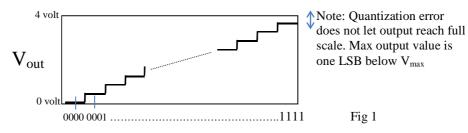
<u>Roll #</u>

Laboratory 7 – Digital to Analog Converter

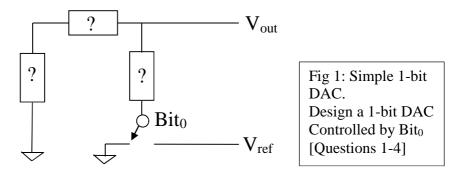

Procedure:

This assignment has a single Exercise with several Questions. Work out the solution to the design problem first on paper and implement it on a breadboard. You are required to submit the complete question and answer sheet with your design and answers filled in where asked, and show your working circuit to a TA.

Designing a Digital-to-Analog Converter:

Introduction:

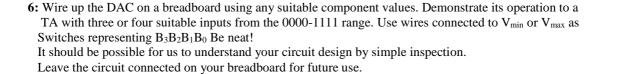
A Digital-to-Analog Converter (DAC) converts a digital input code into an analog output voltage. It takes a digital input signal as an n-bit number represented by TTL logic levels, and produces a proportional analog output voltage in a fixed range. For example, a 4-bit parallel DAC would have four input lines, and have an input range corresponding to (0000-1111) (0-15). If we fix the analog output voltage range of this DAC to be 0 V to 4 V, then any input code between 0000 and 1111 would give a proportionally intermediate value of output voltage, as shown in Fig. 1. The larger, the number of bits, the smaller the 'step size' in Fig 1 – i.e. the response of the DAC suffers from lesser *quantization* error as you increase the number of bits.



There are many different types of DAC's – the designs have different trade-offs between linearity, speed of conversion, output drive capability etc. We will design and analyze a very basic DAC.

Problem Statement:

Design a 4-bit DAC using the following parameters:


- It must have only passive components. Note that passive components → R,L,C.
 Of these, R is the only *linear* passive and linearity is a desirable property of a DAC as seen in Fig 1. So we will build our DAC using resistors. In particular, we will use only two values of resistors.
- The DAC's output voltage is controlled by a combination of 4 digital bits: Bit₃Bit₂Bit₁Bit₀
- The analog voltage range of the DAC must be set externally.

1/2

Name: Roll #	_
 Questions 1 to 4 refer to Fig 1 as the simple starting point of your design What are the components you would put in the blocks marked with a '?', and what are their values, <i>relative</i> to each other? Do the actual values of the components matter? 	
2: Work out the equation that determines V _{out} as a function of Bit ₀ , V _{max} and the component values you have set for the 1-bit DAC.	
3.1: What is the <u>maximum</u> output voltage of the DAC? How would you change the maximum output voltage?	
3.2: What is the <u>minimum</u> value of the DAC output voltage? How would you change the minimum output voltage?	
Here What is the output impedance of this circuit? What restrictions does it place it on the load?	

5: Now extend your design from a 1-bit DAC into a 4-bit DAC. Draw the DAC design below with the appropriate component values filled in, and work out the full equation for the 4-bit DAC as in Question 2 *Hint:* You are only allowed to use two values of components.

7: Although we have used the term 'voltage' in all the above questions, Is the output of the DAC a voltage output or a current output?

/1 bonus

/7