<u>EP215</u> Electronics Lab 1

Lecture 4 Review of Lab 3: I-V characteristics and stray effects

What is special about the differential input test setup?

What is special about the differential input test setup?

Lab 3: I-V characteristics

http://www.falstad.com/circuit/e-diodecurve.html

Diode I-V at low frequency

Diode I-V at low frequency

Diode I-V at high frequency

Effective capacitance of the depletion layer becomes important at high frequency

Diode I-V at high frequency

Different capacitance in Forward and Reverse bias:

 \rightarrow As frequency of V_{in} changes, the time constant causes delayed response.

Resistor I-V characteristics

This schematic works fine at low frequency when the resistor behaves like an 'ideal' resistor.

In reality, there is a 'hidden' schematic behind every device

See accompanying notes on 'The Hidden Schematic'

At high frequency, our test setup changes

All these parasitic component values are different

What is the effect of parasitic components on I-V characteristic?

What do V and I look like in the time domain?

What is the effect of parasitic components on I-V characteristic?

In our cool X-Y display format to get I-V characteristics:

What's next?

Transistor Bipolar junction transistor

Graduating from a two terminal device to a three terminal device

