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Abstract

The distinguishing chromatic number of a graph G, denoted χD(G), is defined as the min-
imum number of colors needed to properly color G such that no non-trivial automorphism of
G fixes each color class of G. In this paper, we consider random Cayley graphs Γ defined over
certain abelian groups A with |A| = n, and show that with probability at least 1 − n−Ω(log n),
χD(Γ) ≤ χ(Γ) + 1.
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1 Introduction

Let G be a graph and let Aut(G) denote its full automorphism group. Albertson and Collins
introduced the notion of the distinguishing number of a graph in [2].

Definition 1. A labeling of vertices of a graph G, h : V (G)→ {1, . . . , r} is said to be distinguish-
ing ( or r-distinguishing) provided no nontrivial automorphism of the graph preserves all of the
vertex labels. The distinguishing number of a graph G, denoted by D(G), is the minimum r such
that G has an r-distinguishing labeling.

Collins and Trenk introduced the notion of the distinguishing chromatic number in [7] as
follows.

Definition 2. A labeling of vertices of a graph G, h : V (G) → {1, . . . , r} is said to be proper
distinguishing ( or proper r-distinguishing) provided the labeling is proper and distinguishing.
The distinguishing chromatic number of a graph G,χD(G), is the minimum r such that G has a
proper r-distinguishing labeling.
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In other words, the distinguishing chromatic number of a graph G is the smallest integer r
such that the vertex set can be partitioned into sets V1, V2, . . . , Vr such that each Vi is independent
in G, and for every 1 6= π ∈ Aut(G) there exists some color class Vi such that π(Vi) 6= Vi. While
the presence of the graph in the definition of the distinguishing number is merely in order to invoke
the group action, the graph itself has a more central (and combinatorially important) role in the
notion of the distinguishing chromatic number. Since this notion is distinct from the notion of the
chromatic number only when the graph admits non-trivial automorphisms, it is a matter of specific
interest to determine the distinguishing chromatic number of graphs with a large automorphism
group.

It must be remarked here that the distinguishing chromatic number of a graph G can behave
quite haphazardly in contrast to the size of Aut(G) (see [4] for examples highlighting this aspect).
However, there are results that establish a bound on χD(G)− χ(G) in terms of its automorphism
group. Indeed, a result of Collins, Hovey, and Trenk [6] states that if Aut(G) = Z

p
i1
1
×Z

p
i2
2
×· · ·×Z

p
ik
k

(in particular, Aut(G) is abelian), then χD(G) ≤ χ(G) + k, so for instance, if Aut(G) is a cyclic
group of prime power order, then χD(G) ≤ χ(G) + 1. A more relevant result (in our context) of
Seress [11] states that if G is a vertex transitive graph with a solvable automorphism group, then
χD(G) ≤ χ(G) + 4. Thus, while one cannot correlate this gap with the size of the automorphism
group of G, there is reason to believe that in most cases, it is heuristically a valid perspective that
a graph that has a ‘small automorphism group’ must have a small gap χD(G)− χ(G).

Note that an ‘average’ graph, i.e., an Erdős-Renyi random graph G(n, p) is very likely a rigid
graph, i.e., it has no non-trivial automorphisms. Thus, to make this question less trivial, one needs
to consider a typical graph arising from a family of graphs that admit non-trivial automorphism
groups, and one class of graphs that do so are Cayley graphs of groups. To recall the definition,
let A be a finite group with cardinality n and let S ⊂ A with 1 /∈ S be an inverse closed subset
of A. In other words, S = S−1 where S−1 := {g−1 : g ∈ S}. The Cayley graph of A with respect
to S, denoted by Γ(A,S) is the following graph: V (Γ(A,S)) = A and E(Γ(A,S)) = {(g, gh) : g ∈
A, h ∈ S}. It is straightforward to see that the group A acts regularly on Γ(A,S). If A is abelian,
the map i(g) = g−1 is also an automorphism of A which is distinct from any of the automorphisms
induced by the member of A unless A ' Fr2 for some r ∈ N. Hence, for A abelian, it is easy to see
that A o 〈i〉 ⊆ Aut(Γ(A,S)). If equality holds here, then we say that Γ(A,S) has automorphism
group as small as possible.

A conjecture of Babai and Godsil (see [3]) states that if A is an abelian group of order n,
the proportion of inverse closed subsets S for which the corresponding Cayley graph Γ(A,S) has
automorphism group as small as possible tends to 1, as n → ∞. This conjecture was proved in
[3] for abelian groups with n ≡ 3 (mod 4). In a recent paper by Dobson, Spiga and Veret [8], this
conjecture has been settled in the affirmative for all n.

In this paper, we restrict our attention to random Cayley graphs over certain kinds of abelian
groups, with the group operation expressed additively. The model for the random graphs on Cayley
groups that we shall consider is described as follows. Let A be a finite group with |A| = n, and
let 0 < p = p(n) < 1. Each element g ∈ A of order 2 is chosen with probability p and for any
other x ∈ A, the pair (x,−x) is chosen with probability p and all these random choices are made
independently to form the set S. The random Cayley graph is the graph Γp := Γ(A,S). Thus, the
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main theorem of [8] may be written as

P
(
Ao 〈i〉 ( Aut(Γ1/2(A,S))

)
→ 1 as n→∞.

In order to state our results, we first set up some notation. We write f(n) = O(g(n)) if there
exists a constant K > 0 such that |f(n)| ≤ K|g(n)| for all n and write f(n) = Ω(g(n)) if there
exists a constant c > 0 such that |f(n)| ≥ c|g(n)| for all n. Finally, we write f(n) � g(n) if

lim
n→∞

f(n)

g(n)
= 0. By log we shall mean log2 throughout the paper.

Usually, the phrase ‘En occurs with high probability’ refers to the statement, P(En) → 1 as
n → ∞ for some relevant parameter n. We shall in fact state a more precise rate of convergence,
so our usage of the same phrase shall mean that P(En) ≥ 1−Ω(n− logn) for sufficiently large n, so
that in particular, if an event En holds whp, then it holds with probability at least 1− 1/nc for any
positive constant c. In all our statements, n = |A|, the size of the underlying group.

The first result we prove - which may be of independent interest - generalizes the result in [8]
stated above, for a much larger range of p.

Theorem 3. Let Γp := Γp(A,S) be the random Cayley graph with 25(logn)2

n ≤ p ≤ 1 − 25(logn)2

n .
Then,

P(Aut(Γp) 6∼= Ao 〈i〉) ≤ O(exp(− log2 n)),

where i : A→ A is the automorphism i(x) = −x. In particular, whp Aut(Γp) is as small as possible.

The focal point of this paper is to consider the distinguishing chromatic number for random
Cayley graphs, and show that the heuristic expressed earlier is valid, i.e.,

χD(Γ) ≤ χ(Γ) + 1 with high probability (whp).

However, in this paper, we restrict our focus to random Cayley graphs on groups of the following
types:

1. The random Cayley graph Γp(A,S), with (|A|, 6) = 1.

2. The random Cayley graph Γp(A,S), where A ∼= Zr2 ×N, and N is an odd order group which
is not cyclic.

We shall call these as abelian groups of Type I and Type II respectively. Type I groups also
appear in [9] where the chromatic number of a random Cayley graph Γ1/2(A,S) is determined
asymptotically, though the Cayley graphs in [9] are sum Cayley graphs, i.e., x, y are adjacent in Γ
if and only if x+ y ∈ S, and S is picked uniformly at random from A.

The principal reason for restricting our attention to these families is that the results we obtain
are much nicer to state in these cases. Some of the specific restrictions on A that appear for Type
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II groups in our results may be relaxed, but our methods make the corresponding results a lot
messier to state, so we restrict our attention to these families only.

Our main results in this paper are

Theorem 4 (Distinguishing Chromatic Number for Random Cayley graphs on Type I
groups ). Let Γp := Γp(A,S) be the random Cayley graph with

25(log n)2

n
≤ p ≤ 1− 19

(
log n

n

)2/3

,

where A is an abelian group with order co-prime to six. Then,

P
(
χD(Γ) ≤ χ(Γ) + 1

)
≥ 1− n−Ω(logn).

In particular, χD(Γp) ≤ χ(Γ) + 1 with high probability.

and

Theorem 5 (Distinguishing Chromatic Number for Random Cayley graphs on Type
II groups). Suppose A ∼= Zr2×N, where N is an odd order group which is not cyclic, |A| = n and
suppose that m� n

log2 n
. Let Γp := Γp(A,S) be the random Cayley graph with

25(log n)2

n
≤ p ≤ 7

13(m+ 2 log 2n)
.

Then
P
(
χD(Γp) ≤ χ(Γp) + 1

)
≥ 1− n−Ω(logn).

In particular, χD(Γp) ≤ χ(Γ) + 1 with high probability.

Note that the range for p in either case is quite varied. For groups of Type I, our results hold
for a much larger range for p, whereas for groups of Type II, the range of p that we consider in our
results only allows for sparse graphs on these groups. Again, this is owing to the ideas involved in
the proofs for either case.

The rest of the paper is organized as follows. In the next section, we begin with some prelimi-
naries, while also recalling the main results of [8] and their relevance to our work here. In Section 3,
we prove Theorem 3. In Section 4 we prove Theorem 4 for random Cayley graphs on abelian groups
of Type I, and in section 5, we prove Theorem 5 for random Cayley graphs on abelian groups of
Type II. Finally, we close with some concluding remarks, some questions, and a conjecture. We
make no attempt to obtain optimal constants in our results.

2 Preliminaries

In what follows, we borrow our notation and terminology from [8] which we restate for convenience
of the reader.
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Definition 6. Let A be an abelian group and let 1 < H ≤ K ≤ A be subgroups of A. We say that
the Cayley graph Γ(A,S) is a generalized wreath graph with respect to (H,K,A) if S \K is a union
of H-cosets.

Definition 7. The direct product of two graphs G(V1, E1), H(V2, E2) is the graph with vertex set
V1 × V2 and e = (u1, v1)(u2, v2) is an edge if and only if u1u2 ∈ E1 and v1v2 ∈ E2.

We need one further definition, namely, that of a generalized dihedral group.

Definition 8. For an abelian group H, the generalized dihedral group of H is the semidirect product
of H and Z2, with Z2 acting on H by inverting elements.

One of the main theorems proved in [8] is the following.

Theorem 9. Let G be a permutation group with an abelian regular subgroup A and a proper
subgroup B which is generalized dihedral on A and such that NG(A) = B. Then one of the following
occurs:

1. |A| is not a prime power and there exist two groups H an K with 1 < H ≤ K < A, and for
every graph Γ with G ≤ Aut(Γ), we have that Γ is a generalized wreath graph with respect to
(H,K,A),

or

2. there exist two groups C and Z with A = C × Z, with C ∼= Ct for some t ≥ 4 and with Z an
elementary abelian 2-group, such that, for every graph Γ with G ≤ Aut(Γ), we have that Γ is
isomorphic to the direct product of Λ with a Cayley graph over Z, where Λ is either complete
or edgeless, possibly with loop at each vertex.

The proof of Theorem 3 will follow from lemmas 12, 11, and 14 (see section 3 for their precise
statements). Briefly speaking, Lemma 11 states that whp the normalizer of A in Aut(Γp) is Ao 〈i〉.
Lemma 12 and Lemma 14 state that whp, neither event as outlined as the two possible cases in
Theorem 9 occurs, so Theorem 3 follows from Theorem 9.

The proofs of Theorems 4 and 5 use the structure of the automorphism group, and its size,
respectively, along with a few additional ideas. We shall outline their proofs in the respective
sections.

3 Proof of Theorem 3

In this section, we show that the results of [8] may be extended to the model of random graphs we
are interested in, using very similar ideas, but for a much wider range of p(n). We shall implicitly
assume that n is sufficiently large whenever the need arises.

The number of elements of the group A whose order is at most two, is denoted by m.
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Lemma 10. Suppose n ≥ 248. If 3
2 ≤ c1, c2 ≤ n satisfy c1c2 ≥ n

24 , and p ∈ [25(logn)2

n , 1− 25(logn)2

n ],
then

nlogn(pc1 + (1− p)c1)c2 < 3n−(logn)/24.

Proof. Consider f(p) = (pc1 + (1 − p)c1)c2 on the interval [0, 1]. It follows (by standard calculus)

that f(p) attains minimum at p = 1
2 . In particular, for p ∈ [25(logn)2

n , 1− 25(logn)2

n ], f(p) attains its

maximum value at the endpoints. Therefore, it suffices to prove the statement when p = 25(logn)2

n
since f is symmetric about 1/2.

Now,
(pc1 + (1− p)c1)c2 ≤ e−pc1c2 ec2yc1

where y = p
1−p .

For p ∈ [25(logn)2

n , 1/2], observe that

c2y
c1 ≤ c2

(
25(log n)2

n− 25(log n)2

)c1
≤ n

(
25(log n)2

n− 25(log n)2

)2/3

≤ 1. (1)

The last inequality follows from the assumptions that c1 ≥ 3/2, c2 ≤ n, and the fact that n ≥ 248.
Therefore

nlogn(pc1 + (1− p)c1)c2 ≤ e(logn)2−pc1c2+1.

Since c1c2 ≥ n/24 the right hand side in the last inequality is at most exp(− log2 n
24 + 1). This

completes the proof.

For S ⊂ A and φ ∈ Aut(A), we say that φ normalizes S if φ(S) = S. In what follows, unless

otherwise mentioned, p ∈ [25(logn)2

n , 1− 25(logn)2

n ].

Lemma 11. Suppose A is abelian, and let S be a random inverse closed subset of A with each pair
(x,−x) picked with probability p. Let i : A → A be the automorphism of A defined by i : x → −x.
Then the probability that there exists φ ∈ Aut(A) \ {1, i} such that S is normalized by φ is at most
O(exp(−21

4 (log n)2). In particular, whp the normalizer of A in Aut(Γp) is Ao 〈i〉.

Proof. Fix φ ∈ Aut(A) and suppose that φ normalizes S. Since |i| = 2, we have m = |CA(i)| where
CA(i) is the centralizer of i in A. Let |CA(φ)| = c and |CA(〈i, φ〉)| = k.
Suppose that |φ| is divisible by an odd prime q.
In this case, without loss of generality we assume |φ| = q, otherwise we may replace φ with a
suitable power. Observe that, if a ∈ S then {a, φ(a), . . . , φq−1(a)} ⊆ S. Therefore,

P
(
φ(S) ⊂ S

)
= (pq + (1− p)q)

m−k
q (pq + (1− p)q)

n−(c+m−k)
2q ≤ (pq + (1− p)q)

n
4q .

The last inequality follows by using k ≤ m, c ≤ n
2 and (pq + (1 − p)q) ≤ 1. Observe that an

automorphism is completely determined once it is known on a set of generators of a group. For a
group G with |G| = n ≥ 2, there is a set G of at most blog nc generators. Since there are at most
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n|G| choices of maps on G, it follows that |Aut(G)| ≤ nlogn. Therefore, the probability that there

exists φ ∈ Aut(A) \ {1, i} such that φ(S) = S is at most nlogn(pq + (1 − p)q)
n
4q . Using lemma 10,

by setting c1 = q and c2 = n
4q , we see that this probability is O(exp(−21

4 (log n)2).

Now suppose |φ| is a power of two. Two cases arise:
Case 1: i ∈ 〈φ〉
By replacing φ by a suitable power, we may assume that φ2 = i. Then,

P(φ(S) ⊂ S) = (p2 + (1− p)2)
m−c

2 (p2 + (1− p)2)
n−m

4 ≤ (p2 + (1− p)2)
n
8 .

The last inequality is obtained by using m ≤ n
2 and c ≤ m. Again, we use lemma 10 with c1 = 2 and

c2 = n
8 to see that the above probability is at most 2(logn)2(p2 + (1− p)2)

n
8 ≤ O(exp(−21

4 (log n)2).

Case 2: i /∈ 〈φ〉
In this case

P(φ(S) ⊂ S) = (p2 + (1− p)2)
m
2 (p2 + (1− p)2)

n−m
4 = (p2 + (1− p)2)

m+n
4 .

Again, setting c1 = 2, c2 = m+n
4 and applying lemma 10 we see that the above probability is at

most O(exp(−23
2 (log n)2).

Finally, writing G = Aut(Γp(A,S)), note that if the normalizer of A in G strictly contains
A o 〈i〉 then there exists φ ∈ NG(A) \ (A o 〈i〉) such that φ(S) = S, but the probability that this
occurs is bounded above by the expression of the lemma.

Lemma 12. Suppose A is an abelian group which is not a 2-group, and suppose S is chosen

randomly by picking each pair1 (x,−x) independently with probability p where 25(logn)2

n ≤ p ≤ 1
2 .

Then,

P(There exist 1 < H ≤ K < A) such that S \Kis a union of H − cosets) ≤ O(exp(− log2 n)).

Proof. Observe that since H ⊂ K ⊂ A, A \K is also a union of H- cosets, and let the set of these
cosets be denoted H. Write A′ := A \K and S′ := S \K. We shall denote the order of an element
a by o(a) and a+ a is denoted 2a.

Define

M := {a ∈ A : o(a) ≤ 2},
J := K ∩M,

I := {a ∈ A′ : 2a ∈ H},
I ′ := A \ (K ∪ I),

L := {a ∈ H : o(a) = 2}.

Let |H| = h, |I| = i, |K| = k, |J | = j and |L| = l. We have |M | = m.

1If x = −x then the pair is just the singleton {x}
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Fix subgroups H < K. To calculate P(S \K is a union of H − cosets) first observe that if S′

is a union of H-cosets, then,
g ∈ S′ ⇒ g +H ⊆ S′.

In other words, for a fixed g ∈ A′, either g + H ⊆ S′ or g + H and S′ are disjoint. Hence the
probability that S′ is a union of H-cosets is precisely

P

 ⋂
g+H∈H

{
(g +H ⊆ S) or (g +H ∩ S = ∅)

} . (2)

Since A′ is the disjoint union of I and I ′, we consider the two cases g ∈ I ′ and g ∈ I to calculate
the expression in (2).

g ∈ I ′: Suppose h1 ∈ H, and if possible let g + h1 ∈ K ∪ I. If g + h1 ∈ K then we have g ∈ K
since H ⊆ K. But this contradicts the assumption g ∈ I ′. If g + h1 ∈ I then by the definition of
I, we have 2g + 2h1 = h2 for some h2 ∈ H. Therefore 2g ∈ H and g ∈ I which contradicts the
assumption on g. Consequently, if g ∈ I ′ then g +H ⊆ I ′.

We further note that if g ∈ I ′ then −g /∈ g+H, otherwise we have −g = g+h for some h ∈ H
and hence 2g ∈ H which contradicts the assumption that g ∈ I ′. Also, observe that I ′ ∩M = ∅
because g ∈ I ′∩M and o(g) ≤ 2 implies 2g = 0 ∈ H and g ∈ I. The upshot of the above discussion
is the following: If g ∈ I ′ then g + H and −g + H are two distinct cosets and are both contained
in I ′. Since each pair (g,−g) is independently picked with probability p into S we have that

g +H ⊆ S′ ⇐⇒ −g +H ⊆ S′.

Since there are n−k−i
2h pairs of cosets in I ′ of the type (g + H,−g + H), the probability that for

every g +H ∈ I ′ either g +H ⊂ S or g +H ∩ S = ∅ is exactly (ph + (1− p)h)
n−k−i

2h .

g ∈ I: In this case note that g + H = −g + H. We consider the two sub-cases o(g) ≤ 2 and
o(g) > 2.

Suppose o(g) ≤ 2. Then for h ∈ H, we have 2(g + h) = 0 if and only if o(h) = 2. In particular,
the number of order 2 elements in g+H is precisely the number of order two elements in H. Since
there are l elements in g +H of order two and h− l elements of order greater than two, and since
the number of H cosets g+H with g ∈ I, o(g) = 2 that contain order two elements is precisely m−j

l ,
the probability that every coset g+H with g ∈M ∩ I satisfies that g+H ∩ S = ∅ or g+H ⊂ S is

precisely (p
h+l
2 + (1− p)

h+l
2 )

m−j
l .

If o(g) > 2, then it follows that g+H has no element of order two. There are exactly i− m−j
l h

elements g ∈ I of this type and furthermore, the set of these elements must also necessarily be the
union of 1

h(i− m−j
l h) H-cosets. If g+H ⊆ S′, one need to include the h

2 pairs (x,−x) of the coset
into S, so the probability that every g + H with o(g) > 2 is either disjoint with S or is contained

in S is precisely (p
h
2 + (1− p)

h
2 )( i

h
−m−j

l
).
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Set y := p
1−p . Then, from the above discussions, for a fixed H ⊂ K, we have,

P(S′ = union of H- cosets) = (ph + (1− p)h)
n−k−i

2h (p
h+l
2 + (1− p)

h+l
2 )

m−j
l (p

h
2 + (1− p)

h
2 )( i

h
−m−j

l
)

≤ (1− p)
n
4 exp(

n− k − i
2h

yh) exp(
m− j
l

y
h+l
2 ) exp((

i

h
− m− j

l
)y

h
2 )

The last inequality is obtained by using the facts that k ≤ n
2 , j ≤ m and (1− p) < 1. Furthermore,

note that we may without loss of generality assume that p ∈ [25(logn)2

n , 1
2 ]. We shall now show that

each of exp(n−k−i2h yh), exp(m−jl y
h+l
2 ), exp(( ih −

m−j
l )y

h
2 ) is bounded.

If h > 2, then, using inequality (1) of lemma 10 and taking c1 = h, c2 = n−k−i
2h , it follows

that exp(n−k−i2h yh) is bounded. Again using the same inequality, and taking c1 = h+l
2 > 1 and

c2 = m−j
l ≤ n it follows that exp(m−jl y

h+l
2 ) is bounded. As for exp(( ih−

m−j
l )y

h
2 ), we set c1 = h

2 > 1

and c2 = ( ih −
m−j
l ) < n. To pick a pair of non-trivial subgroups H and K, it suffices to only pick

sets of generators for these groups which can be done in at most (nlogn)2 = 22 log2 n ways. Hence

P(There exist 1 < H ≤ K < A : |H| > 2, S \K = union of H − cosets) ≤ O
(

22(logn)2(1− p)
n
4

)
.

By lemma 10, we have 22(logn)2(1− p)
n
4 ≤ exp(−17

4 (log n)2) for p ∈ [25(logn)2

n , 1
2 ].

If h = 2, then, firstly note that if g satisfies 2g ∈ H then o(g)|4, so g lies in the Sylow 2-
subgroup of A. Since A is not a 2-group by assumption, it follows that i ≤ n/3. Hence using that
j ≤ m, k ≤ n

2 we have

P(S \K is a union ofH − cosets) = (p2 + (1− p)2)
n−k−i

4 (p
2+l
2 + (1− p)

2+l
2 )

m−j
l

≤ (1− p)
n
12 exp(

n− k − i
4

y2) exp(
m− j
l

y
2+l
2 ) (3)

As before, the boundedness of exp(n−k−i4 y2) follows by setting c1 = 2 and c2 = n−k−i
4 < n and the

boundedness of exp(m−jl y
2+l
2 ) follows by setting c1 = 2+l

2 > 1, c2 = m−j
l < n. Again,

P(There exist 1 < H ≤ K < A : |H| = 2, S \K = union of H − cosets) ≤ O
(

22(logn)2(1− p)
n
12

)
and by lemma 10, this is at most exp(−1

4(log n)2).

Definition 13. Let A be an abelian group of Type I or Type II. Let C be a cyclic group, and Z an
elementary abelian 2 group. For a subset S ⊂ A, we call a pair of subgroups (C,Z) of A, good for
S, if

1. A = C × Z.

2. |C| = t ≥ 4.

3. There exist S′ ∈ {C, ∅, {0}, C \ {0}}, and S′′ ⊂ Z such that S = S′ × S′′.

Lemma 14. For a random inverse-closed subset S ⊂ A, the probability that there exists a pair

(C,Z) good for S is at most O
(

exp(−25(logn)2(n−1)
2n )

)
.
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Proof. IfA is a group of type II, then the lemma is trivial as a simple consequence of the fundamental
theorem of abelian groups. So, suppose A is a group of Type I and consider the Cayley graphs
Γ(A,S). If A satisfies the hypothesis of the lemma, then Z is necessarily trivial, and the lemma
needs a proof only in the case where A is a cyclic group of order at least 4. This gives exactly four
possible choices for S′ ∈ {∅, A, (0), A \ {0}}, and two possible choices for S′′ ∈ {∅, (0)}. However,
since S is inverse-closed in A and 0 /∈ S, there are effectively only two possibilities for S = S′×S”,
namely, S = ∅ and S = A\{0}. If S = ∅ then the probability that there exist (C,Z, S′, S′′) satisfying

the hypotheses mentioned above equals (1− p)
n+m−2

2 ≤ O
(

exp(−25(logn)2(n−1)
2n )

)
. Similarly, if S =

A \ {0} the corresponding probability equals p
n+m−2

2 ≤ O
(

exp(−25(logn)2(n−1)
2n )

)
. This completes

the proof of the lemma.

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Let G = Aut(Γp) and let B := A o 〈i〉. Then B is generalized dihedral, A
is an abelian regular subgroup of G, and is normal in B, so B ⊆ NG(A). By Lemma 11 and the
observation that an automorphism φ of A is a graph automorphism if and only if φ(S) = S, we
have NG(A) = B whp.

Now we prove G = B whp. First recall that B is generalized dihedral over A. In order to do
that, consider the following events:

1. E1: There exist subgroups H < K < A such that Γp is a generalized wreath graph with
respect to (H,K,A).

2. E2: There exists a cyclic group C, and an elementary 2-group Z such that Γp is isomorphic to
the direct product of Λ with a Cayley graph over Z, where Λ is either complete or edgeless,
possibly with loop at each vertex.

If B is a proper subgroup of G then by Theorem 9 either E1 or E2 occurs, so P(B 6= G) ≤ P(E1) +
P(E2). By Lemma 12, P(E1) ≤ O(exp(− log2 n)). Note that E2 occurs only if A is a cyclic group of
type I, and with Z = {0} and A ≡ C, so If Γp is a direct product as described in E2, then S = S′×S”
with S′ ∈ {∅, C, C \ {0}, {0}} and S” = {0}. But then by lemma 14,P(E2) ≤ O(exp(− log2 n)), and
this completes the proof.

4 Random Cayley Graphs on Type I Groups: Proof of Theorem
4

Proof of Theorem 4. Recall that a type I group satisfies (|A|, 6) = 1. Set |A| = n.

10



We first give an outline of the proof. We show that whp there exists distinct non-zero x, y, z ∈ A
such that x+ y + z = 0, and such that {x, y, z} is independent in Γp(A,S) whp. We shall see that
these constraints on T imply that the only automorphism φ ∈ Ao 〈i〉 of the graph Γp that fixes T
as a set is the trivial automorphism. Then, by giving a new color to these vertices and coloring the
other vertices as frugally as possible, using at most χ(Γp(A,S)) colors, it follows, in conjunction
with Theorem 3, that χD(Γp) ≤ χ(Γp) + 1 whp.

Our main probabilistic tool here is Janson’s inequality which we state here for convenience.

Suppose X is a finite set, and let R be a random subset of X where each r ∈ X is chosen into
R independently with probability pr. Let Xi ⊂ X for i = 1, 2 . . . , t, and let Bi denote the event:
Xi ⊂ R. Let

N = #{i : Xi ⊂ R}, µ := E(N), ∆ :=
∑
i∼j

P(Bi ∧Bj),

where i ∼ j if Xi ∩Xj 6= ∅. Then Janson’s inequality states that if µ ≤ ∆ then

P(N = 0) ≤ exp

(
− µ

2

2∆

)

The random process of picking S is equivalent to rejecting each pair (x,−x) in A (for x 6= 0)
independently with probability q = 1− p.

Let T := {{x, y, z} ⊂ A : x+ y + z = 0, x 6= 0, y 6= 0, z 6= 0} and for each T ∈ T , let

D(T ) := {±(x− y),±(y − z),±(x− z)}.

First, observe that |T | = (n−5)(n−1)
6 . Indeed, there are n − 1 choices for x with x 6= 0, and since

y /∈ {0, x,−x, 2x}, 2y 6= −x, there are n−5 choices for y and z is consequently determined uniquely,
so that gives (n− 1)(n− 5) ordered triples (x, y, z) satisfying the conditions of the sets in T .

Consider the events BT : D(T ) ⊂ S, and let N = #{T ∈ T : D(T ) ⊂ S}. Then

E(N) = |T |q3 =
(n− 5)(n− 1)

6
q3.

Observe that, T ∼ U if and only if |DT ∩DU | 6= 0 since otherwise the choices for the sets T,U ∈ T
are decided over disjoint sets of inverse-closed pairs. Set

∆ =
∑

D(T )∩D(U)6=∅

P(BT ∧BU )

We note by a straightforward calculation (see the Appendix for the details) that

∆ < 3n|T |q5 + 6|T |q4 + 2|T |q3, (4)

so by Janson’s inequality, it follows that for q ≥ 19
(

logn
n

)2/3
we have

P(N = 0) < exp

(
−|T |q3

2(3nq2 + 6q + 2)

)
= e−Ω(log2 n).

11



Suppose σ ∈ A o 〈i〉 is non-trivial and σ(T ) = T for some T ∈ T . If σ = (g, 1) for some
g ∈ A, and if σ(x) = y, σ(y) = z, σ(z) = x, say, then by the action of (g, 1) on A, it follows that
3g = 0 contradicting that σ is non-trivial. If σ(x) = y, σ(y) = x and σ(z) = z, say, Then, it
similarly follows that 2g = 0, contradicting that σ is non-trivial. If σ = (g, i) for some g ∈ A,
and if σ(x) = y, σ(y) = z and σ(z) = x, then since (g, i)(x) = g − x, it follows that x = y = z
contradicting that {x, y, z} ∈ T . Again, if σ(x) = y, σ(y) = x and σ(z) = z. Then, it follows that
2z − x = y and since x+ y + z = 0, we have 2z = 0, again, a contradiction to the assumption that
{x, y, z} ∈ T . The upshot is that no non-trivial σ ∈ Ao 〈i〉 fixes any T ∈ T .

By theorem 3, the full automorphism group of this random Cayley graph is isomorphic to
A o 〈i〉 whp. From the preceding discussions, it follows that the random Cayley graph Γp(A,S),
contains a 3-element independent set {x, y, z} which is not fixed by any non-trivial automorphism
σ ∈ A o 〈i〉 whp. Color this set with a new color and the rest of the graph using as few colors as
possible. This coloring is both proper and distinguishing whp.

5 Random Cayley Graphs on Type II Groups: Proof of Theorem
5

In order to prove Theorem 5, we shall need a lemma that appears in [4]. We state it here, for the
sake of completeness.

Lemma 15. Let C be a proper coloring of the graph G with χ(G) colors and let C1 be a color class
in C. Let G be the subgroup of Aut(G) consisting of all automorphisms that fix the color class C1.
For each A ∈ G, let θA denote the total number of distinct orbits induced by the automorphism A
in the color class C1. If for some integer t ≥ 2,

f(G) =
∑
A∈G

tθA−|C1| < r

where r is the least prime dividing |G|, then χD(G) ≤ χ(G) + t − 1. In particular, if F (C1) <
|C1| − 2 logt |G| then this conclusion holds, where F (C1) is the maximum number of vertices a
nontrivial automorphism can fix in C1.

Before we get to the details of the proof of Theorem 5, we need an additional lemma.

Lemma 16. Let A ' Zr2×N, where N is a non-cyclic group of odd order and let Γ = Γ(A,S) be a
Cayley graph on A. Suppose that Aut(Γ) ∼= Ao 〈i〉. If m is the number of elements in A of order
at most 2, and χ(Γ) < n

m+2 log(2n) , then χD(Γ) ≤ χ(Γ) + 1.

Proof. Let us denote χ(Γ) = χ and let C1 be a maximum sized color class in a proper coloring of
Γ using χ colors, so that |C1| ≥ n/χ.

Observe that a non-trivial automorphism which fixes any vertex of Γ is necessarily of the form
(g, i) for some g ∈ A. Moreover, (g, i) fixes a vertex h ∈ Γ if and only if g = 2h in A. Indeed, suppose
there exists 0 6= h1 ∈ A such that g = 2h1. Then, 0 = 2(h − h1) = 2h2. Therefore o(h2) = 2.

12



Conversely suppose o(h3) = 2 and write h4 = h − h3. Then 2h3 = 0 =⇒ 2h = 2h4 = g. That is
#{h ∈ A : g = 2h} = #{h ∈ A : 0 = 2h}. Thus, any non-trivial automorphism σ fixes at most m
vertices in Γ.

Now, following the notation from Lemma 15, we have θσ ≤ m+ (|C1|−m)/2 and hence by the

same lemma, we have f(G) ≤ 2nt−α where α := n/χ−m
2 . Now observe that

t := d(2n)
2χ

n−mχ e =⇒ 2n < tα.

Hence there exists a proper χ + t − 1 coloring of Γ that is also distinguishing. In particular, if
χ < n

m+2 log(2n) we may take t = 2, and this proves the lemma.

Finally we have the corresponding theorem for random Cayley graph Γp(A,S) for A ' Zr2×N
with N being a non-cyclic group of odd order.

Proof of Theorem 5. Let

X ′ :=
∑

x:2x=0
x 6=0

1x∈S X ′′ :=
∑

(x,−x)
x6=−x

1x,−x∈S

so |S| = X ′ + 2X ′′. Then X ′, X ′′ are binomial random variables with parameters (m − 1, p) and
(n−m2 , p) respectively. Then

E(|S|) = (n− 1)p < np.

By the concentration of binomial random variables (see theorem 2.1 in [10]) we have

P(|S| ≥ E(|S|) + 3t) ≤ P(X ′ ≥ E(X ′) + t) + P(X ′′ ≥ E(X ′′) + t)

≤ exp
(
− t2

2((m− 1)p+ t
3)

)
+ exp

(
− t2

2(n−m2 p+ t
3)

)
(5)

Set t = 2n
13(m+2 log 2n) . Since m� n

log2 n
it follows that for

25 log2 n

n
≤ p < 7

13(m+ 2 log 2n)
< 1− 25 log2 n

n

the right hand side of (5) is at most e−Ω(log2 n), so that whp |S| ≤ 13np
7 < n

m+2 log(2n) . Hence by

Theorem 3 and lemma 16, and the fact that χ(G) ≤ ∆(G) + 1 for any graph G, it follows that
χD(Γp) ≤ χ(Γp) + 1 whp.

6 Concluding Remarks

1. As emphasized in the introduction, all our results regarding random Cayley graphs hold with
probability 1− n−Ω(logn). However, if we wish to only prove the same results asymptotically

13



almost surely, (a.a.s) i.e., with probability 1−o(1), then improvements on some of the results
is not difficult. For instance, Alon proved in [1] that if we pick k ≤ n/2 subsets uniformly

at random and then complete them to inverse-closed sets, then a.a.s χ(Γ(A,S)) ≤ O
(

k
log k

)
.

So for A ' Zr2 ×N with N a non-cyclic group of odd order with n3/4 log n� m� n
logn , one

can prove by minor modifications, that a.a.s χD(Γp) ≤ χ(Γp) + 1 if c log2 n
n ≤ p ≤ C logn

m+2 log 2n
for suitable constants c, C. We skip the details.

2. For non abelian groups A, it is a yet-unsettled conjecture of Babai, Godsil, Imrich, and Lovász
(see [3] for details and a proof of the conjecture for nilpotent non-abelian groups), that for
any group which is not generalized dihedral, almost surely Aut(Γ1/2(A,S)) ' A as |A| → ∞.
Thus, for all such graphs it is clear that χD(G) ≤ χ(G) + 1 since one can pick an arbitrary
non-identity element of A, color it using a distinct color, and color the rest of the graph using
at most χ(G) colors. Since A acts regularly, it follows that this coloring is distinguishing as
well.

3. Though all the results of this paper establish that χD(Γ) ≤ χ(Γ) + 1 holds with high proba-
bility, we in fact believe that something stronger is true, at least for random Cayley graphs
Γ1/2(A,S):

Conjecture 17. For a random Cayley graph Γ = Γ1/2(A,S), we have χD(Γ) = χ(Γ) a.a.s.

At the moment, we are only able to show the same in certain non-abelian q-groups, for q a
large enough prime. Indeed, by some small tweaks to the proof of the main result of [3], one
can show that a random Cayley graph Γ = Γ1/2(A,S) almost surely has full automorphism
group isomorphic to A, when A is a nilpotent non-abelian group. Also, one can follow the
same line of argument as in [1], to show that χ(Γ) = Ω( n

log2 n
). Suppose |A| = qr for a fixed

r, and q a sufficiently large prime. If φ = φg for g ∈ A is an automorphism that fixes every
color class of this coloring, then note that each color class has at least q elements, so that
χ(Γ) ≤ qr−1. But this contradicts the observation that χ(Γ) = Ω( n

log2 n
) since q � Ωr(log2 q).

The same arguments work over a slightly larger range for p = Ω(1) along the same lines as
discussed above, but the more general case remains an open question. It is also conceivable
that this conjecture holds over a larger range for p as well.
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[11] Á. Seress, The minimal base size of primitive solvable permutation groups, J. London Math.
Soc. 53(2) (1996), 243-255.

15

http://arxiv.org/abs/1308.1872
http://arxiv.org/abs/1308.1872


7 Appendix: Calculations involved in Theorem 4

In order to compute ∆ :=
∑

D(T )∩D(U)6=∅

P(BT ∧ BU ), we split this sum into three cases, depending

on the size of the intersection D(T ) ∩D(U). Note that this intersection size is 2, 4, or 6.

First, fix T = {x, y, z} ∈ T and suppose D(T ) = D(U) for some U ∈ T . We claim that
U = T or U = −T . Indeed, write U = {u, v, w} ∈ T and suppose without loss of generality that
x−y = u−v; then v = u−(x−y), so it follows (since U ∈ T ) that U = {u, u−(x−y),−2u+(x−y)},
so that D(U) = {±(x−y),±(3u− (x−y),±(3u−2(x−y)}. Now by a routine check, it follows that
the sets D(T ) and D(U) agree if and only if u = x,−x which gives the sets U = T,−T respectively.

In order to count the number of pairs (T,U) with |D(T ) ∩ D(U)| = 4, firstly, set T1 :=
{±(x − y),±(x + 2y)}, T2 := {±(x − y),±(2x + y)}, and T3 := {±(x + 2y),±(2x + y)}. Since
(|A|, 3) = 1, the map φ3(x) = 3x is an automorphism of A, so let us denote its inverse by ψ3. If
D(T )∩D(U) = T1, then, noting that the the only admissible values for u = ψ3(x−4y), ψ3(x−2y).
Similarly, if D(T ) ∩D(U) = T2, then the only admissible values for u are ψ3(2x + y), ψ3(4x − y),
and if D(T )∩D(U) = T3, then u = ψ3(y−x), ψ3(4x+ 5y). Table 1 tabulates these more concisely.

D(U) ∩D(T ) U u D(U) \D(T )

{±(x− y),±(x+ 2y)} {ψ3(x− 4y), ψ3(−2x− y), ψ3(x+ 5y)} ψ3(x− 4y) ±3y

{±(x− y),±(x+ 2y)} {ψ3(2x+ y), ψ3(4y − x), ψ3(−x− 5y)} ψ3(2x+ y) ±3y

{±(x− y),±(2x+ y)} {ψ3(4x− y), ψ3(x+ 2y), ψ3(−5x− y)} ψ3(4x− y) ±3x

{±(x− y),±(2x+ y)} {ψ3(−x− 2y), ψ3(y − 4x), ψ3(5x+ y)} ψ3(−x− 2y) ±3x

{±(2x+ y),±(x+ 2y)} {ψ3(y − x), ψ3(−4x− 5y), ψ3(5x+ 4y)} ψ3(y − x) ±(y + 2x)

{±(2x+ y),±(x+ 2y)} {ψ3(4x+ 5y), ψ3(x− y), ψ3(−5x− 4y)} ψ3(4x+ 5y) ±(y + 2x)

Table 1: |D(T ) ∩D(U)| = 4

Finally, if |D(T ) ∩D(U)| = 2, then we firstly count the number of U ∈ T such that D(T ) ∩
D(U) = {±(x− y)}. As seen earlier, if U = {u, u− (x− y),−2u+ (x− y)} then ±(x− y) ∈ D(U).
However, if u is any of the elements in column 3 of Table 1, then |D(T ) ∩ D(U)| = 4 and if
u ∈ {x,−x} then D(T ) = D(U). By similarly counting the number of sets U with D(T )∩D(U) =
{±(y − z)} and D(T ) ∩D(U) = {±(x− z)}, it follows that for any T ∈ T there are fewer than 3n
sets U such that |D(T ) ∩D(U)| = 2, so we have

∆ < 3n|T |q5 + 6|T |q4 + 2|T |q3.

16


	Introduction
	Preliminaries
	Proof of Theorem 3
	Random Cayley Graphs on Type I Groups: Proof of Theorem 4
	Random Cayley Graphs on Type II Groups: Proof of Theorem 5
	Concluding Remarks
	Appendix: Calculations involved in Theorem 4

