Project Report

EP 315 Microcontroller

SHOOT THE 'RG': A MOTION SENSING GAMEPAD

07026015 – Y PRAVEEN KUMAR 07026018 – ABHISHEK CHANDRA 07D26005 – VAIDEESH LOGANATHAN

BLOCK DIAGRAM

COMPONENTS USED

Arduino microcoller Vegakit tilt sensor IR emitter & detector Motor (for vibration)

DESCRIPTION

INPUTS AND OUTPUTS

Two sensors were used, a tilt sensor and an IR sensor. The tilt sensor is used for motion and the IR sensor is used to shoot.

The tilt sensor has a cavity with a small conductive free mass inside(a metallic rolling ball). The cavity has a few metallic poles. Depending on the orientation two of the poles are shorted by the ball. This is used to obtain a 2-bit output (4 angular positions).

Three inputs, two from the tilt sensor and one from the IR sensor are given to the Arduino board.

The Arduino board is interfaced with a MATLAb-based GUI through serial communication. A motor with an asymmetric load is used for feedback, i.e, it makes the gamepad vibrate.

ALGORITHM

- 1. Arduino reads the inputs from the sensors.
- 2. Arduino finds out the corresponding tilt sate (i.e no tilt or left/right tilt) and the 'shoot-state'.
- 3. Arduino tells the MATLAB GUI which way to move the crosshair.
- 4. The GUI plots the cross-hair & target.
- 5. For an ON shoot-state, Arduino checks if the crosshair lies on the target.
- 6. If yes, Arduino sends a 'HIGH' output to the vibration-motor and randomizes a new target and the above steps are repeated.
- 7. Once 10 shoots are reached, Arduino exits and reports the total time taken.

WORK DISTRIBUTION

Praveen - GUI, Hardware research, Arduino code Abhishek – research on game interfacing(X input), Arduino code, circuitry Vaideesh - research on game interfacing(D input), Arduino code, circuitry