Lecture 5 Opamp imperfections

Reference:

Analog Devices, Opamp basics tutorial: http://www.analog.com/static/imported-files/tutorials/MT-038.pdf

Consider opamp internals

OpAmp integrates precision matched actives+passives in one IC

Pradeep Sarin, EP212 – Spring 2014

Simplified input stage

Imperfection 1: V_{os}

Input offset voltage V_{os}

If I_E^+ and I_E^- are different, voltages at the collector terminals will be different

You can *compensate* V_{os}

Imperfection 2: I_{bias}

Pradeep Sarin, EP212 – Spring 2014

Slide 6/11

Cannot compensate for I_{bias}

<u>Good news</u>: I_{bias} is usually very very small

I_{bias} can be bad in a poor circuit

Bad news: I_{bias} multiplies R_{in}

Must 'bias compensate' a circuit

1. At DC, with $V_{in} = 0$, what is the effective R 'looking out' from -?

2. If there is I_{bias} , what is effective V_{in} ?

3. If $I_{bias}^{+} \approx I_{bias}^{-}$ what must you do at the + terminal to cancel (2)

Must have equal DC resistance 'looking' out of each input terminal

1. Calculate effective R 'looking' out from '-' terminal

2. Put in equivalent R_{eff} in the other '+' terminal

3.
$$R_{eff} * I_{bias}^{+}$$
 voltage drop cancels $R_{eff} * I_{bias}^{-}$ at $V_{in} = 0$

Preparation for Lab 5

- Read up on background of $V_{os} \& I_{bias}$
- Techniques for measuring $V_{os} \& I_{bias}$ not trivial! - measure an intrinsic property of the device without applying V_{in}