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Lecture 1: Recap

• Gravity interacts with all forms of matter including photons.

• Presence of Massive Object =⇒ Non-flat space-time

• Uniform gravitational fields are equivalent to accelerated frames
Equivalence Principle (EP)

• Trajectories of freely falling particles in curved space-time are
Geodesics

• Near-by geodesics can provide information about the nature of
the space.



Overview of Lecture 2

• New Length scale: compactness parameter

• Gravitational Redshift and Newtonian potential

• Curved Space-time

• Riemann tensor

• Einstein’s equations



Units and new length scale

Geometric Units
• In Special relativity, Space and time are no-different. We set c = 1.

• We will also set G = 1. Mass and Distance have same dimension!
New Length scale

G and c are fundamental
constants
Using G , c and Mass, we can
define length

rh = GM
c2

rh/R is a measure to know when
the GR effects need to included!

Object rh (m) rh/R
Earth 10−2 10−8

Sun 103 10−5

Neutron Star 103 0.1

Black-holes 103 1



Redshift and Newtonian potential



Gravitational Redshift

Credit: Carroll ’04

Two boxes at constant distance z always!
Both are at constant acceleration a
t = t0: emits photon at wavelength λ
Light takes ∆t = z/c to reach upper box.
During ∆t, boxes pick additional velocity
∆v = a∆t = az/c
Photon when it reached upper box will be
redshifted by Doppler effect

∆λ
λ

= δv
c '

az
c2



Gravitational Redshift

Elevetor with constant
g is same as static
antenna’s on Earth’s
surface (EP)

• Radio waves emitted from ground will be
redshifted:

∆λ
λ

= gz
c2

• In generel, g = ∇Φ (No -ve Sign??)

∆λ
λ0

= 1
c2

∫
∂zΦdz = ∆Φ

c2

• Interms of frequency/clock time we have

ν = ν ′
(

1 + ∆Φ
c2

)
δS ′ = δS

(
1 + ∆Φ

c2

)



Metric and Newtonian potential

Time-dilation can be rewritten as

dS(z ′)
dS(z) = 1 + Φ(z)− Φ(z ′)

c2 ' 1 + Φ(z)/c2

1 + Φ(z ′)/c2

(1 + Φ(z ′)/c2)dS(z ′) = (1 + Φ(z)/c2)dS(z)

Clocks are stationary =⇒ d~l2 = 0
Proper-time of each clock is

dτ2 = (1 + Φ(z ′)/c2)2dS2(z ′)− d~l2 = (1 + Φ(z)/c2)2dS2(z)− d~l2

g00(z) ' 1 + 2Φ(z)/c2 Space-time is curved!
Newtonian potential appears as a component of gµν .



Metric and Newtonian potential

• We are forced to consider general metric gµν . Line-element:

ds2 = gµν(xα)dxµdxν xα : arbitrary

• A line-element specifies geometry. However, many line-elements may
specify the same geometry

dl2 = dx2 + dy2 + dz2; dl2 = dr2 + r2dθ2 + dz2

• Aim is to formulate laws in any coordiante system.
Changing coordinates xα → x̃α should not change Physics!



Curved space-time



Curved space-time

• gµν has 10 independent components

• EP: We can define a local inertial frame. We can perform a
coordinate transformation (like in a free fall)

xα → x̃α gµν → g̃µν |P = ηµν

What happens in the neighbourhood of P?

• We can always choose x̃α such that first derivative of metric vanish!

g̃µν |P = ηµν
∂g̃µν
∂x̃α

∣∣∣∣
P

= 0

• What happens to second derivative of the metric?



Curved space-time

• Under xα → x̃α, gµν(x)→ g̃µν(x̃) such that

g̃µν(x̃) =
∑
αβ

gαβ(x)∂xα
∂x̃µ

∂xβ
∂x̃ν

• Consider a coordinate transformation in the vicinity of P:

xµ(x̃) = xµ(x̃P)+ ∂xµ

∂x̃α

∣∣∣∣
P
δxα+ 1

2
∂2xµ

∂x̃α∂x̃β

∣∣∣∣
P
δx̃αδx̃β+ 1

6
∂3xµ

∂x̃α∂x̃β∂x̃γ

∣∣∣∣
P
δx̃αδx̃βδx̃γ

• In the vicinity of P, the transformation is specified by constants
∂xµ/∂x̃α|P



Curved space-time

1 To obtain g̃µν |P = ηµν . We need 10 conditions.
∂xµ/∂x̃α|P provide 16 constants. 6 extra corresponds to 3 boosts
and 3 rotations (Minkowski space-time).

2 To obtain ∂g̃µν

∂x̃α

∣∣∣
P

= 0, we need to impose 10× 4 = 40 conditions.

∂2xµ/∂x̃α∂x̃β
∣∣∣
P

gives exactly 40 numbers. Completely detemined!

3 To obtain ∂2g̃µν

∂x̃αx̃β

∣∣∣
P

= 0. We need to impose 10× 10 = 100 conditios.

∂3xµ

∂x̃α∂x̃β∂x̃γ

∣∣∣
P

has only 80 numbers. Short of 20!

Locally Inertial frame has deviations from Minkowski that depends on the
second derivative of the metric!

20 “degrees of freedom” are the 20 independent components of Riemann
curvature tensor!



Riemann tensor



Riemann tensor

Rβ
λνα = Dβ

dxλdxνdxα

Take a vector V σ around a closed loop.
In general the initial vector and the final
vector will not be the same.
Initially, V points in the direction j with
magnitude dx j .
At each step, do not turn V that you
carry, even though the coordinates may
themselves turn. Coordinate description
of V change.
Difference between initial and final
vector will have components
D1,D2,D3,D4.
Rβ
λνα is a (1, 3) tensor known as the

Riemann tensor (or simply ”curvature
tensor”).



Geodesic Deviation

Consider two objects at P1 and P2.
freely falling towards the Earth.

In Newtonian theory, we have

ẍ i = −∂Φ(x j)
∂x i ẍ i + ξ̈i = −∂Φ(x j + ξj)

∂x i

ξ̈i = − ∂2Φ
∂x i∂x j ξ

j ' −GM
r3 ξi

In GR, we have

d2ξα

dt2 = Rα
µβν

dxµ
dt

dxβ
dt ξ

ν



Einstein’s equations



Einstein’s equations
Geodesic Deviation equation in Newtonian and GR

ξ̈i = − ∂2Φ
∂x i∂x j ξ

j d2ξα

dt2 = Rα
µβν

dxµ
dt

dxβ
dt ξ

ν

In Newtonian Gravity, Φ satisfies
∇2Φ = −4πGρ(x) (Poisson) ∇2Φ = 0 (Laplace)

Comparing the two equations suggest

Rα
µβν

dxµ
dt

dxβ
dt analogous to Φ,ij

Particle velocities are arbitrary.
∇2Φ in Poisson is analogous to Rµν = Rα

µαν in GR

Guess: Relativistic analogue of Laplace equation is
Rµν = 0 Rµν is Ricci tensor



Einstein’s equations

• General relativity replaces the time-independent Poisson equation

∇2Φ = −4π G ρmass

by set of 10 dynamical equations (like Maxwell’s equations)

Rµν −
1
2gµνR = 8πG

c4 Tµνy y
Space-time geometry Energy-momentum density of matter

(includes all forms of energy and matter)

• Coupled non-linear partial differential equations;
solutions can be obtained only for simple geometries.



Full machinery of GR

Metric : Distance between neighbouring points in space-time.

ds2 = gµνdxµdxν

Example: Schwarzschild – Metric around a spherical mass m

ds2 = (1− 2m/r)dt2 − (1− 2m/r)−1dr2 − r2(dθ2 + sin2 θdφ2)



Full machinery of GR

Metric : Distance between neighbouring points in space-time.

ds2 = gµνdxµdxν

Example: Schwarzschild – Metric around a spherical mass m

ds2 = (1− 2m/r)dt2 − (1− 2m/r)−1dr2 − r2(dθ2 + sin2 θdφ2)

Geodesics: Use minimum distance δ
∫

ds = 0 to obtain geodesics

d2xµ
ds2 + Γµαβ

dxα
ds

dxβ
ds = 0 Geodesic Equation

Connection coeff.; Γi
jk ∼ Inertial forces from reference frame’s motion

γµαβ = gµγ
2 (gγα,β + gγβ,α − gαβ,γ)



Full machinery of GR
Geodesics: Use minimum distance δ

∫
ds = 0 to obtain geodesics

d2xµ
ds2 + Γµαβ

dxα
ds

dxβ
ds = 0 Geodesic Equation

Connection coeff.; Γi
jk ∼ Inertial forces from reference frame’s motion

γµαβ = gµγ
2 (gγα,β + gγβ,α − gαβ,γ)

Curvature: Geodesic deviation is governed by the Curvature

d2ξα

dt2 = Rα
µβν

dxµ
dt

dxβ
dt ξ

ν

Riemann Curvature Rα
βγδ have 20/256 independent components.

Rα
βγδ = ∂

∂xγ Γαβδ −
∂

∂x δ Γαβγ + ΓαγεΓεβδ − ΓαδεΓεβγ



Full machinery of GR

Curvature: Geodesic deviation is governed by the Curvature

d2ξα

dt2 = Rα
µβν

dxµ
dt

dxβ
dt ξ

ν

Riemann Curvature Rα
βγδ have 20/256 independent components.

Rα
βγδ = ∂

∂xγ Γαβδ −
∂

∂x δ Γαβγ + ΓαγεΓεβδ − ΓαδεΓεβγ

Einstein’s Equations: Gµν === 8πGTµν Gµν ≡ Rµν − 1
2Rgµνy y

Einstein tensor Stress energy tensor
Spacetime dynamics Distribution of matter field



Full machinery of GR
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