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1. Spin-J atoms

We have previously considered spins that can only take two values, up or
down. Many of the atoms that act as spins in paramagnetic salts have
spins larger than 1 and such a description is inadequate for quantitative
comparison with experiment.

For a spin J atom, a quantum mechanical description implies that Jz can
take discrete values mz which are spaced between −J and J in integral
steps, i.e.

mz = −J,−J + 1, ..., J − 1, J,

corresponding to a total of (2J + 1) different values. The energy for a single
spin is

E = −gµBJ ·B = −µ ·B,

where µ = gµB, J is the magnetic moment, g is the g-factor of the atom
and µB = eB/(2me) is the Bohr magneton.

(a) For a magnetic field B parallel to the z axis, use the canonical ensemble
to calculate the partition function for a single atom.

(b) Write down an expression for the magnetization in the z direction
Mz = 〈µz〉.

(c) Consider the asymptotic behaviour of Mz as B → 0 and for B � 1
and use this to sketch Mz as a function of B. Find an expression for
the magnetic susceptibility:

ξm =
∂M

∂B

in the limit that B → 0. You should find that your answer is propor-
tional to known as Curies Law.

2. 2-dimensions
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In the case of 3 space dimensions, we saw that the density of states in
k−space is given by

g(k)dk =
V

2π2
k2dk (1)

In the case of 2 space dimensions, the density of states in k−space is

g(k)dk =
A

2π
kdk (2)

where A is the area in 2-dimensions.

Use the above relation for the density of states for ripplons (which are
quantised capillary waves on the free surface of super fluid 4He) whose
dispersion relation is

ω(k) =

(
γk3

ρ

)2

(3)

where γ is the surface tension and ρ is the mass density of liquid helium.

Calculate the thermal contribution to the surface energy per unit area due
to ripplons.

3. Ideal gas

(a) Calculate the entropy, specific heat and equation of state of a two
dimensional classical ideal gas at temperature T with N particles con-
fined in an area A = L2 and compare your answer to the results for a
three dimensional classical ideal gas.

(b) We have seen how to calculate CV for an ideal gas. Calculate CP for
an ideal gas in three dimensions recalling that it can be written as a
derivative of the enthalpy H via:

CP =
∂H

∂T

∣∣∣∣∣
P

= T
∂S

∂T

∣∣∣∣∣
P

4. A one dimensional lattice consists of linear array of N particles (N �
1) interacting via spring-like nearest neighbor forces. The normal mode
frequencies are given by:

ωn = ω̄
√

2(1− cos[2πn/N ]) (4)

where ω̄ is a constant and n an integer ranging −N/2 to N/2. The system
is in equillibrium at temperature T . Let cv be the constant length specific
heat.

(a) Compute cv for the regime T →∞.
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(b) For T → 0, cv → Aω−αT γ. What is A, α and γ?

Hint: The problem is to be treated quantum mechanically.

5. Van der Walls gases

The partition function for an interacting gas is assumed to be:

Z =

(
V −Nb
N

)N (
mk

B
T

2πh̄2

)3N/2

eN
2a2/(V kBT )

where a and b are constants. Show that the pressure is of the same form as
Van der Waals equation.

6. Average energy for classical and quantum oscillator

Consider an oscillator of mass m and spring constant K. The total energy
of the oscillator is

E =
p2

2m
+
Kx2

2
The oscillator is in contact with a heat bath of temperature T .

(a) View the oscillator as a classical oscillator. Show that the average
kinetic energy 〈p2/(2m)〉 and the average potential energy 〈Kx2

2
〉 are

both given by
k
B
T

2
regardless of the value of m and K. As a result,

the average total energy is 〈E〉 = k
B
T .

(b) View the oscillator as a quantum oscillator. Calculate the average
total energy 〈E〉, and show that 〈E〉 = k

B
T in high temperature limit.

So the equipartition theorem is valid for a quantum oscillator in high
temperature limit. Below what temperature we start to see a violation
of equipartition theorem for the quantum oscillator? What is 〈E〉 in
T → 0 limit?

7. One-particle statistics

(a) Let us consider a system to be a single quantum state of energy ε. Let
us assume that this system can either can one or no particle in this
energy state. Write down the partition function of this system. What
is the average number of particles in this energy state? What does
this distribution correspond to?

(b) Let us consider another system to be a single quantum state of energy
ε. Let us further assume that this system can have any number of such
particle with the same energy. Write down the partition function of
this system. What is the average number of particles in this energy
state? What does this distribution correspond to?
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