxima.
We need to compare how much energy will be gained due to the tilt and how much will be lost
due to dissipation as it advances by 2π.

• The energy fed by the current over one cycle, ∆ϕ = 2π,∫
IV dt =

∫
I
~
2e

dϕ

dt
dt

= I
h

2e
(8.31)

The dissipation over one cycle matches this then that will be the borderline (current) below
which free running solutions are not possible. It is somewhat non-trivial to deduce the full
expression for dissipation per cycle1 which finally leads to eqn. 8.30.

8.1.2 Two different steady states: role of the initial conditions

The equation 8.23 can be numerically solved with the current set to a value somewhat below I/IC = 1.
In fig 8.5 you can see what happens to the solution for ϕ̇ as a function of τ . Depending on the initial
conditions there can be two possible values of the time average ⟨ϕ̇⟩. One is zero and the other is finite.
From a purely mathematical point of view this is the origin of the hysteresis.

8.1.3 Introducing the magnetic field

How would the phase difference across a junction change if a magnetic field is introduced? We again
fall back on the idea that the order parameter satisfies a Schrodinger like equation and try to deduce
something by analogy. Suppose we know a certain wavefunction, ψ(r) satisfies[

p2

2m
+ V (r)

]
ψ = i~

∂ψ

∂t
(8.32)

Now if we keep V (r) unchanged and introduce a vector potential A(r) how will the new wavefn be
related to the old one? We make use of the following relation (it is left as a simple exercise to show

1See: The return of a hysteretic Josephson junction to the zerovoltage state: IV characteristic and quantum retrapping.
Y. C. Chen, Matthew P. A. Fisher, and A. J. Leggett Journal of Applied Physics, 64, 3119 (1988); & Currentvoltage
characteristics of josephson junctions. W. C. Stewart Applied Physics Letters, 12, 277 (1968)
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Figure 8.5: The role of initial conditions.

how the extra terms produced by the derivative p = −i~∇ cancel)

(p+ qA)ψe
iq
~
∫
A.dl = e

iq
~
∫
A.dlpψ

(p+ qA) (p+ qA)ψe
iq
~
∫
A.dl = e

iq
~
∫
A.dlp2ψ (8.33)

(8.34)

This lets us write: [
(p+ qA)2

2m
+ V (r)

]
ψe

iq
~
∫
A.dl = i~

∂

∂t
ψe

iq
~
∫
A.dl (8.35)

Which implies that only the phase has changed

ψ =
√
ρeiθ → √ρeiθe

iq
~
∫
A.dl

∴ θ(r) → θ(r) +
q

~

∫
A.dl (8.36)

Thus the phase difference appearing in the josephson current equation 8.18 needs to be replaced by

Is = Ic sin

(
ϕ+

q

~

∫
A.dl

)
(8.37)

• The correct choice is q = −2|e| as we know from flux quantization experiments.

• The mass of the electron does not appear here, making the result independent of band structure
details.

We are now ready to understand how two josephson junctions connected in parallel and with a magnetic
flux (not so large as to kill the superconducting state) threading the area in between will behave.



114 CHAPTER 8. JOSEPHSON JUNCTIONS

Figure 8.6: Note the sense in which the path is traversed. The sign of the phase difference must be
treated correctly. When we write the current equation we want the phase lead of B w.r.t. A. But
while taking the integral we travel once from A to B and then from B to A.

8.1.4 Principle of the Superconducting QUnatum Interference Device

Let us now analyse what happens when two junctions are in parallel. See fig. 8.6. We take a path
along the loop as shown. Along the path the following relation holds:

mvs = ~
(
∇ϕ− 2π

Φ0
A

)
(8.38)

where Φ0 is the flux quantum already defined. The total flux passing through the loop is denoted by
Φ.

Φ =

∫
Loop

A.dl

=

∫
Electrodes

A.dl+

∫
J1

A.dl+

∫
J2

A.dl

=
Φ0

2π

∫
Electrodes

∇ϕ.dl+
∫
J1

A.dl+

∫
J2

A.dl (8.39)

We have used eqn 8.38 in the last step. It is important to take the integrals in the correct sense to
get the signs of the quantities. In going round the loop the total change in the phase must be 2nπ.
We write it out explicitly∫

J1→B→J2

∇ϕ.dl+∆ϕ(B→J2→A) +
∫

J2→A→J1

∇ϕ.dl+∆ϕ(A→J1→B) = 2nπ (8.40)

Now it is convenient to write out the change in phase across the junction more simply

∆ϕ(A→J1→B) = ϕ1

∆ϕ(B→J2→A) = −ϕ2 (8.41)
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So that we consider the change in going from A to B rather than force an anticlockwise sense.∫
J1→B→J2

∇ϕ.dl+
∫

J2→A→J1

∇ϕ.dl+ (ϕ1 − ϕ2) = 2nπ (8.42)

The total flux through the loop and the phases are then related as

Φ0

2π
[2nπ − (ϕ1 − ϕ2)] +

∫
BJ2A

A.dl+

∫
AJ1B

A.dl = Φ

ϕ1 − 2π

Φ0

∫
AJ1B

A.dl

−
ϕ2 − 2π

Φ0

∫
AJ2B

A.dl

 = 2π
Φ

Φ0
mod 2π (8.43)

In presence of a magnetic field the phase is to be replaced by the combination

γ = ϕ− 2π

Φ0

∫
Path

A.dl (8.44)

And hence the sum total of the current through the device (two identical junctions in parallel) muse
be :

I = Ic(sin γ1 + sin γ2)

= 2Ic cos
γ1 − γ2

2
sin

γ1 + γ2
2

= 2Ic

(
cos 2π

Φ

Φ0

)
sin

γ1 + γ2
2

(8.45)

The maximum supercurrent through the parallel combination of two junctions oscillates with the flux
passing through the junction. Since the flux quantum is a small quantity and it is possible to resolve
about 10−5 of an oscillation, we have a very sensitive detector of flux, or any quantity that can be
converted to a flux.

The equivalent circuit of a SQUID

• What the experimenter measures is the total current and the full voltage (I and V in the fig 8.7).

• Since the structure is like a loop we need to take into account its self inductance. This means
that the flux linkage due to the current flowing in the branches is not to be neglected. But this
current branches out (I = I1 + I2) and comes together again at the other end of the loop. So
we have to find the flux linkage in a situation where the current in the two halves of a loop are
different. It is left as a simple exercise.

• Also, we would set the junction parameters in such a way that there is no hysteresis in the
junction I-V. From the results of the previous section, this means we should make β < 1 or make
the resistance sufficiently small. This can be done by having a shunt resistance (a thin metal
film) across the junction.

• We will show the equations including a new thermal noise current term. This term allows one
to model thermal fluctuations that may allow the escape of the phase point from the minimas of
the washboard potential. It also has obvious effects on the resolution. We will point out some
results but not calculate the details of the noise term.
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Figure 8.7: The equivalent circuit of a SQUID. We neglect the possible small asymmetry in the R,
C, Ic parameters of the junction. It is known that they do not affect the behaviour very significantly.
The figure and analysis is taken from ”Simulation and optimization of a DC SQUID with finite
capacitance”, V.J. De Wall and P. Schrijener, Journal of Low Temperature Physics, 54, 215

So the equations of motion are now

I1 = Ic sin γ1 + I1,noise +
V1
R

+ C
dV1
dt

I2 = Ic sin γ1 + I2,noise +
V2
R

+ C
dV2
dt

(8.46)

dγ1
dt

=
2eV1
~

dγ2
dt

=
2eV2
~

(8.47)

The phase difference is determined by the total flux through the loop, which is the sum of the applied
flux and the self induced flux.

γ1 − γ2 = 2π
Φt

Φ0
(8.48)

Φt = Φext + LJ (8.49)

J =
1

2
I2 −

1

2
I1 (8.50)

From the equivalent circuit, we can relate V to V1 and V2

V = V1 −
L

2

dJ

dt

V = V2 +
L

2

dJ

dt

∴ V =
1

2
(V1 + V2) (8.51)

It is left as an exercise to show that this set of equation can now be scaled like before by introducing

β =
2eIcR

2C

~
(8.52)

βL =
2IcL

Φ0
(8.53)
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We get after scaling the current (by 2Ic) , voltage (by IcR) and time as before and neglecting the
noise term

βγ̈1 + γ̇1 + sin γ1 =
i

2
− j (8.54)

βγ̈2 + γ̇2 + sin γ2 =
i

2
+ j (8.55)

j =
1

πβL

(
γ1 − γ2 − 2π

Φext

Φ0

)
(8.56)

V

IcR
=

γ̇1 + γ̇2
2

(8.57)

This set of equation can now be solved to show what happens to the SQUID’s IV as the flux through
the loop is increased. The figure 8.8 and figure 8.9 shows how the IV curve shifts.
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Figure 8.8: Note how the IV curve shifts. In reality most SQUIDs are operated with a current
larger than Ic through them. Also the mechanism by which the flux is detected involves a feedback
mechanism to keep the flux through the loop constant by changing the current in a separate small
coil, that will be explained later.

Thermal noise

We state (without proof) that thermal noise imposes two constraints on the microscopic junction
parameters.

• The coupling energy of the junction must be larger than the thermal energy. So

~Ic
2e

> kBT (8.58)

So at T = 4.2K (liquid Helium) this requires Ic & 1µA approximately
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Figure 8.9: See also how the measured voltage would change as the flux is varied.

• The fluctuation in current also implies a fluctuation in the self induced flux. So large self induc-
tance will mean that the fluctuation flux can overrun the effect of the external flux. Simulations
show that we need

L . Φ0
2

5kBT
(8.59)

So at T = 4.2K (liquid Helium) this requires L < 15nH approximately.



Appendix A

Electromagnetic spectrum

In this chapter we will review the mechanism of generation, detection and importance of electromag-
netic waves of various frequencies. We will see that an important boundary exists in an in-between
region. Let’s first see a very familiar picture:

Figure A.1: The electromagnetic spectrum .
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Let’s start from the bottom of the figure and ask some questions.

• How are very low frequency waves ∼ 100 KHz generated? A simple circuit shown would do. At
typical audio frequencies and a bit higher this would work fine.

Figure A.2: The simple audio frequency oscillator for few kHz to tens of kHz .

• To go slightly higher one would use LC circuits, why?

Figure A.3: LC oscillator for few hundreds of kHz - few Mhz .

• As we come to few hundred Mhz the oscillator requires more sophisticated (high speed) transis-
tors for the amplifiers. Why is it so?

• Cell phones work at typically 900 Mhz - 2 GHz range.

• The common microwave oven & wireless routers work around 2.4 GHz.

• The fastest transistors available today approach close to 100 GHz.

Now see the following figure:

• When we want to generate oscillations in the infra-red regime, we rely on fundamentally different
mechanisms. Usually this would involve transitions between conduction and valence bands of
an semiconductor, or between energy levels of an atom or in some cases just thermal radiation
like a tungsten filament bulb. The region of a few Thz separates what is conventionally called
”electronics” and what is called ”photonics”.
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Figure A.4: The terahertz gap. The development of radiators and detectors in this range is a relatively
recent phenomena. This is a range where we can neither use electronic oscillators nor atomic/band
gap based transitions.

• In the visible range (1-2eV) usually atomic transitions involving outer shell electrons work.
Recall the sodium D lines involve outer shell electrons.

• If one keeps going higher and higher in frequencies then one would require transitions from core
levels of an atom. For example the Cu Kα line is a transition between the innermost and the
next higher shell. This is in the X-ray regime (λ = 1.54Å) with energies in the range of 100 keV
or so.

• If one keeps going higher one would reach energies characteristic of nuclear transitions - these
gamma rays would have energies in the range of 106 eV or even more.

• Gamma rays of much higher energies would come from electron-positron annihilations etc.

Finally let us also look at how the atmosphere responds (attenuates) the various frequencies ranges
in question.

Figure A.5: Which frequencies does the atmosphere allow, and which does it cut off. This often
determines the kind of technology we need for communications or to observe radiation in a certain
range. The picture is from Wikipedia.
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A.1 Mott transition

References:

1. The transition to the metallic state, N.F. Mott, Philosophical Magazine, 6:62, 287-309

2. The transition to the metallic State, P.P. Edwards and M.J. Sienko, Accounts of Chemical
Research, 15, 87-93 (1982)

We consider the following thought experiment. Suppose we have a collection of atoms with one loosely
bound electron (like s electrons) arranged on a cubic lattice (say) with a very large lattice constant.
Now we start shrinking the lattice. One might argue that this can be achieved to some extent by
applying pressure to some real material. However, we will make the connection with reality a little
later. We want to know whether this material will conduct electric current at T = 0. This depends
on whether it has free electrons in the conduction band in the limit of T → 0.

Common sense would say that if these atoms are too far away from each other then the atoms effec-
tively do not see each other and there is no way an electron can move from one atom to another. In a
tight binding sense, the overlap integral would be zero. The question is at what separation (and how)
does the system switch to being a band metal?

This question has very deep ramifications but let us first try to frame a strategy to solve it.

Band theory alone would not help. Tight binding would just suggest that the bandwidth would go to
zero exponentially with distance. If the atoms are very far apart what is the difficulty in conduction?
Well for an electron to move from one site to another there would be times when two of these sit
on top of one another. This would cost a lot of Coulomb repulsion because the wavefunctions are
localised on each site as long as the s electrons are bound to the atoms. But if the binding energy
goes to zero then all electrons are delocalised and the question of large repulsion due to confinement
in a small volume (one atomic site) does not arise. Recall that we gave a similar argument to rule out
double occupancy for donor sites in a semiconductor.

The potential between a lattice site and the outer electron will be the Coulomb potential modified by
the screening due to the lattice and the other free electrons already present in the conduction band.
This may then be written in the Thomas-Fermi screening approximation as

V (r) = − 1

4πϵ0

e2

κr
e−qTF r (A.1)

where qTF is the Thomas Fermi wavevector that depends on how many free electrons are already
there.

q2TF =
me2

πϵ0κ~2
n1/3 (A.2)

In 3D not every potential has a bound state. There needs to be a minimum ”strength” of a potential
- before it will develop a bound state. We know that in the limit q → 0 the screened Coulomb (or
Yukawa) potential has bound states - it just becomes the bare Coulomb. On the other hand if qTF is
very large the potential drops too fast to develop a bound state. It turns out that the condition for
no bound state is :

qTF >
me2

4πϵ0κ~2
(A.3)

Notice that the combination on the rhs is precisely the inverse of effective (hydrogenic) Bohr radius
(aB). The relation is

aB =
4πϵ0κ~2

me2
(A.4)
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Figure A.6: The Coulomb repulsion energy U when atoms are far away is too large for transport to
take place. But the bandwidth increases as the interatomic separation decreases. There comes a point
when the overlap integrals are large enough and transport is possible from site to site.

This allows us, to conclude using A.3 and A.2 that if

n1/3aB > 0.25 (A.5)

then there is no bound state. Figure A.6 shows another way of thinking of this. In the isolated atom
the state with one extra electron lies very high in energy (by an amount U) for reasons given before.
Now with this extra input we can calculate the spreading of both the levels, assuming some realistic
wavefunctions of both the states (neutral and the one with an extra electron). As the atoms come
closer at some point the band width may become sufficiently large so that the two bands overlap. The
electron can then move seamlessly from from one site to the next. This is the metallic state.

Let us now see the connection of this with dopants in semiconductors. The dopants do not form a
regular lattice, but their number can be controlled. For the moment let us forget about order with
the following handwaving justification. The bandwidth depends (in a tight binding sense) on the
co-ordination number and the nearest neighbour overlap integral. So we have some justification of
ignoring what might be happening to the sites far away and just take the average density of sites.

The host semiconductor does the job of keeping the dopants on place and provide a background di-
electric constant. The effective Bohr radius and effective mass that we use are the ones appropriate
for the host semiconductor.

We can control the number of dopants that we put in. If they are all ionised then the electron density
would just be same as the doping density. It is this number that enters eqn. A.5.

An experimental example is shown in Fig. A.7. In general metallic state implies two things:

1. The conductivity tends to a finite value as T → 0

2. The conductivity increases with decreasing temperature

Microscopically this implies that the electrons are delocalised. Insulating state would mean just the
opposite. An important point here is that ultimately temperature plays no role in the problem because
we are talking about two possible states (metallic or insulating) in the limit of zero temperature. Thus
this kind of phase transition is distinct from the other thermal phase transitions (like water freezing
to ice) that we are familiar with.

How well does this hold for doped semiconductors? See the Figure A.8. It agrees remarkably well,
inspite of so many assumptions that we made. It tells us that the basic idea of screening by conduction
electrons making the Coulomb repulsion cost going to zero, is a very robust one.
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Figure A.7: A plot of log σ(N,T ) vs T−1/4 for Arsenic donor doped Silicon. Notice how the behaviour
changes at higher doping. At low T , σ(T ) tends to a finite value rather than dropping sharply to
zero. The doping levels are in units of 1018cm−3. The data is taken from a paper, ”dc conductivity
of arsenic doped silicon near the metal insulator transition”, by W.N. Shafarman, D.W. Koon and
T.G. Castner, Physical Review B, 40, 1216-1231 (1989). This data is on the insulating side, but at
the highest doping levels the temperature dependence has almost started flattening off.
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These arguments were originally given by Neville Mott starting from late 1940s. There are several
review articles that you can get, since a lot of interesting phenomena happens due to the competing
effects of electron-electron interaction, disorder and dimensionality.
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Figure A.8: At what doping density does the transition occur? In this plot the straight line is corre-
sponds to the Mott formula A.5. The data points are experimental numbers at which the transition
has been seen to occur. Notice the remarkable agreement for a number of material. The data is taken
from a paper ”The Transition to the Metallic State”, P.P. Edwards and M.J. Sienko, Accounts of
Chemical Research, 15, 87-93 (1982).



Appendix B

Many particle systems

The classical view is that one particle, that is part of an N-particle system can be tracked with arbi-
trary accuracy. Hence they are distinguishable. This is not correct and we need to find a way to write
the wavefunction of N particles taking this indistinguishability into account. The fact that particles
are either bosons or fermions is reflected in the permutation symmetry of the function of n variables
(co-ordinates of the N particles). If we exchange the co-ordinate set that refers to (say) particle 1
with particle 2, the function either picks up a negative sign or stays the same. In general the set of
coordinates will consist of the position variable r and the spin variable σ. Since we will be dealing

with electrons only we will denote the spin variables values by α ≡
(

1
0

)
or β ≡

(
0
1

)
. So ϕm(r5)β5

will mean that particle number 5 is in a (basis) state ϕm and spin state β.

B.1 Determinant and permanent

The wavefunction of a N-particle system needs to be written taking into account the bosonic or
fermionic nature of the particles. This is a law of nature and cannot be proved. We can only verify
predictions resulting from this.

B.1.1 Fermions

Ψ(riσi) =
1√
N !

∣∣∣∣∣∣∣∣
ϕ1(r1)σα(ξ1) ϕ1(r2)σα(ξ2) . . . ϕ1(rN )σα(ξN )
ϕ2(r1)σα(ξ1) ϕ2(r2)σα(ξ2) . . . ϕ2(rN )σα(ξN )
. . . . . . . . . . . .
ϕN (r1)σα(ξ1) ϕN (r2)σα(ξ2) . . . ϕN (rN )σα(ξN )

∣∣∣∣∣∣∣∣ (B.1)

• This expression is called the Slater determinant. If we recall what happens to a determinant,
when two rows/columns are interchanged, we can see how the anti-symmetry is incorporated.

• We have assumed that the single particle basis states are orthogonal and normalized over the
volume of interest.

• Single particle basis wavefunctions may not always be orthogonal, but it simplifies things enor-
mously if they are. Most of the times (for treating electrons in metals etc.) we use the plane
wave states 1√

V
eik.r as the basis, which are orthonormal for different values of k. But there

is one well known example where a non-orthonormal basis is useful - building up the hydrogen
molecule from two atomic sites. The (1s) wavefunctions centered on two different atoms are not
orthogonal, but serve as useful basis.

• The correct normalisation for orthonormal ϕi(r) is given by B.1.

127
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• The Pauli exclusion principle is built into this. If two rows or two columns are identical, then
the determinant is automatically zero. If we place two particles in exactly the same state - this
will happen.

• We also denote the Slater determinant state by the shorthand notation

Ψ(riσi) = A{ϕi1, ϕi2....ϕiN} (B.2)

where A denotes the anti-symmetrization operation.

B.1.2 Bosons

We need the completely symmetrized product. This is formed by writing out all the possible permu-
tations (P ), exactly as if we are expanding the determinant. But we do not include the (−1)P factor.
So all terms occur with a + sign. Such a construct is called the permanent, but this name is not very
widely used.

• For bosons there is no exclusion principle. We can place as many particles we like in one state.

• Consider a state where we have places n1 particles in state 1 (denoted by ϕi), n2 particles in
state 2 (denoted by ϕ2)...The correct normalization of this state is given by:

Ψ(riσi) =
1√

N !n1!n2!..nQ!

∣∣∣∣∣∣
∣∣∣∣∣∣
+

(B.3)

We leave it an exercise to figure out the combinatorics leading to the normalization factor. The
subscript + is a reminder that this is the permanent, not a determinant.

• Note the difference in normalization with the fermion case. If there is only one particle in each
case, then the normalisation would be identical.

• If all particles are in the same state (say ϕ3) then the previous expression must reduce to

Ψ = ϕ3(r1)ϕ3(r2)...ϕ3(rN ) (B.4)

Show that this follows from the normalization just mentioned.

• We also denote the fully symmetrized state by the shorthand notation

ΨN (riσi) = S{ϕi1, ϕi2....ϕiN} (B.5)

where S denotes the symmetrization operation.

B.1.3 An important exercise

Let us try to write explicitly the two electron states with free electrons, including the spin functions.
from any two spin-orbitals k1σ1 and k2σ2.

PROBLEM : In a homogeneous system any two body potential is expected to have the form V (r1−r2)
so the mixing of two determinantal states can occur only if total momentum is conserved. Prove this
by taking two initial states with momentum k1, k2 and two final states with momentum k′

1, k
′
2. You

need to prove that Vk′
1k

′
2,k1k2

̸= 0 only if k′
1 + k′

2 = k1 + k2.

Now consider the states for which the total momentum K = k′
1 + k′

2 = k1 + k2 = 0. We write the
Slater determinants formed with the states k and −k. The basis states are like

ϕkα =
1√
V
eik.r

(
1
0

)
(B.6)
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So we can have four normalised combinations with k,−k,α and β.

ψ1 =
1√
2

∣∣∣∣ ϕk(r1)α1 ϕk(r2)α2
ϕ−k(r1)α1 ϕ−k(r2)α2

∣∣∣∣ = 1

V

1√
2

[
eik(r1−r2) − e−ik(r1−r2)

]
α1α2 (B.7)

ψ2 =
1√
2

∣∣∣∣ ϕk(r1)α1 ϕk(r2)α2
ϕ−k(r1)β1 ϕ−k(r2)β2

∣∣∣∣ = 1

V

1√
2

[
eik(r1−r2)α1β2− e−ik(r1−r2)β1α2

]
(B.8)

ψ3 =
1√
2

∣∣∣∣ ϕk(r1)β1 ϕk(r2)β2
ϕ−k(r1)α1 ϕ−k(r2)α2

∣∣∣∣ = 1

V

1√
2

[
eik(r1−r2)β1α2− e−ik(r1−r2)α1β2

]
(B.9)

ψ4 =
1√
2

∣∣∣∣ ϕk(r1)β1 ϕk(r2)β2
ϕ−k(r1)β1 ϕ−k(r2)β2

∣∣∣∣ = 1

V

1√
2

[
eik(r1−r2) − e−ik(r1−r2)

]
β1β2 (B.10)

PROBLEM : Which are the singlet states and triplet states? Show that ψ2 − ψ3 is the only singlet
S = 0 state. Write down the three possible triplet states. What are the symmetries of the spin and
spatial parts of the wavefunctions?

B.1.4 The Hilbert space

Now we have a Hilbert space in which there are N×N determinantal states with n taking any value.
We need a way of moving about between these states. An operator that takes us from an N particle
state to a N+1 particle (symmetrized or ani-symmetrized as the case may be) state is called a creation
operator. But into which state would the additional particle be added and where shall we place the
column corresponding to the new particle. Here is the convention:

Fermions

if

ΨN = A{ϕi1, ϕi2....ϕiN} (B.11)

then

c†mΨN = A{ϕmϕi1, ϕi2....ϕiN} (B.12)

In case ϕm is already present in the occupied set {ϕmϕi1, ϕi2....ϕiN}, then the new state will vanish.

• Similarly we can add two particles:

c†nc
†
mΨN = A{ϕnϕmϕi1, ϕi2....ϕiN} (B.13)

Since determinants change sign if two columns (or rows) are exchanged, we must have:

c†nc
†
mΨN = −c†mc†nΨN (B.14)

See figure B.1 for an explicit example with a small number of particles.

This must hold for any Ψ, so we arrive at the anti-commutation relation:

{c†n, c†m} ≡ c†nc†m + c†mc
†
n = 0 (B.15)
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• The N particle state itself can be built up by starting with the N = 0 particle vacuum state as:

A{ϕnϕmϕi1, ϕi2....ϕiN} = c†i1c
†
i2..c

†
iN |0⟩ (B.16)

What is the conjugate of the creation operator c†? It is tempting to say that it must be an annihilation
operator. But let us see why it is so. Consider two states related by

|ΨN+1⟩ = c†|ΨN ⟩ (B.17)

hence

⟨|ΨN+1|c†|ΨN ⟩ = 1 (B.18)

But by definition,

⟨|ΨN |c|ΨN+1⟩ = ⟨|ΨN+1|c†|ΨN ⟩∗ (B.19)

From which the claim follows. It is also straightforward to show that

{cn, cm} ≡ cncm + cmcn = 0 (B.20)

And

{cn, c†m} ≡ cnc†m + c†mcn = δmn (B.21)

When the annihilation operator (say cm) acts on a Slater determinant state not containing the ϕm
state, its action is defined to give zero. If the ϕm state exists, then it should be moved to the first row
of the determinant, unless it is already in the first row, and then removed. This row interchange, if
needed, would cost one multiplication by −1.

The behaviour of the fermionic creation and annihilation operators are now completely defined.

Bosons

For bosons the creation and annihilation operators are expected to do the same job, but the normal-
ization of the boson states are slightly different and the columns in the determinant like expression
can be shuffled in any way we like.

|ΨN ⟩ = S{ϕnϕmϕi1, ϕi2....ϕiN} (B.22)

for bosons there may be more than one particle in the same state. This is best made clear by writing
this expression in a slightly different way (called the occupation number representation)

|ΨN ⟩ = |n1. . .nq. . .⟩ (B.23)

Which means that there are n1 particles in the state labelled 1, nq particles in the state q. To preserve
the correct normalization we need

b†q|n1, . . ., nq, . . .⟩ =
√
nq + 1 |n1, . . ., nq + 1, . . .⟩ (B.24)

bq|n1, . . ., nq, . . .⟩ =
√
nq |n1, . . ., nq − 1, . . .⟩ (B.25)

The relation between two boson creation and annihilation operators are then commutation rather
than anticommutation relation. They are infact very similar to the the ladder operators of the Simple
Harmonic oscillator.
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Figure B.1: The correspondence between Slater determinant states and the creation operator actions
on the vacuum state |0⟩
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B.2 How do all these help?

The hamiltonian for an N-particle system would usually consist of operators that involve the co-
ordinates of one particle at a time (like kinetic energy, momentum etc) and some terms like pairwise
potential that involve the co-ordinates of two particles at a time. It is possible for three body terms to
exist - but they are not very common. We know how the N-particle basis states look like (permanent &
determinant), we would need to calculate the matrix elements of the Hamiltonian between such states
frequently. It is here that the notation and operators we have introduced come in very handy. Recall
that in the harmonic oscillator problem, by introducing the ladder operators, calculation of matrix
elements can be made particularly simple - much simpler than integrating and differentiating long com-
binations of exponentials and Hermite polynomials. In this case (N particle problem) this is so as well.

Consider one electron operators of the type (the total KE would be the simple example)

G1 =
∑
i

h(ri) (B.26)

Let |ΨN ⟩ = A{ϕi1, ϕi2....ϕiN} be an N-particle state. We can show that

⟨ΨN |G1|ΨN ⟩ =
∑
i

⟨ϕi|h|ϕi⟩ (B.27)

using the determinant expansion and counting the terms one by one.
But now if we had written out the operator as

G1 =
∑
i

h(ri) =
∑
mn

⟨ϕm|h|ϕn⟩c†mcn (B.28)

and calculated its matrix elements between the state

c†i1c
†
i2..c

†
iN |0⟩ (B.29)

and its conjugate, we would have got exactly the same result. It can be shown that

⟨ΨN |c†mcn|ΨN ⟩ =
{

1 if m = n = occupied orbital
0 otherwise

(B.30)

In the case where the operator h is just the unit operator (1), we would obtain the operator that
counts the number of particles. The number counting operator is thus:

Nop =
∑
m

c†mcm (B.31)

With a little bit more, we can show that matrix elements of all two body operators (like interaction
energy of a pair of particles) between Slater determinants is correctly reproduced if we rewrite the
operator as

G2 =
1

2

∑
i ̸=j

Vij ≡
1

2

∑
klmn

⟨ϕk(r1)ϕl(r2)|V (r1 − r2)|ϕm(r1)ϕn(r2)⟩c†kc
†
l cmcn (B.32)

Note the ordering of the operators carefully.


