Lecture 6 Review of Instrumentation Amp Impedance matching – power transfer

<u>Reference:</u> "bible" of RF circuit design: *Thomas H. Lee* "The design of CMOS Radio-Frequency Integrated Circuits"

Review of Lab 5 – Instrumentation Amplifier

Impedance looking into V_1

Set V_2 to zero

 $\rightarrow v_{+} = 0$

 $\rightarrow v_{-} = v_{+} = 0$

 $\rightarrow V_1$ sees resistance **R** to ground

Impedance looking into V_2

Set V_1 to zero

 \rightarrow *No current into* v_+

 \rightarrow Can 'ignore' the bulk of the circuit

 $\rightarrow V_1$ sees resistance **2R** to ground

Response of difference amplifier

Difference Response:

Common mode response

 $V_{I} \neq 0, V_{2} = 0$ $v_{-} = (V_{out} - V_{I})/2 \quad v_{+} = 0 \rightarrow v_{-} = 0 \rightarrow V_{out} = V_{I}$ $V_{I} = V_{2} = V_{cm}$ $v_{+} = V_{cm}/2 \quad v_{-} = V_{cm}/2 \text{ (by golden rule)}$ $v_{-} = (V_{out} + V_{cm})/2 \text{ (current sum at } v_{-} \text{ terminal})$ $V_{out} = 0$ Assuming ideal case 4 R's equal In practice: $Superposition: V_{out} = V_{I} - V_{2}$ $V_{0} = V_{cm} \left(\frac{R_{4}}{R_{3} + R_{4}}\right) \left(1 - \frac{R_{2}R_{3}}{R_{1}R_{4}}\right)$ Pradeep Sarin, EP212 - Spring 2014 Slide 3/5

It is best to put the gain stage as close to the input signal as possible

- © Inputs see high impedance
- \bigotimes Difference amplifier gain G no longer has $A_{cm} = 0$
- S/N is worsened by noise of unity gain buffer

- © Inputs see high impedance
- \bigcirc Difference amplifier has $A_{cm} = 0$
- \bigotimes Need precise component matching to get equal G for V_1 and V_2

Pradeep Sarin, EP212 – Spring 2014

Kill two stones with one bird Reduce component count, Increase CMRR

v_o of OA1 and OA2 are equal (two red dots)

Differential Gain is set by R/R_g (Easy to calculate by superposition)

- ③ Inputs see high impedance
- \odot All resistors equal except R_g
- \odot V_o referred to V_{ref}
- \odot $A_{cm} \sim 0$ within tolerance of 6 R, R_g

Pradeep Sarin, EP212 – Spring 2014

 $V_1 \rightarrow V_1$ and $V_2 \rightarrow V_2$

 \rightarrow No current flows through R_{g}

Common mode: $V_1 = V_2$