EP215 Electronics Lab 1

Lecture 3

Review of Lab 2

Simplest Active device: DIODE

Review of Lab 2

What happens in a diode clamp?

If
$$V_{in} < 0.7V$$
, $V_{out} = V_{in}$

If
$$V_{in} > 0.7V$$
, $V_{out} = 0.7V$

Follow up questions:

- 1. This circuit only clamps the positive part of V_{in} What modification would cause it to clamp the <u>negative</u> part of V_{in} ?
- 2. What modification would make it clamp both positive and negative?

EP215 Electronics Lab 1

What happens in a diode clamp?

If
$$V_{in} > 0.7V$$
, $V_{out} = V_{in}$

If
$$V_{in} < 0.7V$$
, $V_{out} = 0.7V$

What modification would cause it to clamp the <u>negative</u> part of V_{in} ?

Diode Limiter

http://www.falstad.com/circuit/e-diodelimit.html

Half wave Rectifier

http://www.falstad.com/circuit/e-rectify.html

Full wave rectifier

http://www.falstad.com/circuit/e-fullrect.html

Full wave rectifier with measurements of V_{in} V_{out}

http://www.falstad.com/circuit/e-fullrect.html

Full wave rectifier Looks like a negative clamp from V_{in}

http://www.falstad.com/circuit/e-fullrect.html

Full wave rectifier Looks like a half-wave rectifier from V_{out}

http://www.falstad.com/circuit/e-fullrect.html

Note: D₁ and D₃ function as positive clamps (like Slide 4)

– but are irrelevant, because the half-wave rectification makes sure that V_{out} is always positive.

Full wave rectifier Looks like a half-wave rectifier from V_{out}

http://www.falstad.com/circuit/e-fullrect.html

Notice the green dots which represent OV

Prep for Lab 3

We have used 'working' definitions of Diode operation:

Cathode to Anode voltage $> 0.7V \rightarrow 'ON'$

Cathode to Anode voltage < 0.7V → 'OFF'

This is not good enough for detailed circuit building & analysis

I-V characteristics of two terminal devices

As the voltage across a diode increases from 0.65V to 0.75V it changes smoothly from: **(V)**

- A state of not conducting current (I)
- To a state of conducting current

We will learn how to determine the **I-V** characteristics of any two terminal device without using graph paper!

Useful reference for this course

"Foundations of Analog and Digital Electronics" by Anant Agarwal and Jeffrey Lang

http://www.allaboutcircuits.com