Short course on General Relativity What GR attempts to solve?

S. Shankaranarayanan

Department of Physics, IIT Bombay

Lecture # 1

Overview

- Newtonian Gravity
- Thought experiments on Gravity

Schild '67

- Gravitational redshift
- Time Dilation
- Non-flat geoemetry
- Einstein's lift
- Equivalence principle

Overview

- Newtonian Gravity
- Thought experiments on Gravity

- Gravitational redshift
- Time Dilation
- Non-flat geoemetry
- Einstein's lift
- Equivalence principle
- Relativity and Gravitation
 - Tides and geodesic deviation
 - There is no universal inertial frame
 - What does GR plan to do about it?

Schild '67

Geometric Units:

- In Special relativity, Space and time are no-different. We set c = 1.
- We will also set G = 1. Mass and Distance have same dimension!
- [Force] = [Velocity] = $[L]^0$, [Energy] = L

Newtonian Gravity

Newtonian Picture (1687)

Laws of motion

- Inertial frame: No Force → constant motion
- Inertial mass: Measures the reluctance to be set into motion

 $F = m_i a$ m_i : inertial mass

Newtonian Picture (1687)

Laws of motion

- Inertial frame: No Force ⇒ constant motion
- Inertial mass: Measures the reluctance to be set into motion

$$F = m_i a$$
 m_i : inertial mass

Law of Gravitation

Object's mass is determined by measuring how much gravity force it feels.

$$\vec{F_g} = \frac{-GM \, m_g}{r^2} \hat{r}$$
 m_g : Gravitational mass

Grav. potential
$$\Phi_g = -\frac{GM}{r} \Longrightarrow \vec{F_g} = -m_g \nabla \Phi_g$$

Is
$$m_i = m_g$$
?

 \bullet m_i describes inertial properties of object regardless of origin of force

$$m_i = \frac{\text{External force}}{\text{Particle's resistence}}$$

- \bullet m_g describes the strength of the gravitational force
- Combining the two, we get $a = \frac{GM}{r^2} \frac{m_g}{m_i}$
- Galileo All objects fall in gravitational field in the same way.

$$\implies m_g = m_i$$

• Best test of $m_g = m_i$ comes from how Earth and Moon fall towards the Sun. The two agree to about 1 in 10^{-13} s.

This equality is elevated to a principle in General relativity

Thought experiments on Gravitation

$$V=-\frac{M}{r}$$

- Drop a ball from height h from earth.
- Assume, we convert all the energy into a Photon of energy E. Send it upwards towards the original position.
- Photon reaches the point with energy E' which we convert it back into particle. Repeat the process.
- Photon looses energy $E' = m = h \, \nu' = \frac{E}{1 + gh} < h \, \nu$
- Energy conservation ⇒ Photon looses energy as it climbs gravitational potential!
- Gravity interacts with all forms of energy!

Gravitational Redshift confirmed by Pound-Rebka experiment in 1960.

Schild '67

• A receiver at level h receives the signal at lower-frequency ν' .

sending radio signal of frequency ν .

Consider a radio station at ground constantly

Gravitational time dilation

$$\frac{s-s'}{s'} \propto h$$

 Time flows at different rates at different levels of gravitational field

Clock measure n crests in s time

$$\nu = n/s$$
 $\nu' = n/s'$

- Send EM waves from A to B. Photons will be redshifted to new frequency (ν') .
- After some periods *n*, repeat the same expt.
- Both the waves follow same path. World lines AB and A'B' are parallel.
- Because of the red-shift, the time intervals AA' and BB' measured by the local clocks are not the same! $AA' \equiv s \neq s' \equiv BB'$ $\implies ABB'A'$ is not a parallelogram!

In the presence of static massive object, geometry of space-time is not flat.

- Internal observer measures that free bodies move with uniform motion and have no acceleration.

- Place the elevator, in a gravitational field, and let it fall freely.
- Acceleration of gravity is the same for all bodies, including the wall of the elevator
- the internal observer can not distinguish this set-up from the Stage 1!

- Elevator is brought again into empty space.
 It is uniformly accelerated by a rocket engine.
- All bodies inside will appear accelerated by an acceleration a.
- This will be exactly opposite to that of the elevator and is common to all bodies.

- Let us now hang the elevator in a gravitational field with g = a
- Internal observer will again find motions in no way distinguishable from those of the third experiment.

Key Inference

- Shows degree of equivalence between inertia and gravity
- Two equivalent Inertial frames:
 - being far away from gravitating matter
 - freely falling in a gravitational field
- Equivalence Principle
 Uniform gravitational fields are equivalent to frames that accelerate uniformly relative to inertial frames.
- We know that presence of massive object makes geometry non-flat
 - → Accelerated frames also make geometry non-flat.

Equivalence principle and light

- t = 0
 Light enters lift horizontally at X.
 Lift also falls free at that time.
- t = L/c
 Observer A sees the light reach
 opposite wall at Y in a straight line.
- Observer B will see, from X to Y, the light path curved.

Interpretation: Gravitational field

Equivalence principle and light

- t = 0
 Light enters lift vertically at F.
 Lift also falls free at that time.
- t = h/c
 Observer A sees the light reach ceiling at Z with same frequency.
- Observer B will see, the light redshifted.

Interpretation: Gravitational field

Recap

- Presence of Massive Object ⇒ Non-flat space-time
- Uniform gravitational fields are equivalent to accelerated frames
- Trajectories of freely falling particles in curved space-time are Geodesics

Geodesic Deviation: Newtonian context

Consider 2-D Surfaces

Flat Surface: Zero deviation ⇒ zero curvature

2-Sphere: Geodesics Converge → Positive curvature

Hyperboloid: Geodesics diverge \Longrightarrow Negative curvature

Geodesic Deviation: Newtonian context

- Consider two objects at P₁ and P₂.
 freely falling towards the Earth.
- At r(t), they are separated by $\xi(t)$.
- Two similar triangles have the property

$$\frac{\xi(t)}{r(t)} = \frac{\xi_0}{r_0} = k \Longrightarrow \ddot{\xi} = k\ddot{r} = -k \frac{GM}{r^2}$$

We have

$$\ddot{\xi} = -\frac{GM}{r^3}\xi$$
 or $\frac{d^2\xi}{d(ct)^2} = -\frac{\xi}{\mathcal{R}^2}$

where

$$\frac{1}{R^2} = \frac{GM}{r^3c^2}$$

Geodesic Deviation: Newtonian context

- Inertial frames attached to freely falling particles approach each other at an increasing speed!
- What is \mathbb{R} ? $\mathcal{R} = \left(\frac{GM}{r^3c^2}\right)^{-1/2}$
 - It has the dimension of [L].
 - Near Earth: $\mathcal{R} \sim 10^{11} m \gg R_{\mathrm{Earth}}$
- R represents radius of curvature of spacetime near Earth's surface.

⇒ Space-time is nearly flat near Earth's surface!

$\ensuremath{\mathcal{R}}$ for different objects

Object	Mass	Radius	\mathcal{R}	$\mathcal{R}/\mathrm{radius}$
Earth	10 ²⁴ Kg	10 ⁶ m	10 ¹¹ m	10 ⁵
Sun	10 ³⁰ Kg	10 ⁹ m	10 ¹⁴ m	10 ⁵
Neutron Star	10 ³⁰ Kg	10 ⁴ m	10 ⁷ m	10 ³
Black-holes	10 ³⁰	10 ³ m	10 ⁵ m	10 ²

What next?

- Presence of gravity ⇒ Curved space-time
- STR requires existence of inertial frames.
- Curved space-time corresponds to inequivalent Inertial frames
- Cannot use STR to calculate what the other inertial observer would measure in their frame
- Can not use STR + Newtonian Gravity