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Graph Theory 2023
Dense Graph Limits

Lecturer: Niranjan Balachandran Scribe: Mahadeb Mandal

The theory of graph limits was developed by Lovász and his collaborators in a series of works start-
ing around 2003. Here is the central objects in the theory of dense graph limits.

Definition 1. A Graphon is a symmetric measurable function W : [0, 1]2 → R. Here symmetric
means W (x, y) = W (y, x) for all x, y. The set of all graphons is denoted by W.

W0 :={W : [0, 1]2 → [0, 1] : W (x, y) = W (y, x), W is lebesgue measure}
W1 :={W : [0, 1]2 → [−1, 1] : W (x, y) = W (y, x), W is lebesgue measure}

What is the limiting behavior for a sequence of graphs?

Definition 2. Say that a sequence (Gn) of graphs converges if t(H,Gn) converges for all H finite,
equivalently, d(H,Gn) converges for all H finite.

Definition 3. For a graph G and another graph H, the Homomorphism density of H in G is

t(H,G) :=
|Hom(H,G)|
|v(G)||v(H)|

Where, Hom(H,G) ={ϕ : H → G is a graph Homomorphism.}. ϕ : V (H) → V (G) is a graph
Homomorphism if {ϕ(u), ϕ(v)} ∈ E(G) whenever {u, v} ∈ E(H). This is also the probability that
a uniformly random map V (H)→ V (G) induces a graph homomorphism from H to G. Note that
as |V (G)| → ∞ for G. Fixed H,

t(H,G) = P(a random map density a labelled copy of H)+on(1)

Example 4. Following Graphs are convergent.

∗ Gn = Kn

∗ Gn = Kn,n

∗ Gn = Kbαnc,bβnc with α+ β = 1

∗ Gn = Tr(n)

Alternates formulation:

d(H,G) = P(a random subset of |H| vertices induces a copy of H in G)

Here, d(H,G) is called isomorphism density of H in G. One question arises in our mind, what can
(Gn) converge to? If W ∈W0, could we ask, Gn →W?
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Digression

Suppose, H is a (real) Hilbert Space.
√
〈x, x〉 := ‖x‖ is a norm. H → H (usual topology is a norm

topology). (xn) converges weakly if for any T : H → R bounded linear functional, (Txn) converges.

Definition 5. Suppose, W ∈ W and V (H) = {1, 2, ..., h},

t(H,W ) :=

∫
[0,1]h

 ∏
ij∈E(H)

W (xi, xj)

 dx1....dxh

d(H,W ) :=
|H|!

Aut(H)

∫
[0,1]h

 ∏
ij∈E(H)

W (xi, xj).
∏

ij 6=E(H)

(1−W (xi, xj))

 dx1....dxh

For a Graphon W ∈ W0, we can define a W -random graph G
(n)
W of order n as:-

Let W be a graphon. The n-vertex W -random graph G
(n)
W denotes the n-vertex random graph

(with vertices labeled 1, ..., n) obtained by first picking x1, ..., xn uniformly at random from [0, 1],
and then putting an edge between vertices i and j with probability W (xi, xj), independently for all
1 ≤ i < j ≤ n.
The term |H|!/Aut(H) appears since d(H,W ) only counts induced copies that are not labelled.

Definition 6. Given two symmetric measurable functions U,W : [0, 1]2 → R, we define their cut
distance (or cut metric) to be

d�(U,W ) := sup
a,b:[0,1]→[−1,1]

∣∣∣∣∣
∫

[o,1]2
a(x)b(y)(W (x, y)− U(x, y))dxdy

∣∣∣∣∣
Here a, b to be measurable.It is easy to show that d�(U,W ) is a metric on W0.It is possible for two
different graphons to have cut distance zero. For example, they could differ on a measure-zero set,
or they could be related via measure preserving maps.

Theorem 7. For any graph H, and U,W ∈ W0 ,

|t(H,W )− t(H,U)| ≤ e(H).d�(U,W )

So,t(H, .) :W0 → [0, 1] are continuous on W0 with respect to d�(, ).

Proof. Suppose, V (H) = {1, 2, ..., h}. Let, {1, 2} ∈ E(H) (Without loss of generality). Fix,
x3, ..., xh ∈ [0, 1] and define,

a(x) :=
∏

i≥3;1,i∈E(H)

W (x, xi),

b(x) :=
∏

i≥3;1,i∈E(G)

W (x, xi),

c :=
∏

i≥3;i,j∈E(H)

W (xi, xj)
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Then, ∣∣∣∣∣∣
∫

[0,1]2
(W (x1, x2)− U(x1, x2).

∏
ij∈E(G);{i,j}6={1,2}

W (xi, xj)dx1dx2)

∣∣∣∣∣∣
=

∣∣∣∣∣c
∫

[0,1]2
(W (x1, x2)− U(x1, x2)a(x1)b(x2)dx1dx2)

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[0,1]2
(W (x1, x2)− U(x1, x2)a(x1)b(x2)dx1dx2)

∣∣∣∣∣
≤ d�(W,U)

�

Theorem 8. Given W ∈ W0, there is a sequence (Gn) of graphs such that d(H,Gn) → d(H,W )
,∀ finite H. In this case, we say that the sequence (Gn) has W as a limit.
More precisely, suppose Gn is a W - random graph of order n, then with probability 1 , d(H,Gn)→
d(H,W ) for all H.
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Graph Theory 2023
Graphon Convergence Theorem

Lecturer: Niranjan Balachandran Scribe: Arpon Basu

We first recall what graphons are.

Definition 9. A measurable function W : [0, 1]2 7→ R such that W (x, y) = W (y, x) for every
x, y ∈ [0, 1], is called a graphon.

We also define

W := {W : W is a graphon}

W0 := {W : [0, 1]2 7→ [0, 1] : W is a graphon}

W1 := {W : [0, 1]2 7→ [−1, 1] : W is a graphon}

For W ∈ W0, we can define a W -random graph Gn of order n as follows: Pick x1, . . . , xn indepen-
dently and uniformly from [0, 1]. Let the vertex set of Gn be [n] := {1, 2, . . . , n}. Then for any
i, j ∈ [n], i 6= j, {i, j} is an edge of Gn with probability W (xi, xj). Note that if W ≡ p for some
p ∈ (0, 1), then a W -random graph is just a Erdős-Rényi random graph with parameter p.
Finally, we define the isomorphism density (also known as induced homomorphism density) of a
fixed graph H w.r.t graphs and graphons as follows:

1. If G is a graph of order n, then

d(H,G) := P (A random subset of |H| vertices induces a copy of H in G)

=
Number of induced copies of H in G

nh

2. If W is a graphon, then

d(H,W ) := P(A uniformly sampled point from [0, 1]h induces H as a W -random graph)

=
h!

|Aut(H)|

∫
[0,1]h

∏
ij∈E(H)

W (xi, xj)
∏

ij 6∈E(H)

(1−W (xi, xj))dx1 · · · dxh

where Aut(H) is the set of automorphisms of H, and h = |V (H)|.

We can now state the main theorem of this lecture.

Theorem 10. [9] Given any W ∈ W0, there exists a sequence of graphs {Gn}n∈N such that Gn
converges to W as n→∞. More precisely, for any fixed H,

P
(

lim
n→∞

d(H,Gn) = d(H,W )
)

= 1

where Gn is a W -random graph of order n.

We shall follow [9] in the proof. But before that, we’ll need some Martingale theory. Thus we
digress a bit to cover some basics of Martingale theory.
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A Brief Introduction to Martingales

LetX1, . . . , Xn be random variables. We call (X1, . . . , Xn) a finite martingale if E [Xi|X1, . . . , Xi−1] =
Xi−1 for every i ∈ {2, . . . , n}. The following observation, due to J.L. Doob, gives us a general tem-
plate to construct martingales.

Observation 11 (Doob’s Martingale). Consider a probability triple (Ω,B,P) defining a random
variable X, and consider a filtration F0 ⊆ F1 ⊆ · · · ⊆ Fn of sub-σ-algebras of B. Then (X1, . . . , Xn)
is a martingale, where Xi := E [X|Fi]. Note that if Fn = B, then Xn = X.

Also, we shall need a very famous concentration inequality involving martingales.

Lemma 12 (Azuma’s Inequality). Suppose (X0, X1, . . . , Xn) is a finite martingale such that |Xi−
Xi−1| ≤ ci with probability 1, for every i ∈ [n], where c1, . . . , cn are some real numbers. Then

P (|Xn − E [Xn] | ≥ t) ≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
Proof of Theorem ??: We shall use the vertex exposure martingale. Namely, let Gn be a W -
random graph. Let X be the number of induced copies of H in Gn. Let Fi be the σ-algebra
generated by “exposing” the statuses of all edges incident upon vertices in [i], where i ∈ [n] ∪
{0}. Clearly, Fi’s form a filtration, and thus we can construct the Doob Martingale (X0, . . . , Xn).
Furthermore, notice that |Xi −Xi−1| measures the increase in the number of induced copies of H
when the status of the edges incident on i is revealed. Consequently, |Xi −Xi−1| can be at most
the number of labeled subsets of size h− 1 of [i− 1], which equals h!

(
i−1
h−1

)
≤ nh−1.

Also, note that

E [X] =
∑

S∈([n]
h )

P(Gn[S] ' H) =

(
n

h

)
d(H,W )

Finally, note that Xn = X, and thus, setting ci = nh−1 for i ∈ [n], and t = εnh for some ε > 0, and
applying Azuma’s inequality on the above martingale yields,

P
(∣∣∣∣Xn −

(
n

h

)
d(H,W )

∣∣∣∣ ≥ εnh) ≤ 2 exp

(
− ε2n2h

2n2h−1

)
= 2 exp

(
−nε

2

2

)
On the other hand, note that Xn is the number of induced copies of H in Gn, and consequently,

Xn =
(
n
h

)
d(H,W ). Thus P

(
|d(H,Gn)− d(H,W )| ≥ εnh

(nh)

)
≤ 2 exp

(
−nε2

2

)
. Note that nh

(nh)
=

h! nh

n(n−1)···(n−h+1) ≤ h!2h for n ≥ 2h, and consequently, for large enough n,

P
(
|d(H,Gn)− d(H,W )| ≥ h!2hε

)
︸ ︷︷ ︸

=:pn

≤ 2 exp

(
−nε

2

2

)

In particular,
∑

n≥2h pn < ∞, implying that
∑

n pn < ∞. We can now invoke the Borel-Cantelli
lemma, which we state below:

Lemma 13 (Borel-Cantelli Lemma). Suppose {En}n∈N be a sequence of events in the probability
space (Ω,B,P). Then:
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1.
∑

n∈N P(En) < ∞ implies that P (lim supn→∞ En) = 0, where lim supn→∞ En is the set of
ω ∈ Ω for which there are infinitely many events En such that ω ∈ En.

2. If {En}n∈N are all independent and
∑

n∈N P(En) =∞, then P (lim supn→∞ En) = 1.

We shall only need the first part of the Borel-Cantelli Lemma 1. Indeed, let En,h denote the event
|d(H,Gn)− d(H,W )| ≥ h!2hε. Then by the Borel-Cantelli Lemma, almost surely limn→∞ d(H,Gn)
is within h!2hε of d(H,W ), for every ε > 0. Set up a sequence εm := 1

m , and note that{
lim
n→∞

d(H,Gn) = d(H,W )
}

=
⋂
m∈N

{∣∣∣ lim
n→∞

d(H,Gn)− d(H,W )
∣∣∣ ≤ h!2hεm

}
Since we’re taking a countable intersection of almost sure events, the resulting intersection is almost
sure too, and that concludes the proof of the theorem.

1which has a very easy proof: Indeed, let N := |{n ∈ N : En occurs}|. Then N is a N ∪ {0,∞}-valued random
variable, and E [N ] =

∑
n P(En) < ∞. Since the expectation of N is finite, P(N = ∞) = 0.
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Graph Theory 3rd October, 2023
Norms and Distances for Graphs

Lecturer: Niranjan Balachandran Scribe: Sooraj

We continue our search for a metric that we can use to compare graphs on the same vertex set.
Recall the “cut norm” which was defined as follows:

||W ||� := sup
f,g:[0,1]→[0,1]

∣∣∣∣ ∫
[0,1]2

f(x)g(y)W (x, y) dx dy

∣∣∣∣ ; f, g measurable

We had also seen that d�(U,W ) = ||W − U ||� is a distance and that the homomorphism density
t(H, ·) is continuous with respect to this metric.

FACT: The cut norm also satisfies

||W ||� = sup
S,T⊆[0,1],measurable

∣∣∣∣ ∫
S×T

W (x, y) dx dy

∣∣∣∣

Example 14. Consider the following graphs and their corresponding graphons:

1

2 3

4 1

2 3

4

Figure 1: Graphs G1 and G2

Figure 2: Graphons WG1 and WG2

The measurable, symmetric functions WG1 ,WG2
: [0, 1]2 → [0, 1] as defined in fig. 2 are the graphons

obtained by rotating the adjacency matrices of the graphs G1 and G2 by 3π/2.
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These are indeed graphons, and as the graphs are “the same”, we would like the distance between
the two to be zero with respect to the cut norm, which is not the case.

Since our aim is to find a suitable metric to measure the distances between graphs on the same
vertex set, the above example indicates that the distance given by the cut norm does not suit our
purpose. So, we would need to make a few changes before we achieve a desirable metric.

Definition 15. A measure preserving bijection (abbreviated to MBP) ϕ : [0, 1] → [0, 1] is a mea-
surable function whose inverse is also measurable and for all A ∈ B[0,1],

m(A) = m(ϕ(A)) = m(ϕ−1(A))

For integrable graphons U,W ∈ W, define the pseudo-distance (the ‘pseudo’ will be justified soon)
between them as follows:

δ�(U,W ) := inf
ϕ,ψ MBP

||Uϕ −Wψ||�

where Uϕ(x, y) := U(ϕ(x), ϕ(y)).
Unfortunately, the above defined δ� is NOT a metric as we can have δ�(U,W ) = 0 even when
U 6= W . So, even this does not serve our purpose, and yet again, we look for a fix.

Reminder: We say that two graphons U and W are equal if the set {(x, y) | U(x, y) 6= W (x, y)}
has measure zero.

Define a relation as follows:
U ∼W if δ�(U,W ) = 0 (1)

Claim: The relation defined above is an equivalence relation.

Proof. It is clear that the relation given in eq. (1) is symmetric and reflexive. All that remains to
be shown is the transitivity of the relation. Let U ∼ V and V ∼W . From these relations, we have
that for ε > 0 and any f, g : [0, 1]→ [0, 1], measurable,∣∣∣∣ ∫

[0,1]

∫
[0,1]

f(x)g(y)(Uϕ(x, y)− V (x, y)) dx dy

∣∣∣∣ ≤ ||U − V ||� < ε (2)

and ∣∣∣∣ ∫
[0,1]

∫
[0,1]

f(x)g(y)(V (x, y)−Wψ(x, y)) dx dy

∣∣∣∣ ≤ ||V −W ||� < ε (3)

Adding the above two equations gives us∣∣∣∣ ∫
[0,1]

∫
[0,1]

f(x)g(y)(Uϕ(x, y)−Wψ(x, y)) dx dy

∣∣∣∣ < 2ε (4)

that is, δ�(U,W ) = 0 which implies that U ∼W . �

Recall our notation W0 for the set of graphons W : [0, 1]2 → [0, 1]. Let

W̃0 =W0/∼

This solves the problem we had before by identifying all graphons whose separating distance is zero
as a single graphon.
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Theorem 16 (Lovász - Szegedy, 2007). (W̃0, δ̃�) is a compact metric space.

Before proving the theorem, we present an Analytic version of Szemerédi’s Regularity Lemma for
a general Hilbert Space.

The Hilbert Space Regularity Lemma

Definition 17. A Hilbert Space is a real or complex inner product space that is also a complete
metric space with respect to the distance function induced by the inner product.

Theorem 18 (Hilbert Space Regularity Lemma). Suppose H is a real Hilbert Space and K1,K2, . . .
are non-empty subspaces of H. Given ε > 0 and f ∈ H, there exists m ≤ 1/ε2 and γi ∈ R and
fi ∈ Ki for 1 ≤ i ≤ m such that ∀ g ∈ Km+1,∣∣∣∣〈g, f − m∑

i=1

γifi〉
∣∣∣∣ ≤ ε‖f‖ · ‖g‖

Proof. For each m ∈ N, define

ηm := inf
{γi},{fi}

∣∣∣∣∣∣∣∣f − m−1∑
i=1

γifi

∣∣∣∣∣∣∣∣
It is easy to observe that as m increases, the linear combination of the fis approximates f more
accurately, that is,

||f ||2 ≥ η2
1 ≥ η2

2 ≥ · · · > 0

So, there exists an m such that η2
m ≤ η2

m+1 + ε2||f ||2. That is to say, there exist γi ∈ R and fi ∈ Ki

for 1 ≤ i ≤ m such that ∣∣∣∣∣∣∣∣f − m∑
i=1

γifi

∣∣∣∣∣∣∣∣2 ≤ η2
m+1 + ε2||f ||2 (5)

In particular, for any λ ∈ R and any g ∈ Km+1,∣∣∣∣∣∣∣∣f − m∑
i=1

γifi − λg
∣∣∣∣∣∣∣∣2 ≥ η2

m+1 (6)

Let f∗ denote
∑m

i=1 γifi. Then, eq. (5) and eq. (6) give us

||f − f∗||2 ≤ η2
m+1 + ε2||f ||2 ≤ ||f − (f∗ + λg)||2 + ε2||f ||2

The above inequality reduces to

||g||2λ2 − 2λ < f − f∗, g > +ε2||f ||2 ≥ 0 for all real values of λ. (7)

The above equation is a quadratic in λ and the discriminant must be at most 0. Thus,∣∣∣∣〈g, f − m∑
i=1

γifi〉
∣∣∣∣ ≤ ε‖f‖ · ‖g‖

This concludes the proof. �
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1 A consequence of the Hilbert Space Regularity Lemma

Let H = L2([0, 1]2) and let Ki be the set of all indicator functions of the form 1S×S for some
measurable S ⊆ [0, 1]. Let W ∈ W0 be a graphon.

As per our prior notation, let W = f and let 1S×S = g. Then, by the Hilbert Space Regularity
Lemma, ∣∣∣∣ ∫

S×S
W −W ∗

∣∣∣∣ ≤ ε for all S ⊆ [0, 1] (8)

where W ∗ =
∑m

i=1 γi1Si×Si and m ≤ 1/ε2.

One can also verify that for S, T ⊆ [0, 1],∣∣∣∣ ∫
S×T

W −W ∗
∣∣∣∣ ≤ 2ε

2 The Weak Regularity Lemma

Let P = {S1, S2, . . . , Sm} be a partition of [0, 1].

Definition 19. A step function U is a function of the form

U(u, v) :=
∑
i,j

ui,j1Si×Sj (u, v)

where Si × Sj is the unique part in P that contains the point (u, v).

Definition 20. Given an integrable graphon W and a partition P of [0, 1], the stepping of W by
P is the step function with

ui,j =

{
1

λ(Si)·λ(Sj)

∫
Si×Sj

W (x, y) dxdy if λ(Si)λ(Sj) > 0

0 otherwise

where λ(Si) denotes the Lebesgue measure of Si.

The above definition says that we get WP by averaging W over the steps (rectangles in the parti-
tion P of [0, 1]2).

FACT: If P is a partition, then the stepping operator is a contraction with respect to the cut
norm, that is,

||WP ||� ≤ ||W ||�
This is also true with respect to the L1 and the L2 norms.

Lemma 21 (Weak Regularity Lemma (Analytic Version)). Given W ∈ W0, there exists a step
function W ∗ with at most 2O(1/ε2) steps such that

||W −W ∗||� ≤ 2ε
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Let WP be the stepping of W by the partition P that is described by W ∗. Then,

||W −WP ||� ≤ ||W −W ∗||� + ||W ∗ −WP ||�

Observing that stepping W ∗ with respect to P has no effect, we have

||W −WP ||� ≤ 4ε

If W = WGn for some graph Gn, then∣∣∣∣ ∫
S×T

W −WP

∣∣∣∣ ≤ 4ε (9)

If we take Kis (as in Hilbert Space Regularity Lemma) as the algebra generated by intervals of the
form (i/n, (i + 1)/n) × (j/n, (j + 1)/n) with 0 ≤ i, j ≤ n − 1, then the Weak Regularity Lemma
(Analytic Version) is equivalent to the following:

Lemma 22 (Weak Regularity Lemma). Given a graph G on n vertices, there is an equitable
partition of V (G) into m ≤ 2O(1/ε2) parts {V1, V2, . . . , Vm} such that for any S, T ⊆ V (G),∣∣∣∣e(S, T )−

∑
i,j

|S ∩ Vi| · |T ∩ Vj |
∣∣∣∣ ≤ εn2 (10)

Notice the similarity between equations eq. (9) and eq. (10)!
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Graph Theory 2023
Graph Limits Lecture 4

Lecturer: Niranjan Balachandran Scribe: Shantanu, Soutrik

As a recap, we had seen the following theorem last time:

Theorem 23. (W̃0, δ̃�) is a compact metric space.

We study some consequences of the above result.

Proposition 24. Given any ε > 0, there exists an N = N(ε) such that: For any W ∈ W0, there
exists a graph G with N vertices such that δ�(W,G) < ε.

Before we prove this, we need the following lemma:

Lemma 25. Graphs are dense in W0, w.r.t. δ� norm.

Proof. Given any ε > 0 and W ∈ W0, by weak regularity we can find a partition P such that
||W −WP ||� < ε. By composing with a measure-preserving bijection, we can assume the parts in
P are intervals; in that case δ�(W,WP) < ε. Now take a further subdivision of P into equal parts
to get a graph that is close enough to W . �

Now we return to the proof of the proposition.

Proof of Proposition 2

Let F be the set of all finite graphs. Consider the collection {Bε(G) | G ∈ F}, where Bε(G) =

{W ∈ W̃0 | δ̃�(W,G) < ε}. By the above lemma, this is an open cover of W̃0.

Hence, there is a finite subcover Bε(G1), . . . , Bε(Gm) for some m = m(ε).

=⇒ For any W ∈ W̃0, there exists a graph Gi with at most |V (Gm)| vertices such that δ̃�(W,Gi) <
ε.

Let N = lcm(|Gi| | i = 1, 2, . . .m) = N(ε). Then each Gi can be subdivided into a graph with N

vertices G
(i)
N such that Gi = G

(i)
N as graphons, for all i ≤ m. These G

(i)
N uniformly approximate the

graphons. �

Digression about functional analysis

Given f ∈ L2[0, 1] and W ∈ W0, we can define the linear operator

TW f(x) =

∫
[0,1]

f(y)W (x, y)dy

This TW turn out to be a self-adjoint compact operator on L2[0, 1]. By spectral theorem, TW has
a discrete spectrum, and we call the eigenvalues of TW as eigenvalues of W itself. This definition
matches the one for eigenvalues of graphs, when they are depicted as graphons. Further, if some
sequence of graphs Gn →W in δ�, then for any positive integer k, the k largest eigenvalues of Gn
tend to the k largest eigenvalues of W (as a vector).
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The Strong Regularity Lemma

Theorem 26 (Strong Regularity Lemma, Analytic Version). Given a sequence
˜
ε = (ε1, ε2, . . . ) ∈

(0, 1)ω, there exists a positive integer M = M(
˜
ε) such that: For any W ∈ W0, we can write

W = Wstep +Wpseudo +Wsmall, where:

1. Wstep is a step function with k ≤M steps.

2. ||Wpseudo||� ≤ εk

3. ||Wsmall||� ≤ ε1

Proof. Given a W ∈ W0, using a standard measure theory result, there exists a step function
U ∈ W0 such that ||W − U ||1 < ε1. For any W , define

k(W ) = min{k ∈ N | There exists a k-step graphon U with ||W − U ||1 < ε1}

Consider the collection {Bεk(W )
(W )}

W∈W̃0
; this is an open cover of W̃0. =⇒ By compactness, there

is a finite subcover

{Bεk(W1)
(W1), Bεk(W2)

(W2), . . . , Bεk(Wl)
(Wl)}.

Let M = max{k(W1), k(W2), . . . , k(Wl)}. Note that M only depends on
˜
ε. Further, for any

W ∈ W̃0, there exists a W ′ ∈ W̃0 and a step function U ∈ W0 with k = k(W ′) ≤ M parts

such that ||W ′ − U ||1 < ε1 and δ̃�(W,W ′) < εk. The latter inequality implies the existence of a
measure-preserving bijection ϕ such that ||W − (W ′)ϕ||� < εk. Further, Uϕ is still a step function,
and

||(W ′)ϕ − Uϕ||1 = ||W ′ − U ||1 < ε1

because ϕ is measure preserving. Thus we can write

W = Uϕ + (W − (W ′)ϕ) + ((W ′)ϕ − Uϕ)

and we can let Wstep = Uϕ, Wpseudo = W − (W ′)ϕ, and Wsmall = (W ′)ϕ − Uϕ. �

There is also a quantitative version of strong regularity:

Theorem 27 (Strong Regularity Lemma, Quantitative Version). Given ε > 0 and W ∈ W0, there
exists a positive integer M = M(ε) and a partition P = {S1, S2, . . . , Sm} into m ≤ M measurable
parts such that:

1. m(Si) = m(Sj) for all i, j ≤ m.

2.
∣∣∫
R(W −WP)

∣∣ < ε where R is union of any subset of rectangles in [0, 1] induced by P.

Proof. Omitted from the course. �

A version of strong regularity also exists for graphs:

Theorem 28 (Strong Regularity Lemma, Graph Version). Given a sequence
˜
ε = (ε1, ε2, . . . ) ∈

(0, 1)ω, there exists a positive integer M = M(
˜
ε) such that: For any graph G, there exist partitions

P and Q of V (G) satisfying:

14



1. Q is a refinement of P.

2. |Q| ≤M .

3. Q is ε|P|-regular.

4. q(Q) ≤ q(P) + ε1

Proof. We use the normal regularity lemma repeatedly. Start with partition P0 = {V (G)}. If
we have partition Pi, using the normal regularity lemma we can get a partition Pi+1 with size at
most |Pi|M ′(ε|Pi|) that is ε|Pi|-regular (where M ′ is the function coming from the normal regularity
lemma). Note that

0 ≤ q(P0) ≤ q(P1) ≤ · · · ≤ 1

Therefore there exists an i ≤ 1
ε1

such that q(Pi+1) − q(Pi) < ε1. Now just take P = Pi and
Q = Pi+1. �

Some further consequences of compactness

We shall now look into some more applications of compactness of Graphon space wrt the cut metric.
Notation: F is the set of finite graphs.

Lemma 29 (Moments’ Lemma). Suppose W,U ∈ W̃0 such that t(H,W ) = t(H,U) for all graphs(finite)
H. Then δ�(W,U) = 0. In other words, the sequence {t(H,W )}H∈F uniquely determines W .

Proof. Omitted from the course. �

Lemma 30 (Inverse Counting Lemma). Wn →W in t(H, .)H∈F iff δ̃�(Wn,W )→ 0

Proof. One implication is obvious from the counting lemma:

|t(H,U)− t(H,W )| ≤ |E(H)|||U −W ||� ≤ |V (H)|2 · δ�(U,W ),

which proves the reverse direction.
Now, conversely consider Φ : W̃0 → [0, 1]F given by W → (t(H,W ))H∈F . Moments’ lemma implies
that Φ is injective. Also, this map is continuous since each component t(H, .) is continuous. Since

[0, 1]F is compact and Hausdorff, Im(Φ) is Hausdorff, W̃0 is compact. This implies Φ : W̃0 → Im(Φ)
is a continuous bijective map from compact and Hausdorff, thus it’s a homeomorphism. This implies
that its inverse is continuous, as required. �

An immediate corollary follows:

Corollary 31. Given ε > 0, ∃k ∈ N, η > 0 such that, if |t(H,U)− t(H,W )| < η for all H ∈ F with

|V (H)| ≤ k, then δ̃�(U,W ) < ε.

A stronger Inverse counting lemma due to Borgs, Chayes and Lovasz is as follows:

Theorem 32 (Stronger Inverse Counting). Let U,W ∈ W̃0. If for all H ∈ F with |V (H)| ≤ k, we

have |t(H,U)− t(H,W )| < 2−k
2
, then δ̃�(U,W ) ≤ O

(
1√

log k

)
Proof. Omitted from the course. �
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Property Testing

Given a graph G, we want a randomized algorithm to determine if G has a triangle or if G is ’ε-far’
from being triangle-free, i.e., it is enough to delete ≤ εn2 edges to remove all triangles in G.

Algorithm 1 Randomized algorithm for triangle-free checking
step← 1
tfree← True
while step ≤M do

Select random triples u, v, w ∈ V (G)
if u, v, w form a triangle then

declare G has the triangle u, v, w
tfree← False
break

end if
step← step+ 1

end while
if tfree then

declare G is ε-far from being triangle-free
end if

Analysis of correctness

We want P(error in algo) ≤ 1
3 . Error occurs when ≥ εn2 edges are needed to be deleted, but no

triangle detected on random triplet sampling. Triangle Removal Lemma implies that, there are
≥ δ n

3

6 triangles in G for some δ = δ(ε) > 0. So, P(error) ≤ (1 − δ)M ≤ e−δM . This is < 1
3 if

M > 1
δ log 3. It follows that, if we want P(error) < η, it’s an O(log 1

η ) time algorithm.

One last connection

Recall that, if p > 0 is a given constant and if t(K2, Gn) = p + on(1) and t(C4, Gn) = p4 + on(1),
then ∀H ∈ F , t(H,Gn) = pe(H) + on(1). We have the following equivalence for graphons:

Theorem 33. Suppose 0 < p < 1 and W ∈ W0. If t(K2,W ) = p and t(C4,W ) = p4, then W = p
almost everywhere.

Proof. Let ω(z) :=
∫

[0,1]W (x, z)dx (we can think of this as degree of z). Then,
∫

[0,1] ω(z)dz = p.

16



Also, p2 = (
∫

[0,1] ω(z)dz)2 ≤
∫

[0,1] ω(z)2dz by Cauchy-Schwarz. Now, consider:

0 ≤
∫

[0,1]2

(∫
[0,1]

(W (x, z)W (y, z)− p2)dz

)2

dxdy (1)

=

∫
[0,1]2

(∫
[0,1]2

(W (x, z)W (y, z)− p2)(W (x, z′)W (y, z′)− p2)dzdz′

)
dxdy

=

∫
[0,1]4

W (x, z)W (y, z)W (x, z′)W (y, z′)dzdz′dxdy . . . [note, this equals t(C4,W ) = p4]

− 2p2

∫
[0,1]3

W (x, z)W (y, z)dzdxdy + p4 . . . [note, first term equals

∫
[0,1]

ω(z)2dz]

= 2p2

(
p2 −

∫
[0,1]

ω(z)2dz

)
≤ 0 as shown above

This implies
∫

[0,1] ω(z)2dz ≤ p2 ≤
∫

[0,1] ω(z)2dz. Thus, equality holds in Cauchy-Schwarz and thus,

ω(z) = p a.e. Further, equality holds in (1), so
∫

[0,1]W (x, z)W (y, z)dz = p2 for almost all x, y.

From this, we can show that
∫

[0,1]W (x, z)2dz = p2 for almost all x (the proof of this is relegated

to the exercises). Now, ω(z) = p a.e. and symmetricity of graphons implies
∫

[0,1]W (x, z)dz = p for
almost all x. Combining the above two facts, we have:∫

[0,1]
(W (x, z)− p)2dz

=

∫
[0,1]

W (x, z)2dz − 2p

∫
[0,1]

W (x, z)dz + p2

= 0 a.e on x ∈ [0, 1]

From this, we get that W (x, z) = p for almost all x, z, i.e., W = p a.e. �
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Graph Theory 2023
An Erdős Theorem and Edge Colorings

Lecturer: Niranjan Balachandran Scribe: Rohinee

In this part, we prove the Erdős Theorem which tells us that usual graph colors can also be quite
contrary to simple heuristic suggestions. Then we look at a beautiful proof of Vizing’s theorem.

Theorem 34. (Erdős) Given k, g ∈ N, there exists a graph G such that the length of the smallest
cycle in the graph is g and χ(G) > k.

Proof. We will pick a random graph in which the edges are chosen with probability p. Note that, p
can’t be an absolute constant, otherwise, the graph will be ’super sparse’, and thus the chromatic
number can’t be large. Let p = f(n)

n , and the function f(n) is to be determined. Let N be the
number of cycles in G of size less than or equal to g. Then

EN =
∑

(v1,v2,...,vt)3≤t≤g

P(vivi+1 ∈ E(G)∀i)

= pt

=

g∑
t=3

N(N − 1) . . . (N − t+ 1) · pt

2t

≥ g(np)g

6

=
g(f(n))g

6

The first equality follows from the definition. For the second equality, note that the edges are
chosen independently, each with probability p. The numerator of the third equality calculates the
number of t-tuples, and we divide by the factor of 2t because cyclic permutations and computing
in reverse order give the same cycle. The last equality indicates that g · f(n)g should be small.
Choose l such that χ ≥ n

α(G) ≥
n
l . Note that, P(α(G) ≥ l) = P (there exists an l-subset of V(G)

with no edges in it). Thus,

P(α(G) ≥ l) ≤
(
n

l

)
· (1− p)(

l
2)

<
nl · e−p·(

l
2)

l!

<
e

−pl2

6
+l·logn

l!

In order to make −pl3 + log n negative, choose l = n
2k , p = 12k logn

n . Then P(α(G) ≥ l) = on(1) as
n→∞. Using the Markov’s inequality, we get

EN < Og,k · (log n)g =⇒ P(N > Cg,k · (log n)g) <
1

2
.

In particular, with positive probability we have G with α(G) ≤ n
2k and N > Cg,k · (log n)g. Throw

away a vertex from every cycle of size less than or equal to g in this graph to obtain a new graph
G∗. Note that, in G∗ the length of the smallest cycle is greater than g, and α(G∗) ≤ α(G) ≤ n

2l .

So χ(G∗) ≥ 0.9·n·2k
n = 1.8k. This completes the proof. �
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The following theorem by Erdős states that the chromatic number of a graph can be made arbitrarily
large, even though the chromatic number of ”some” induced subgraphs is extremely small.

Theorem 35 (Erdős). Given k ∈ N, there exists ε0 = ε0(k) such that there exist graphs Gn (for
n >> 0) such that χ(G) > k and χ(G[S]) ≤ 3 for every S ⊆ V with |S| ≤ ε0 · n.

Graph colorings are indeed very surprising. We will now see a result that is a bit more assuring
about graph colorings to repose some faith in the readers that it is not too hopeless!

Edge Colorings

We say that a graph G is k edge colorable if the edges of G can be colored using {1, 2, . . . , k} such
that no two adjacent edges have the same color. The edge chromatic number is denoted by χ′(G).
Note that, the edge coloring of a graph G is the same as the vertex coloring of the corresponding
line graph L(G). It is easy to see that χ′(G) ≥ ∆(G), where ∆(G) is the maximum degree of G.
The following theorem gives a neat upper bound on the edge chromatic number.

Theorem 36 (Vizing). In a graph G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Proof. For the contrary, suppose there exist counter-examples to Vizings upper bound. Let G be a
counter-example of minimal size that is, if one edge of G is removed, then the graph satisfies the
upper bound. Let e = uv1 be the edge- if removed, satisfies the Vizing’s bound. We color one edge
at a time uv1, uv2, uv3, . . . using ∆(G) + 1 colors a0, a1, a2, a3, . . . and adjust the coloring such that
the coloring stays proper.

Note that each vertex misses at least one color. Let ai be a color absent at vi. Color uvi+1 using
ai. The chain stops at k ∈ N when either ak is a color absent at u, or ak is already used on uvj
for some j < k. If ak is absent at u, then we can reassign colors ai to uvi for each i, and we get a
proper coloring. So now suppose ak is not absent at u. Let a0 be a color absent at u. Then recolor
uvi for i ≤ j − 1, and remove the color ak from uvj . Now we should find a way to color uvj . Note
that ak is absent at both vj and vk.

Consider the following cases,
Case 1: If ak is absent at u, then color uvj with ak.
Case 2: If a0 is absent at vj , then color uvj with a0.
Case 3: If a0 is absent at vk, then shift one color along the cycle and recolor uvi for j ≤ i < k and
color uvk with a0. The coloring is proper because none of the uvi for j ≤ i < k are colored with a0

or with ak.

If none of these conditions hold, then consider the subgraph G′ of G consisting only of edges colored
with a0 or ak (and their corresponding vertices). Note that G′ is a disjoint union of paths and cycles.
Since none of the above conditions hold, {u, vj , vk} must be the endpoints of the paths, so all of
them can’t be in one connected component. In the component containing exactly one of these
vertices, switch a0 with ak, and apply either case 2 or case 3. Thus, we get a proper coloring of G
using at most ∆(G) + 1 colors.

�
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Remark: Even though χ′(G) is narrowed down so much, determining whether χ′(G) = ∆(G) or
χ′(G) = ∆(G) + 1 is an NP-complete problem.
We will look at some properties of graphs with χ′(G) = ∆(G) in the next lecture.
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Graph Theory 2023
The König-Egerváry Theorem

Lecturer: Niranjan Balachandran Scribe: Anish

In this part, we provide a non-constructive proof of the König-Egerváry, which characterizes the
relationship between the size of the min. vertex cover and max. matching in a bipartite graph G.
Furthermore, we use this result to directly show that the complement of a bipartite graph is perfect
(no Lovász’s theorem required!)

Definition 37. A vertex cover of G = (V,E) is a subset U ⊆ V such that ∀ e ∈ E, e has at least
one end in U .

A minimum vertex cover is a vertex cover of least size.

Definition 38. A matching of G = (V,E) is a subset M ⊆ E such that ∀ v ∈ V , v covers (i.e.
is the end point of) atmost one edge in M .

A maximum matching is a matching of maximum size.

Observation 39. Let’s suppose W is a minimum vertex cover and M is a maximum matching.
Then, since each v ∈ C can cover atmost one e ∈M , |W | ≥ |M |.

Let us denote the size of the min. vertex cover in any graph G as ν(G) and the size of the maximum
matching as µ(G). Then ν(G) ≥ µ(G).

Theorem 40 (Knig-Egevry). Let G = (V,E) be a bipartite graph. Then, ν(G) = µ(G).

Proof by contradiction. Suppose there exists a counterexample to the above. Consider the set of
counterexamples with minimal |V | (say |V | = n). Let G be the graph in this set with minimal |E|.
Clearly, G is connected. If d(v) ≤ 2 ∀ v ∈ V , then G would be either a path or an even cycle (since
G is bipartite). In such a case µ(G) = ν(G) = bn2 c. So, ∃ u ∈ V such that d(u) ≥ 3.

Consider v ∈ N(u). Since G was minimal, the graph G′ = G\{v} has a min. vertex cover W ′

such that |W ′| = ν(G′) = µ(G′). If µ(G′) < µ(G) then the set W ′ ∪ {v} would cover G and
have size ≤ µ(G). Hence, µ(G′) = µ(G) and so there exists a maximum matching M of G not
containing v. If no edge in M was incident on u then we could add (u, v) to M , so u has an edge
in M incident on it. Since d(u) ≥ 3, however, ∃ e′ incident on u, not incident on v and not part of M .

Consider G′′ = G\{e′}. Since G was minimal, G′′ has a min. vertex cover W ′′ such that
|W ′′| = ν(G′′) = µ(G′′) = µ(G), since M is maximum in G and is present in G′′. Every w ∈ W ′′
covers atmost one edge in M , but |W ′′| = |M | so every w ∈ W ′′ must cover exactly one edge in
M . Since no e ∈ M is incident on v, v /∈ W ′′, but since (u, v) ∈ E(G′′) must be covered by W ′′,
u ∈ W ′′. However, this means that the edge e′ will be covered by W ′′ when re-introduced in G′′,
and so W ′′ covers G.

Existence of W ′′ =⇒ ν(G) ≤ µ(G). By 39, ν(G) = µ(G).
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Now, let us focus on the question of coloring: specifically, proper colorings of G. First, some
observations for bipartite G:

Observation 41. For a maximum matching M , let µM (G) be the set of vertices in G unmatched
by M . Then, n = 2µ(g) + µM (G).

Observation 42. W ⊆ V is a vertex cover of G
⇐⇒ the subgraph induced by V \W is empty.
⇐⇒ V \W is an independent set.

Now, 41 leads us to the following idea of coloring G using µ(G) + µM (G) colors as follows:
∀ e ∈ M , assign its two endpoints a color unique to e. ∀ unmatch v ∈ V , assign a color unique to
v. We observe that any two non-adjacent u, v ∈ V will not have an edge e = (u, v) present in M ,
so they will be colored differently.

However, (u, v) /∈ E(G) ⇐⇒ (u, v) ∈ E(G), meaning the above coloring is proper for G and so

χ(G) ≤ µ(G) + µM (G) = n− µ(G) (11)

Finally, from 42 we see that a min. vertex cover correlates to a max. independent set; in particular,

n = ν(G) + α(G) (12)

Since independent sets in G correspond to cliques in G,

α(G) = ω(G) (13)

Also, ν(G) = µ(G) by 40. Thus,
n = µ(G) + ω(G) (14)

Substituting this in the first equation gives us χ(G) ≤ ω(G). However, we know that χ(H) for any
graph H is bounded from below by the clique number. So, we obtain

χ(G) = ω(G) (15)

and have thus proven that G is perfect for any bipartite G.

22



Graph Theory 2023
Perfect Graphs

Lecturer: Niranjan Balachandran Scribe: Om Swostik

If G is a line graph, then w(G) ≤ χ(G) ≤ w(G) + 1 (w(G) = clique number of G).
This follows as a corollary of Vizing’s theorem.
Natural question: When is w(G) = χ(G)? In other words, can we characterize graphs for which
w(G) = χ(G)?
Consider vertex-disjoint Kk and Erdos graph with χ = k and large girth.
The above illustrates that the question is poorly posed.
Better Question: Given a graph G, is χ(H) = w(H), ∀ induced subgraphs H of G?

Definition 43 (C.Berge, late 60s). A graph G satisfying χ(H) = w(H), ∀H ⊆ G, where H must
be an induced subgraph, is called perfect.

Here are some examples of perfect graphs:

• Kn

• Bipartite graphs

• Line graphs of bipartite graphs

Theorem 44. If G is bipartite, then χ′(G) = ∆(G).

Proof. WLOG assume G is ∆-regular (else embed G into a bipartite graph that is ∆-regular). If
G(A,B,E) is ∆-regular, then note that |A| = |B|. It suffices to show: G has a perfect matching
i.e. there is a set of edges M = {(ai, bi)} that are pair-wise disjoint and cover V (G) (every vertex
is adjacent to exactly one edge). To establish this, we need a classical theorem:

Theorem 45 (Hall). G(A,B,E) admits a matching that saturates A i.e. a matching in which every
a ∈ A is incident with a matching edge iff for every S ⊆ A, |N(S)| ≥ |S| where N(S) = ∪a∈SN(s).

Fix S ⊆ A. Since G(A,B,E) is ∆-regular, we have, e(S,N(S)) = ∆|S|.

∆|N(S)| ≥ e(N(S), N(N(S))) ≥ e(S,N(S)) ≥ ∆|S| ⇒ |N(S)| ≥ |S|

From Hall’s theorem, the result follows. �

From Theorem 44, it follows that line graphs of bipartite graphs are perfect.

Definition 46 (Vertex Cover). A set of vertices that (together) touch every edge.

Theorem 47 (Konig). If G is bipartite, then size of a minimum vertex cover is the same as the
size of a maximum matching.

Using Theorem 47, we can establish that complement of bipartite graphs are also perfect. From
the next theorem, it will follow that, complement of L(G), where G is bipartite is also perfect.

Conjecture 48 (Weak Perfect Graph Conjecture). G is perfect ⇔ G is perfect.

Theorem 49 (Lovasz, mid 70’s). G is perfect ⇔ G is perfect.
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We’ll see a proof this due to Gasparian (1996).

Definition 50 (Minimally imperfect graphs). Call a graph G minimally imperfect if G is not
perfect, but every proper induced subgraph of G is perfect.

For example, all odd cycles are minimally imperfect. We need the following observations:

Observation 51. If G is minimally imperfect, then χ(G) = w(G) + 1. Note that for any vertex x
of G, w(G \ {x}) = w(G).

Observation 52. Call a clique C large if |C| = w(G). Then for any non-empty, independent set
I ⊆ G, there exists some large clique C of G such that I ∩ C = Φ.

Suppose I meets every large clique. Note that, |I ∩ C| ∈ {0, 1}, ∀ I 6= Φ. We have, χ(G \ I) =
w(G \ I) ≤ w(G)− 1. So G \ I can be w(G)− 1 colored ⇒ G can be w(G) colored. Contradiction.

Write α = α(G), w = w(G). Let I0 = {v1, v2 . . . vα} be a maximum independent set.

V \ {vi} = I
(i)
1 ] I

(i)
2 ] · · · ] I

(i)
w

since χ(V \ {i}) = w(G).

I = {I0, I
(i)
j : 1 ≤ i ≤ α, 1 ≤ j ≤ w}

where I is the set of all independent sets. Let N = |I| = 1 + αw.

Claim 53. If C is a large clique in G, then C is disjoint from ≤ 1 of the sets of I.

Proof. Suppose C ∩ I0 = Φ, then C ∩ I(i)
j 6= Φ, ∀ i, j. To show this, notice that

C ⊆ V \ {vi} = I
(i)
1 ] I

(i)
2 ] · · · ] I

(i)
w

Since |C| = w, it must touch each I
(i)
j , ∀ i, j. Now, suppose C ∩ I(i)

j = Φ, for some i, j. This means,

following a similar line of argument as before, C ∩ I0 = {vi}. We have, C ∩ I(l)
k 6= Φ, ∀k, l with l 6= i.

Further, since |C| = w, we have C ∩ I(i)
k 6= Φ, ∀k with k 6= j. The claim follows. �

Let C1, C2 . . . , CN be large cliques such that each Ci is disjoint with exactly one of the independent
sets of I. Let C be the collection of sets {Ci}. Reorder the sets in C such that Ci is disjoint with Ii
in I. Let A be an N × n adjacency matrix such that A(i, j) = 1 iff Ii contains vertex j, otherwise
0. Similarly, define B as an N × n adjacency matrix with the rows labelled by cliques (in order)
and columns labelled by vertices of G. Since Ii misses Ci, Ii∩Ci = Φ, but |Ij ∩Ci| = 1 for all i 6= j
⇒ (ABT )n×n = J − I. Since J − I is invertible, we have (by rank arguments),

N = 1 + αw ≤ n.

Note that n ≤ α(G)χ(G), for any graph G. In particular,

χ(G \ v) = w(G) and α(G \ v) ≤ α(G).
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So,

n− 1 ≤ α(G \ v)χ(G \ v) ≤ α(G)w(G) = αw

⇒ n ≤ 1 + αw = N

⇒N = n

⇒ n = N = 1 + α(G)w(G) = 1 + α(G)w(G).

In particular, if G is minimally imperfect, G cannot be perfect either. This is because, if G is
perfect, then

w(G) = χ(G)

⇒ n ≤ α(G)χ(G) = α(G)w(G) < n.

which is a contradiction.
We have proved so far that G being minimally imperfect ⇒ G is not perfect. Say G is perfect and

G is not perfect. There exists a minimally imperfect induced subgraph H of G. But H = H is not
perfect, which is a contradiction! Theorem 49 follows.
For an account of Lovasz’s proof, see the book Modern Graph Theory by Bollobas.

Definition 54 (Odd Hole). An odd hole is an induced odd cycle of size ≥ 5.

Definition 55 (Anti-Hole). An anti-hole is a complement of a hole.

Conjecture 56 (Strong Perfect Graph Conjecture, Berge, 70s). G is perfect iff G has no odd
holes/antiholes.

This became a theorem in 2006.

Theorem 57 (Chudnovsky, Robertson, Seymour, Thomas, 2006). The conjecture is true.

See [5] for the (150-page) proof!
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Graph Theory 2023
List Colourings and a result of Alon

Lecturer: Niranjan Balachandran Scribe: Krishna Agaram

In this lecture we first prove Brooks’ theorem for list colourings, and then prove a result of Alon’00
that establishes lower bounds on the list chromatic number in terms of the minimum degree of the
graph.

Definition 58 (List Colouring). Suppose C is a nonempty set (of colours) and for each v ∈ V
we are given a set L(v) ⊆ C. The collection L of these subsets is called a List-Assignment for
G. We say that G is L-choosable if there is a function ϕ : V → C such that for every v ∈ V ,
ϕ(v) ∈ L(v) and for every edge uv ∈ E, ϕ(u) 6= ϕ(v).

Definition 59 (List chromatic number). Given graph G, the list chromatic number χl(G) is the
smallest k such that every list assignment L satisfying |L(v)| ≥ k for each v ∈ V is L-choosable.

Definition 60 (Degeneracy number). The degeneracy number of graph G is defined by

d(G) := max
H⊆indG

δ(H).

It is easy to see that χl(G) ≤ d(G) + 1 ≤ ∆(G) + 1 using a straightforward greedy colouring
algorithm. Also, we have χ(G) ≤ χl(G) (if χl(G) = k, then the list assignment assigning [k] to
each vertex is choosable, so χ(G) ≤ k).

3 Brooks’ theorem

Theorem 61 (Brooks). Let ∆ ≥ 3. Suppose G is connected with maximum degree at most ∆ but
is not a clique. Then χl(G) ≤ ∆.

Proof. We present a proof due to M. Krivelevich (2022) [8]. The proof proceeds by induction on
n = |V (G)|. The base case n ≤ ∆ is obvious given any list assignment L for V (G), one can just
choose distinct colours for all vertices of G. We may now assume that G is ∆-regular: if there is a
vertex v with degree < ∆, colour G\v first, and we will have a colour left for v.
Fix a list assignment L with |L(v)| = ∆ for each v ∈ V . Since G is connected and not a clique, we
can find vertices v1, v2, v3 such that v1v2, v2v3 ∈ E and v1v3 6∈ E (for example, consider a pair of
vertices x, y with xy 6∈ E. Since G is connected, there is a shortest path between x and y. The last
three vertices on the path serve as v1, v2, v3). Consider now a longest path that begins in v1, v2, v3,
say v1, . . . , vk.

• Case 1: k = n. We aim to find a colouring ϕ for vertices v1 and v3 that satisfies

|L(v2) ∩ {ϕ(v1), ϕ(v3)} | ≤ 1. (?)

To this end, suppose that L(v1) 6= L(v2). Choose ϕ(v1) ∈ L(v1)\L(v2) and ϕ(v3) ∈ L(v3)
arbitrarily. Proceed similarly if L(v3) 6= L(v2). Otherwise, L(v1) = L(v2) = L(v3), in
which case simply choose c ∈ L(v1) arbitrarily and set ϕ(v1) = ϕ(v3) = c. Note that
there are at most ∆ − 2 neighbours of v2 not coloured yet, so by (?), v2 can be coloured
even after all its neighbours are coloured. Suppose that vj (j > 3) is adjacent to v2 (since

26



∆ ≥ 3 and G is ∆-regular). Colour the rest of the graph greedily in the following order:
(v1, v3, v4, . . . , vj−1, vn, vn−1, . . . , vj , v2). Note that we will never lack a colour for vi (i 6= 2)
because there is a neighbour of vi that follows it in the ordering.

• Case 2: k < n. Note that all neighbours of vk lie on the path. Suppose that the smallest
i ≥ 1 for which vi is adjacent to vk is j. Then vj , vj+1, . . . , vk form a cycle C such that
N(vk) ⊆ V (C). Let us relabel vk → v. Colour the graph G\C inductively, producing
colouring ϕ. Pick arbitrary w ∈ G\C. Since G is connected, there is a path from v to w, say
the first vertex after v on the path is u ∈ C. As before, we try to colour v so that

|L(u) ∩ {ϕ(v), ϕ(w)} | ≤ 1.

If ϕ(w) 6∈ L(u), set ϕ(v) ∈ L(v) arbitrarily. Otherwise, if L(v) 6= L(u), pick ϕ(v) ∈ L(v)\L(u).
Else we must have ϕ(w) ∈ L(u) = L(v), set ϕ(v) = ϕ(w) in this case. We may now colour
u after all its neighbours. Label the vertices of C following the cycle as v1, v2, . . . , v|C| where
v = v1 and u = v|C|. Finally, extend the colouring ϕ to C in the order (v1, v2, . . . , v|C|).

The proof follows by induction. �

We also get for free Brooks’ theorem for the chromatic number:

Corollary 62. Suppose G is connected, not a clique and satisfies ∆(G) ≥ 3. Then χ(G) ≤ ∆(G).

4 Degrees and the list chromatic number

In this section, we look at a striking dissimilarity between the chromatic and list chromatic numbers.
The theorem below asserts that every graph G with minimum degree at least d must have a large
list chromatic number - at least nearly 1

2 log d. But for bipartite graphs of arbitrarily large minimum
degree, the chromatic number stays at 2. Alon actually proved a slightly weaker result a few years
previous:

Theorem 63 (Alon, 90s). Let G have minimum degree at least d. Then

χl(G) ≥ Ω

(
log d

log log d

)
Proof. This is Theorem 5.1 in [1]. �

Definition 64 (Transversal). Let S be a set and F be a collection of subsets of S. A subset T ⊆ S
is a transversal for F if its intersection with every element of F is nonempty.

Suppose that list assignment  L has a colouring ϕ on some subset A of vertices. Then the set ϕ(A)
is a transversal of the family L(A) := {L(v) | v ∈ A}.

Theorem 65 (Alon, 2000 [2]). Let G have minimum degree at least d. Then

χl(G) ≥
(

1

2
− od(1)

)
log2 d

where od(1)
d→∞−→ 0.
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Proof. [The big idea] Suppose C = [L]. We would like to exhibit a list assignment L with |L(v)| = s
for each v that is not choosable. The idea is to (probabilistically) construct a small subset B ⊆ V (G)
and a (disjoint from B) large subset good satisfying: when lists for B are chosen uniformly at
random, then with positive probability, for every v ∈ good and every T ⊆ C of size L/2 there
is a neighbour b ∈ B of v with L(b) ⊆ T . Suppose that B is coloured by ϕ. For a ∈ good,
the transversal ϕ(NB(a)) intersects every L/2-subset of [L], which means it cannot have size less
than L/2 (otherwise it would miss an L/2-sized subset contained in its complement in [L]). This
essentially means that L/2 colours are ruled out for a: a can only be coloured if its s-sized list
had a nonempty intersection with the complement of the transversal - which (we will show) has
probability at most 1− 1/2s+1. Since good is much larger than 2s+1 we can make the probability
of successfully extending ϕ to good < 1/s|B|, which means that when lists are assigned to vertices
of good uniformly at random, the probability that there is a colouring of B that extends to good
is < 1, which means that some list assignment for G exists where this is not possible, establishing
χl(G) > s.

[The details] We choose the vertices of B randomly: pick v ∈ V independently with probability p.
For small enough p, this will give us a small set with high probability, which is what we are looking
for. Having done so, we assign s-sized list assignments to the vertices of B uniformly at random
from C. Call a vertex good if it is not in B and satisfies that for every subset T ⊆ C of size L/2,
there is a neighbour b ∈ B of v with L(b) ⊆ T . These good vertices will form our set good. Fix a
vertex v ∈ V .

P
B∼G(n,p)

L(u∈B)∼U(([L]
s ))

[v ∈ V is not good] = p+ (1− p)P [v ∈ V is not good | v 6∈ B]

= p+ (1− p)P
[
∃T ⊆

(
[L]

L/2

)
: ∀b ∈ N(v) : b 6∈ B or L(b) 6⊆ T

]

≤ p+ (1− p)
(
L

L/2

)(
1− p

(
L/2
s

)(
L
s

) )d

≤ p+
2L

4

(
1− p

(
L/2
s

)(
L
s

) )d

where the last step is true for L ≥ 9 (which will correspond to s ≥ 3). Now(
L/2
s

)(
L
s

) =
1

2s

s−1∏
i=1

(
1− i

L− i

)
≥ 1

2s

s−1∏
i=1

(
1− i

L− s

)
≥ 1

2s

(
1−

∑s−1
i=1 i

L− s

)
≥ 1

2s+1

where we choose L = s2 in the last step. This means

P [v is not good] ≤ p+
1

4
exp

(
s2 log 2− pd

2s+1

)
We would like for the exp(·) term to be < 1/2 or pd > 2s+1(s2 + 1) log 2. We also set p = 1/

√
d

(the reason for this being that later we will have another constraint that looks like 1/p > 2s,
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to satisfy both in one go we set pd = 1/p or p = 1/
√
d). Thus for d > 22s+2(s2 + 1)2 log2(2),

P [v is not good] < 1/8 + 1/8 = 1/4. Thus, the expected size of good is E
[∑

v∈V 1{v is good}
]
≥

3n/4. We have by Markov’s inequality

P [|good| ≤ n/2] = P [|!good| > n/2] ≤ E |!good|
n/2

< 1/2

and similarly

P [|B| ≥ 2np] ≤ E |B|
2np

=
np

2np
= 1/2

so with positive probability, |good| > n/2 and |B| ≤ 2np (the probability of this is> 1/2+1/2−1 =
0). We now condition on this event (it has non-zero probability), equivalently we fix a B and a list
assignment for B satisfying the event. There are at most s|B| list colourings ϕ on B. Assign lists
to the elements of good randomly, and fix a colouring ϕ on B. Also fix a ∈ A. We have seen that
ϕ can extend to a if and only if the list assigned to a is not contained in ϕ(NB(a)) which is very
large - it has size at least L/2. The probability of ϕ extending to all of good is then (since each
a ∈ A is assigned its list independently)

P [ϕ extends to good] ≤

(
1−

(
L/2
s

)(
L
s

) )|good| ≤ (1− 1

2s+1

)n
2

≤ e−
n

2s+2

The probability that some colouring of B will extend to good is thus

P [some ϕ on B extends to good] ≤ s|B|e−
n

2s+2 = exp

(
n

(
2p log s− 1

2s+2

))
To finish, we need 2p log s < 1/2s+2, or

√
d = 1/p > 2s+3 log s which is satisfied since

√
d >

2s+1(s2 + 1) log 2. Thus there a list assignment to vertices in good that no colouring of B can
extend to (and so G is not choosable for this choice of lists), so χl(G) > s.
Finally, d > 22s+2(s2 + 1)2 log2(2) implies that s < (1

2 − od(1)) log2(d). Since any s satisfying this
will do, we have

χl(G) ≥
(

1

2
− od(1)

)
log2 d

as required. �
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Vector 3 colorable graphs with large chromatic number

Lecturer: Niranjan Balachandran Scribe: Kunal Kundwani

In this writeup, we will show the existence of a family of graphs which admit a vector 3 coloring
but have arbitrarily large chromatic number. In fact, we will show that certain Kneser graphs have
this property!
Lets start with the definition of Kneser graphs.

Definition 66 (Kneser Graphs). The Kneser graph K(n, k) is the graph whose vertex set is the
set of all k sized subsets of [n], and two subsets share an edge in it iff they are disjoint.

We will first show that for certain (infinitely many) pairs (n, k), K(n, k) is vector 3-colorable. For

that, consider the following embedding f of sets A ∈
([n]
k

)
into Sn:

f(A)i :=

{ 1√
n

if i ∈ A
−1√
n

otherwise
(16)

where f(A)i means the ith coordinate of f(A). To make above embedding satisfy the vector 3
colorability condition, we would want:

〈f(A), f(B)〉 ≤ −1

2
∀A,B ∈

(
[n]

k

)
satisfying A ∩B = ∅

It is easy to verify that if A∩B = ∅ and A,B have size k, then 〈f(A), f(B)〉 = n−4k
n . To make this

fraction ≤ −1
2 , we would want 2n − 8k ≤ −n =⇒ k ≥ 3n

8 . As 3n
8 < n

2 , non trivial and arbitrarily
large vector 3 colorable Kneser graphs exist.
Next, we will prove the following result concerning the chromatic number of K(n, k):

Theorem 67. χ(K(n, k)) > n− 2k + 1

The proof we will outline, is from [3].

To prove the above, we will need two important results.

Theorem 68 (Borsuk’s Theorem [4]). If St is the union of t+ 1 sets which are open in St. Then
one of these sets contains a pair of antipodal points.

(x and y are said to be antipodal here iff x = −y)

Definition 69. For any point a ∈ St, define H(a) = {x ∈ St : 〈x, a〉 > 0}

Theorem 70 (Gale’s Theorem [6]). For all p, q ∈ N, there exists a set V ⊆ Sp of size 2q + p such
that ∀a ∈ Sp, |H(a) ∩ V | ≥ q.

Now, back to the proof of theorem 2:
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Proof. Let t = n − 2k. Assume to the contrary that K(n, k) can indeed be colored with t + 1
colors.Let the color set be [t+ 1] and any one of such valid colorings be c (i.e. the set A is colored
with the color c(A)).
Now applying Gale’s theorem with p = t, q = k we get a set V of size t + 2k = n such that
∀a ∈ St, |H(a) ∩ V | ≥ k. Let V = {v1, v2, . . . , vn}.Now, for i ∈ [t + 1] define Ui := {x ∈ St : ∃A ∈([n]
k

)
such that c(A) = i and vj ∈ H(x)∀j ∈ A}. Less formally, we put x in Ui iff H(x) ∩ V has an

i colored subset. (w.r.t. the correspondence vj → j).
Now, observe that Ui must be open in St for all i ∈ [t+ 1] since:

Ui =
⋃

A∈([n]
k )

c(A)=i

⋂
j∈A

H(vj)

. Since, H(x) is open for all x ∈ St. (not very hard to verify), the above just involves finitely
many unions and intersections of sets open in St and thus Ui is indeed open in St. Now, as for
every x ∈ St H(x) has atleast k elements of V , there will be some A ∈

([n]
k

)
wholly inside H(x),

and thus x will belong to Uc(A). Hence, every x ∈ St belongs to some Ui. Thus we have written
St as a union of t+ 1 sets(the Ui’s) open in St. Hence by Borsuk’s theorem one of those sets will
have an antipodal pair!. Thus for some i ∈ [t+ 1] and some a, both a and −a belong to Ui which
means that both H(a) and H(−a) contain i colored subsets. Let one of those sets be A and B
respectively. Now observe that H(a) ∩ H(−a) = ∅ since 〈x, a〉 > 0 ⇐⇒ 〈x,−a〉 < 0. This would
imply that A∩B = ∅ and so A,B must have an edge between them in K(n, k). However c assigns
the same color to both A and B and so, c can’t be a valid coloring, which contradicts our starting
assumption about c.

Hence we can’t color K(n, k) with less than n− 2k + 2 colors and so χ(K(n, k)) > n− 2k + 1. �

Now, if n = 8d and k = 3d then k ≥ 3n
8 and so K(n, k) is vector 3 colorable and χ(K(n, k)) > 2d+1

which can be made arbitrarily large by choosing d arbitrarily large, which concludes our objective!
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Chromatic Number of Kneser Graphs
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Construction of an extremal case

Theorem 71. There exist graphs that admit vector 3-vector coloring but with χ(G) > nδ for some
fixed δ > 0.

For this we look at Johnson Graphs.

Definition 72. Johnson Graphs J(n, r, s) are defined as follows-

• V (J(n, r, s)) =
(

[n]
r

)
• A,B ∈

(
[n]
r

)
are adjacent iff |A ∩B| = s.

A special family is when s=0 called Kneser graphs denoted by K(n, r). We assume n ≥ 2r + 1

Example 73. Petersen Graph is K(5, 2).

Theorem 74. (Erdős-Ko-Rado) Suppose n ≥ 2r+ 1 size of maximum intersecting family of r-sets
in [n] is

(
n−1
r−1

)
. Further the maximal families are STARS i.e contain a particular element.

In Kneser Graphs edges are between non intersecting sets. In an independent set of Kneser graphs
all sets are Intersecting. By Erdős-Ko-Rado α(G) =

(
n−1
r−1

)
.

A natural representation of a member of J(r,n,s) is as follows with 1 for elements which belong to
A and −1 which belong to Ac

A↔ 1√
n

(1 1...1| − 1− 1...− 1) = vA

〈vA, vB〉 =
1

n
(|A ∩B| − |A ∩Bc| − |Ac ∩B|+ |Ac ∩Bc|)

=
1

n
(s− (r − s)− (r − s) + (n− 2r + s))

=
n− 4r + 4s

n

For graph to be vector 3-colorable

〈vA, vB〉 ≤ −
1

3− 1
n− 4r + 4s

n
≤ −1

2
2n− 8r + 8s ≤ −n

3n ≤ 8r − 8s

We put n to be 8s and r to be 3s which satisfies the above inequality making our graph vector
3-colorable
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Theorem 75. If F ⊆
(

[n]
r

)
such that for any A 6= B ∈ F , |A ∩B| > s then

|F| ≤
r−s−1∑
i=0

(
n

i

)

If we start with a graph G defined as V (G) =
(

[8s]
4s

)
and A,B adjacent when |A∩B| ≤ s. Then G is

also vector 3-colorable but by the above theorem on the family of maximal independent set I we
get

α(G) ≤
4s−s−1∑
i=0

(
8s

i

)
≤ 2H(3/8)8s

χ(G) ≥
(

8s
4s

)
α(G)

≥ Ω

(
28s/
√
s

2H(3/8)8s

)
≥ Ω

(
2s(8+3 log2( 3

8
)+5 log2( 5

8
))

√
s

)
≥ Ω(nδ)

where δ ≤ 1 + 3
8 log2(3

8) + 5
8 log2(5

8) = 0.0455 and H(x) = −x log2(x)− (1− x) log2(1− x)

Chromatic Number of Kneser graphs

Assuming n ≥ 2r + 1 One natural way for coloring is as follows consider
F1 = all subsets containing 1
F2 = all subsets containing 2 but not 1
F3 = all subsets containing 3 but not 1 or 2

We keep going till we are left with only {n, n−1, .., n−2r−2}. We have used n−2r−1 colors and
If we take any 2 of remaining set they intersect thus forming an independent set so 1 color suffices.
So we get a coloring of n-2r+2 colors. Next conjecture states that we can’t do better.

Conjecture 76. χ(K(n, r)) = n− 2r + 2.

Theorem 77. (Borsuk-Ulam) If f : Sd → Rd is continuous then there exists x0 ∈ sd such that

f(x0) = f(−x0)

Alternate formulation of the above theorem is if Sd = U1 ∪ U2 ∪ ... ∪ Ud+1 where each Ui is either
closed or open for all 1 ≤ i ≤ d then there exist some 1 ≤ i ≤ d+ 1 such that Ui contains antipodal
pair.
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Proof of Conjecture

Take d = n − 2r, pick n points on Sd+1 in GENERAL position i.e. the equator has atmost d + 1
points.These represent the set {1, 2, ..., n}. Assume χ(K(n, r)) ≤ d+ 1 Then(

[n]

r

)
= V1

⊔
V2

⊔
...
⊔
Vd+1

Define sets Ui ⊆ Sd+1 as

Ui = {x ∈ Sd+1|The open hemisphere centered at x contains some r-subset of Vi}

Ui are open so

Sd+1 = U1 ∪ U2 ∪ ... ∪ Ud+1 ∪ C

By theorem 5, one them contains an antipodal pair, But Ui can’t contain an antipodal pair. There-
fore C contains an antipodal pair say {x0,−x0}. But a hemisphere with x0 contains ≤ r− 1 points
of r-sets, similarly hemisphere with −x0 contains ≤ r−1 points and equator contains ≤ d+1 points
since GENERAL position. This implies

n ≤ (r − 1) + (r − 1) + (d+ 1) = d− 2r − 1 = n− 1

Contradiction! Therefore χ(K(n, r)) = n− 2r + 2

Proof of Theorems used

Proof of Theorem 5

If F ⊆
(

[n]
r

)
such that for any A 6= B ∈ F , |A ∩B| > s then

|F| ≤
r−s−1∑
i=0

(
n

i

)

We will try to define a vector space V over some field F and associate the members of F as vectors
in V such that those memebers in F are linearly independent. Take V to be multilinear polynomial
in [x1, ..., xn] with degree ≤ d = r − s− 1 which implies dim(V ) =

∑d
i=0

(
n
i

)
. We will associate a

polynomial fA for each set A ∈ F If A 6= B, |A ∩B| ∈ {s+ 1, ..., r − 1} which is a size d set

fA(x1, ..., xn) =

r−1∏
j=s+1

(〈x̃, vA〉 − j)

where vA is 0-1 characteristic vector of A and x̃ = (x1, ..., xn)

fA(vB) = 0 if B 6= A and fA(vA 6= 0 write fA =
∑

0≤αi≤d−1Cα̃x
α1
1 ...xαn

n . Replace each xαi
i

for αi ≥ 1 with xi .
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Thus we get a multilinear map gA such that for εi ∈ {0, 1}

gA(ε1, ..., εn) = fA(ε1, ..., εn)

=⇒gA(vB) = fA(vB) = 0 and gA(vB) = fA(vB) 6= 0

=⇒{gA}A∈F are linearly independent

=⇒|F| ≤
r−s−1∑
i=0

(
n

i

)

Proof of Alternate reformulation of Theorem 7

Lusternik-Schnirelmann Theorem version of Boruk-Ulam states that Sd = U1∪U2∪ ...∪Ud+1 where
each Ui is either closed or open for all 1 ≤ i ≤ d then there exist some 1 ≤ i ≤ d+ 1 such that Ui
contains antipodal pair.
L-S version is simple application of B-U Theorem. Suppose no antipodal pair exists in any Ui
f : Sn → Rn given by

f(x) = (d(x, U1), d(x, U2)..., d(x, Un))

where d(x,A) = infy∈Ad(x, y) , f is continuous as distance to any set is continuous. By B-U
Theorem ∃x0 ∈ Sn such that f(x0) = f(−x0). By assumption x0,−x0 not in Un+1. Either x0 or
−x0 is in Ui for some i ≤ n. WLOG x0 ∈ Ui We have f(x0)i = 0 =⇒ f(−x0)i = 0. If Ui is closed.
−x0 ∈ Ui. Contradiction! Therefore Ui is open and −x0 ∈ Ūi.
Ui ∩ (−Ui) = ϕ by assumption, therefore Ui ⊆ Sn \ (−Ui) which is closed

=⇒ Ūi ⊆ Sn \ (−Ui)
=⇒ −x0 ∈ Ūi ⊆ Sn \ (−Ui)
=⇒ −x0 /∈ −Ui.

Contradiction ! Therefore ∃ Ui which contains an antipodal pair.
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Vector colourings and the KMS algorithm
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In this part, we define the notion of vector k-colourings and describe an algorithm for finding a
vector 3-colouring in 3 colourable graphs.

Definition 78. Given k ∈ N, k > 1 a graph G = ([n], E) is said to be vector k-colourable if there
exist unit vectors v1, v2, ..., vk ∈ Rn such that 〈vi, vj〉 ≤ −1

k−1 if i, j ∈ E.

We have a strong vector k-colouring if 〈vi, vj〉 = −1
k−1

Observation 79. If G is k-colourable, then it is (strong) vector k-colourable.

Consider the vectors given by vi =
ei− 1

k

∑n
k=1 ek

|ei− 1
k

∑n
k=1 ek|

and assign vertex i the colour vi

Finding the minimum k for which a graph is vector k-colourable is rewritable as an SDP (Semi
definite programming) problem.

Prototype SDP

Given symmetric matrices A1, A2, ..., Am, C, we seek to maximize

MAX C �X, subject to

Ai �X = bi
X � 0

where Anxn �Bnxn is the inner product in R2n

Fact 80. Under very minimal assumptions, SDP admits a polynomial time algorithm giving a
solution upto any given accuracy ε > 0

Strong Vector Colouring as SDP

Min t subject to

Yij = − 1
t−1 if i, j ∈ E
Yi,i = 1

Y = [Yi,j ] � 0

Remark 81. As seen in the next scribe, there exist graphs which are vector 3-colourable but with
chromatic number ≥ nδ for some δ ≥ 0

Fact 82. Determining if χ(G) ≤ K is NP-Complete if K ≥ 3

Fact 83. Unless P=NP, it is NP-HARD to approximate χ(G) to within a factor of n1−ε

Given a 3-colourable graph, what is the least k such that we have a polynomial time algorithm to
find a k-colouring?

We present an idea of Wigderson (early 90’s) that uses O(
√
n) colours
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Idea: If G is 3-colourable, N(v) is bipartite for any v ∈ V. Bipartite graphs are 2-colourable in
polytime. We consider a new parameter ∆. As long as we have a vertex of degree > ∆, we colour
N(v) using 2 new, distinct colours and delete N(v). When the max degree drops to or below ∆, we
colour greedily using ∆ + 1 colours.
We therefore use ≤ 2 ∗ n

∆ + ∆ + 1 colours. When taking ∆ =
√

2n, we get that we use ≤ 2
√

2n+ 1
colours.

KARGER-MOTWANI-SUDAN(1998-99) gave us a randomized version of this algorithm to improve

complexity to Õ(n
1
4 ), where Õ(f(n)) ≤ kf(n)(log n)O(1)

Idea 1: Since G is 3-colourable, it is vector 3-colourable in polynomial time.
Idea 2: Pick a “zone” on the unit sphere, and let I0 = {i|vi ∈ zone}. Let I be a subset of I0

consisting of isolated vertices in G(I0). Clearly, I is independent in G.
Idea 3: We pick a random gaussian vector X ∼ N(0, In), and set I0 = {i : 〈vi, X〉 ≥ t} for some
parameter t which we fix later.

E |I| = E |I0| − E |I0 \ I|

E |I0| =
n∑
i=1

P(vi ∈ I0)

Note vi ∈ I0 iff 〈vi, X〉 ≥ t. But, by the radial symmetry of X, 〈vi, X〉 is also gaussian. In fact, it
is N(0, |vi|2) = N(0, 1). So, if we write the tail probability formula as

Φ(t) =

∫ ∞
t

1√
2π
e

x2

2 dx

then

P(vi ∈ I0) = Φ(t)

hence

E |I0| = nΦ(t)

P(vi ∈ I0 \ I) = P(vi ∈ I, and∃vj | {i, j} ∈ E, vj ∈ I0)

Suppose G has max degree ∆. Then, we get the above probability

P(vi ∈ I0 \ I) ≤ ∆ · P(vi, vj ∈ I0)

for some fixed arbitrary pair i,j.
Note, the product 〈vi, X〉 ≥ t creates a half plane with distance t away from the origin. We also
note, as 〈vi, vj〉 ≤ −1

2 , the angle between vi and vj is greater than or equal to 120 degrees. Hence,
the acceptable range for X so that both vi and vj are in I can be contained within a half plane
along their angle bisector with distance 2t from the origin. Hence, again by radial symmetry,

P(vi, vj ∈ I0) ≤ Φ(2t)

P(vi ∈ I0 \ I) ≤ ∆ · Φ(2t)

E |I0 \ I| ≤ n∆ · Φ(2t)

E |I| ≥ n(Φ(t)−∆Φ(2t))
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We recall the standard facts

Φ(t) ≤ e
−t2

2

t
√

2π

Φ(t) ≥ (
1

t
− 1

t3
)
e

−t2

2

√
2π

=⇒ E |I| ≥
n√
2π

[(
1

t
− 1

t3
)e

−t2

2 − ∆

2t
e−2t2 ]

Pick t =
√

2
3 log(2∆)

=⇒ 1

2t
e

−t2

2 =
∆

t
e−2t2

As long as ∆ ≥ e6

2 , we have t ≥ 2 and (1
t −

1
t3

) ≥ 1
2t

=⇒ E |I| ≥
n√
2π

∆

2t
e−4 log(2∆)/3

= Ω̃(
n

∆1/3
√

log(∆)
)

Hence, there exists a randomized algorithm to get an independent set of size ≥ Ω̃( n

∆1/3
√

log(∆)
) with

high probability. Set ∆ = n3/4. If ∆(G) ≤ ∆, we perform this process to get an independent set of

size Ω̃(n
3
4 )

The complete idea: Start with Wigderson’s trick. 2-colour neighbourhoods of v and delete them
until the max degree drops below ∆ = n

3
4 . This uses O( n∆) = O(n

1
4 ) colours. After that, we find in-

dependent sets and colour them with 1 colour each. This takes O( n
n/∆1/3

√
log ∆

) = O(∆1/3
√

log ∆) =

O(n
1
4 log(n)) colours.

Hence, we can colour the graph in O(n
1
4 log(n)) colours.

38



References

[1] N. Alon, Restricted Colorings of Graphs. See here for a copy.

[2] N. Alon, Degrees and choice numbers, 2000. See here for a copy.
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