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Recap

• Space-time is curved by an amount that depends on the mass/energy
in the vicinity.

• Space-time is locally flat

• freely falling objects follow the shortest path — geodesics — in the
curved space-time.

• information about gravity propagates at the speed of light (Part 12
lectures).

• Einstein’s Equations Gµν === 8πGTµν (Earlier Lectures)y y
Einstein tensor Stress energy tensor

Spacetime dynamics Distribution of matter field



Overview of Lecture 3

• Schwarzschild metric and consequences

• Black-holes

• Black-hole properties

• Black-hole thermodynamics



The first surprise solution to Einstein’s equations

• The first exact solution to Einstein’s equations is by Karl
Schwarzschild.

• The solution describes the space-time around a non-rotating spherical
mass.

• Solution describes the commonly occurring situations that one is
interested in also in Solar system. Example: advance of the perihelion
of Mercury.



Schwarzschild metric



Properties and conditions imposed

Since it is spherically symmetric, we use spherical coordinates (r , θ, φ)
to describe the spatial part of the metric.
Since this solution is outside of the mass, Einstein’s equation takes
the form, Rµν = 0.
No matter outside does not mean that the curvature Rα

µβν

components vanish!
Condition 1: As we take the distance from this mass out to infinity
(r →∞) the metric should approach the flat spacetime metric:

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdφ2

)
Condition 2: As the mass is taken to zero, we should again regain the
flat space-time metric.



Schwarzschild metric

Using the above properties and conditions, Einstein’s equations lead to:

ds2 =
(

1− 2GM
c2r

)
dt2 −

(
1− 2GM

c2r

)−1
dr2 − r2

(
dθ2 + sin2 θdφ2

)

Properties
Line-element gives the geometry of spacetime outside of a single
massive object (Earth, Sun, or a black hole by inserting the
appropriate mass)
Radial distance between two points measured simultaneously
(dt = dθ = dφ = 0)

d`2 =
√
−ds2 =

(
1− 2M

r

)−1
dr2

=⇒ proper distance measured at r is greater than the coordinate
distance measured at ∞.



Schwarzschild metric

Using the above properties and conditions, Einstein’s equations lead to:

ds2 =
(

1− 2GM
c2r

)
dt2 −

(
1− 2GM

c2r

)−1
dr2 − r2

(
dθ2 + sin2 θdφ2

)

Schwarzschild radius
G and c are fundamental
constants
Using G , c and Mass, we can
define length

rh = 2GM
c2

Object rh (m) rh/R
Earth 10−2 10−8

Sun 103 10−5

Neutron Star 103 0.1

Black-holes 103 1



Consequence 1: Gravitational redshift

Let observers A,B be at r1, r2.
Send EM Waves from A to B.
Rays will travel along(

1− 2M
r

)
dt2 −

(
1− 2M

r

)−1
dr2 = 0

Note that the Coordinate time δt measured
is the same! Propertime is different:

δτi =
√

1− 2M
ri
δt

Ratio of frequencies

ω1
ω2

=
√

1− 2M/r2
1− 2M/r1



Consequence 2: Time dilatation

dτEarth < dτOrbit

Gravitational Time
dilatation

Consider an observer sitting at the surface of
the Earth, rE = R, θE = const = φE .
Observer can construct the local Minkowski
coordinates: ds2 = dτ2

E − dx2 − dy2 − dz2

ds2 is invariant — local Minkowski and
Schwarzschild dτE = dt

√
1− 2M/R

Another observer in Geostationary orbit at
height h. dτO = dt

√
1− 2M/(R + h)

When both observers measure the same
process that start at the same coordinate time
t and ends at t + dt:

dτE = dτ0

√
1− 2M/R

1− 2M/(R + h)



Consequence 3: Recovering Newton’s law of Gravitation
• Near surface of the Earth GM

c2r � 1. Weak Gravity limit

ds2 '
(

1− 2GM
c2r

)
dt2 −

(
1 + 2GM

c2r

)
dr2 − r2

(
dθ2 + sin2 θdφ2

)
• Non-relativistic limit: ~v

c → 0 =⇒ 1
c

dx r

ds → 0 GMm
r = mv2

2

ds2 '
(

1− 2GM
c2r

)
dt2 − dr2 − r2

(
dθ2 + sin2 θdφ2

)
• Lagrangian of the particle moving in this background is

L[x(s)] = m c

√
gµν

dxµ
ds

dxν
ds

• Euler-Lagrange equation leads to
d2~r
dt2 = −GM

r2 êr Newton’s law of Gravitation



Black-holes



Early Idea of Black-holes Laplace 1798

• Escape velocity to leave an object of mass M and radius R

GMm
r = 1

2mv2
es =⇒ r = 2GM

v2
es

∣∣∣∣
ves=c

= 2GM
c2 = rh

• For an object of mass M and radius R = rh, ves = c

• For any object R < rh, the escape velocity is greater.
=⇒ no object, nor information can escape from such an object.



Early Idea of Black-holes Laplace 1798

• Escape velocity to leave an object of mass M and radius R

GMm
r = 1

2mv2
es =⇒ r = 2GM

v2
es

∣∣∣∣
ves=c

= 2GM
c2 = rh

However, there is a difference between this classical idea and what GR
predicts.



What happens at Schwarzschild radius?

I: Time stops at Schwarzschild radius

• Consider two observers. One at r and other at r + h. Time
dilatation equation becomes

dτ = dτ0

√√√√ 1− 2M/r
1− 2M/(r + h)

• If the observer is at rest at r = 2M =⇒ dτ = 0

Proper time stops at event horizon



What happens at Schwarzschild radius?

II: Black-holes are black

No radiation or
signals can ever come
out of the event
horizon, black hole is
indeed black!

Consider an excited atom, deexcites and emits
a photon just before it passes through the
event horizon.
These photons are emitted radially outwards
and detected by a stationary observer at
2M + h. Gravitational redshift:

λdetected = λemitted

√
1− 2M/(2M + h)

1− 2M/r

If the atom is at r = rh + δ(δ � 1); the
wavelength is finite, but extremely large.
If the atom is at r = rh, the detected
wavelength of the photon becomes infinite!
Photons have to ”climb up” infinite potential
when they start at horizon.



What happens at Schwarzschild radius?

III. What happens if an observer falls through the event-horizon?

Consider observer in Minkowski background: ds2 = dt2 − d`2

Dividing this by propertime dτ , we have

1 =
( dt

dτ

)2
−
(dx

dτ

)2
−
(dy

dτ

)2
−
( dz

dτ

)2
= ηµνuµuν

4-velocity uµ of the observer is time-like and magnitude is constant
Observer can change space velocity arbitrarily, cannot have zero
velocity through time.

Same effects exists in curved space-time



What happens at Schwarzschild radius?

III. What happens if an observer falls through the event-horizon?

Let us look at Schwarzschild background:

ds2 =
(

1− 2GM
c2r

)
dt2 −

(
1− 2GM

c2r

)−1
dr2 − r2

(
dθ2 + sin2 θdφ2

)
Whether an observer will always have non-zero velocity through time?
r > 2M: Like Minkowski background. uµ of the observer is time-like.
r < 2M: the coefficients in front of dt2 and dr2 change signs!
t and r switch their roles, and consequently the observer can adjust
velocity through time, but cannot have zero radial velocity.

Observer outside the horizon can choose not to travel through space, but
invariably must travel through time. Observer inside the horizon can

choose not to travel through time and can have zero orbital velocity, but
invariably must fall toward the center.



Black-hole properties



Black-hole properties

• Black holes have no hair.

Symmetry Tµν Parameter solution
Spherical vacuum M Schwarzschild

E-M field M & Q Reissner-Norstrom

Axial vacuum M & J Kerr
E-M field M, J & Q Kerr-Newmann

Entirely defined by their mass M, rotation rate J , and charge Q. All
memory of how the hole was made is lost. Almost like an elementary
particle.

• Gravitational field of a black hole close to the event horizon is
complicated, but by the time you are several Schwarzschild radii away,
it is indistinguishable from that of an ordinary star.



Black-holes in nature

Black holes in nature — end points of stellar evolution
• In our galaxy alone, theory suggests 50 million black holes (2

Supernova per century for 1010 years. Quarter of which make black
holes)

• Most massive galaxies have massive black holes at their centers (109

galaxies)

• LIGO-VIRGO have detected many black-hole binaries!



Black-hole thermodynamics



Black-hole thermodynamics

Laws of black-hole mechanics are analogous to thermodynamics

I law

II law

III law

Black-hole
dM = κ

2πdAH + work

AH increases

κ9 0

Thermodynamics
dE = TdS + work

S increases

T 9 0

Black-holes Mass (M) Horizon-area (AH) surface gravity (κ)

Thermodynamics Energy (E ) entropy (S) temperature (T )



Black-hole thermodynamics

Laws of black-hole mechanics are analogous to thermodynamics

I law

II law

III law

Black-hole
dM = κ

2πdAH + work

AH increases

κ9 0

Thermodynamics
dE = TdS + work

S increases

T 9 0

Black-holes Mass (M) Horizon-area (AH) surface gravity (κ)

Thermodynamics Energy (E ) entropy (S) temperature (T )

Classically, these laws are strictly formal with no direct physical implications



Black-hole thermodynamics

Semi-classical limit [gravity classical; matter fields quantum]

TH =
(~c

kB

)(
κ

2π

)
κ surface gravity Hawking radiation

SBH =
(kB

4

)(AH

`2P

)
AH Horizon area `2P ≡

~G
c3



Black-hole thermodynamics

Semi-classical limit [gravity classical; matter fields quantum]

TH =
(~c

kB

)(
κ

2π

)
κ surface gravity Hawking radiation

SBH =
(kB

4

)(AH

`2P

)
AH Horizon area `2P ≡

~G
c3

Properties
Unlike ideal gas [S ∝ V ], black-hole entropy is not extensive

Hawking temperature TH is tiny TH = 3.68× 10−52
(M�

M

)



Black-hole thermodynamics

Semi-classical limit [gravity classical; matter fields quantum]

TH =
(~c

kB

)(
κ

2π

)
κ surface gravity Hawking radiation

SBH =
(kB

4

)(AH

`2P

)
AH Horizon area `2P ≡

~G
c3

Egan & Lineweaver ’10

• Black-hole entropy is large!!!

SBH ∼ 1077 M2

M2
�

S
radiation

Univ
∼ 1088

• Supermassive BHs (108M�)
dominate entropy contribution to
the Universe



Black-holes: Recap

• A region of space-time from which no information carrying signals can
escape to a distant observer.

• Simplest macroscopic physical objects
Described by few parameters like mass, charge, angular momentum
No-hair theorem

• Classical entropy of black-hole is infinite.

• Semiclassically, black-holes emit radiation — Hawking Radiation


