EP-212 Electronics Lab-2 : Analog Electronics
 Page 1/3

 Name:
 Roll Number:

 Laboratory 8
 A:
 /5B:
 /4C:
 /6 Tot:
 /15

Relaxation Oscillators

This lab consists of three modules. We will see how parasitic effects can occasionally be used to a designer's advantage

Part A: Capacitor connected at Input

Consider the circuit of Fig 1. Notice the difference from standard inverting feedback amplifier: the *source* resistor has been replaced by a capacitor $C_{s.}$

Q1:Calculate the *time-domain* response of V_{out} to V_{in} as in Part A. The time-domain response requires you to apply the golden rules of opamp design *and* the current-voltage relationship for a capacitor I = C ${}^{dV}/_{dt}$ followed by some algebra.

Q3: Build the circuit of Fig 2 and drive it with a *square* V_{in} of amplitude 2V peak-to-peak. Note that C_s is in the signal path, so the type of capacitor used is important. Choose wisely! Draw a diagram of your observations here and verify that your calculations of Q1 above are correct.

/2

/1

EP-212 Electronics Lab-2 : Analog Electronics		Page 2/3
Name:	Roll Number:	-

Part B: Comparator

Recall the simple comparator (with hysteresis) circuit using positive feedback we studied earlier in Lab 2. The function of a comparator is to feedback a fraction of V_{out} to the (+) input so that when V_{in} exceeds a threshold set by the feedback fraction R_f^+/R^+ , the output switches to $-V_{sat}$ and when V_{in} falls below threshold, output switches to $+V_{sat}$

Use your memory/logic and draw the diagram of a simple comparator circuit here:

Fig 2: Simple comparator with positive feedback. Set the reference voltage for comparison to $V_{sat} * (R^+/R_f^+ + R^+)$. You may choose $R_f^+ = R^+$

/1

<u>Q1</u>: For V_{in} = 0, <u>predict</u> the values of V_{out} in your circuit:

a) What is <i>V_{out}</i> at t=0 <u>immediately</u> when the circuit is turned on?	/0.5	
b) For an <i>ideal</i> power supply that turns on +/-V _{cc} as a step function, what is V _{out} in the very short time ~ microseconds after the circuit is turned on?	/0.5	
c) What is V_{out} in steady state after the circuit has been on for a few seconds:	/0.5	
d) What determines the steady state value of <i>V_{out}</i> in question c) ?	/0.5	
Connect up the circuit you have designed in Fig 2 and <i>demonstrate</i> the validity of your predictions		

Q2: Connect up the circuit you have designed in Fig 2 and *demonstrate* the validity of your predictions Use this space to record your DSO observations of V_{out} in detail.

Note that $V_{in} = 0$ for a), b), c)

Your observations for (b) may differ from prediction because the power supply is *not* ideal. Observe the voltage $+/-V_{cc}$ supplied by the power supply to the circuit at t=0 on the DSO to validate your prediction.

<u>Name:</u>

Roll Number:

Part C: Relaxation oscillator

Use your observations and conclusions from Parts A and B to make a circuit <u>with one opamp</u> that demonstrates the following behavior:

- 1. It's V_{out} oscillates between two fixed values (for example + V_{sat} and - V_{sat})
- 2. It has no external V_{in} applied
- 3. The oscillation time period is 1 ms

Hint: You will need to combine the concepts of Parts A and B

Draw your circuit design here. Calculate and mark the value of the components required.

This type of oscillator is called a 'Relaxation Oscillator'. Build your circuit and demonstrate its operation

/3.5