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Introduction

@ Question: What is a central force?

@ Answer: Any force which is directed towards a center, and
depends only on the distance between the center and the
particle in question.

@ Question: Any examples of central forces in nature?

@ Answer: Two fundamental forces of nature, gravitation, and
Coulomb forces are central forces

@ Question: But gravitation and Coulomb forces are two body
forces, how could they be central?

@ Answer: Correct, these two forces are indeed two-body forces,
but they can be reduced to central forces by a mathematical
trick.



@ Kepler took the astronomical data of Tycho Brahe, and
obtained three laws by clever mathematical fitting

@ Law 1: Every planet moves in an elliptical orbit, with sun on
one of its foci.

@ Law 2: Position vector of the planet with respect to the sun,
sweeps equal areas in equal times.

o Law 3: If T is the time for completing one revolution around
sun, and A is the length of major axis of the ellipse, then
T2 A3,

@ We will be able to derive all these three laws based upon the
mathematical theory we develop for central force motion



Reduction of a two-body central force problem to a

one-body problem

o Gravitational force acting on mass m; due to mass my is

Gmymo
F12 - - 2 r127
T)

i.e., it acts along the line joining the two masses

F21

@ Similarly, the Coulomb force between two charges g1 and g5 is

given by

a1q2
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Reduction of two-body problem....

@ An ideal central force is of the form
F(r)=f(r)e,

i.e., it is a one-body force depending on the coordinates of
only the particle on which it acts

@ But gravity and Coulomb forces are two-body forces, of the
form

F(ri2) = f(r2)f12
@ Can they be reduced to a pure one-body form?

@ Yes, and this is what we do next



Reduction of two-body problem...

@ Relevant coordinates are shown in the figure
my

\
I r=ri—r

ry my

o We define

r=riy—r

— r=lrl=Irn—r
e Given Fip = f(r)f, we have
m1F1 = f(r)?

m2F2 = —f(r)f'



Decoupling equations of motion

@ Both the equations above are coupled, because both depend
upon ry and ry.

@ In order to decouple them, we replace ry and ro by r=r; —rs
(called relative coordinate), and center of mass coordinate R

_mirp+mar

my + mp
o Now
) .. . o fp
R:m1r1+m2r2: r r —0
my + mp my + mo

— R=Rg+Vt,

above Ry is the initial location of center of mass, and V is the
center of mass velocity.



Decoupling equations of motion...

@ This equation physically means that the center of mass of this
two-body system is moving with constant velocity, because
there are no external forces on it.

h—ﬁy:ﬂd<]'+1>?

@ We also obtain

ma moy
::,i_<nh+nb>f0ﬁ
mymy
uv = f(r)e,
mymp

where u = is called reduced mass.

my+my’



Reduction of two-body problem to one body problem

Note that this final equation is entirely in terms of relative
coordinate r

It is an effective equation of motion for a single particle of
mass [, moving under the influence of force f(r)f.

There is just one coordinate (r) involved in this equation of
motion

Thus the two body problem has been effectively reduced to a
one-body problem

This separation was possible only because the two-body force
is central, i.e., along the line joining the two particles

In order to solve this equation, we need to know the nature of
the force, i.e., f(r).



Two-body central force problem continued

@ We have already solved the equation of motion for the
center-of-mass coordinate R

@ Therefore, once we solve the “reduced equation”, we can
obtain the complete solution by solving the two equations

myry + morp
my+my
r=riy—»nr

R =

@ Leading to
rhn=R+ (mz> r
m1—+ moy

rp=R— L
my + mp

@ Next, we discuss how to approach the solution of the reduced
equation



General Features of Central Force Motion

@ Before attempting to solve u¥ = f(r)f, we explore some
general properties of central force motion

@ Let L =r x p be angular momentum corresponding to the
relative motion

@ Then clearly

dL—ﬂx —i—rx@—vx +rxF
dar _dt P ac VP

@ But v and p = uv and parallel, so that vxp =10
@ And for the central force case, r x F = f(r)r x ¥ =0, so that

dL
dt
— L = constant

0

@ Thus, in case of central force motion, the angular momentum
is conserved, both in direction, and magnitude



Conservation of angular momentum

@ Conservation of angular momentum implies that the relative
motion occurs in a plane

@ Direction of L is fixed, and because r L. L, so r must be in the
same plane

@ So, we can use plane polar coordinates (r,0) to describe the
motion



Equations of motion in plane-polar coordinates

@ We know that in plane polar coordinates
a=i=(F—r6?)t+(2/0+r0)b
@ Therefore, the equation of motion ur = f(r)f, becomes
(i —r0®)p+u(2/0 +r6)6 = f(r)f
@ On comparing both sides, we obtain following two equations

(¥ —r6%) =£(r)
wn(2r6 +r6) =0

@ By multiplying second equation on both sides by r, we obtain

d 24\
E(Nr 6)=0



Equations of motion

@ This equation yields
ur?0 = L (constant),

we called this constant L because it is nothing but the angular
momentum of the particle about the origin. Note that L =/,
with / = ur?.

@ As the particle moves along the trajectory so that the angle 6

changes by an infinitesimal amount d0, the area swept with
respect to the origin is

dA = %ﬂde
% = lrzé = L = constant,
dt 2 2u

because L is constant.

@ Thus constancy of areal velocity is a property of all central
forces, not just the gravitational forces.

@ And it holds due to conservation of angular momentum



Conservation of Energy

e Kinetic energy in plane polar coordinates can be written as
1
K=-uv-
SHv-v
1 Cn n
— Su (r'?—i—r@@) . (r'?+r69>
L o 1 55
== —ur-0
e Potential energy V/(r) can be obtained by the basic formula

V(r)— / f(r

where rp denotes the location of a reference point.



Conservation of Energy...

@ Total energy E from work-energy theorem

1 1 .
E= §“f2+ E,urze2 + V/(r) = constant

o We have
L:,urzé
Surte? —
i 2ur?
o So that

-l r‘2+L—2+V( )
BT

@ We can write

1
E= E[JI;2 + Veff(r)
2

. L
with Ve (r) = 22 +V(r)



Conservation of energy contd.

@ This energy is similar to that of a 1D system, with an effective
. 2
potential energy Ve (r) = ﬁ + V(r)
e In re.ality 21L;2 is kinetic energy of the particle due to angular
motion

@ But, because of its dependence on position, it can be treated
as an effective potential energy



Integrating the equations of motion

@ Energy conservation equation yields

dr 2
= JE(E-V
p” i ( 7 (r))

@ Leading to the solution

' d
/ ! = t—to, (1)
o

which will yield r as a function of t, once f(r) is known, and
the integral is performed



Integration of equations of motion...

@ Once r(t) is known, to obtain 6(t), we use conservation of

angular momentum

dgo_ L
dt  ur?
L [t
0—6p=— i;
Ui r

@ We can obtain the shape of the trajectory r(6), by combining
these two equations

do L
w:<w>: et

dr
dr \ & 2 (E — Ver(1))

@ Leading to

r dr
ro r2/2U(E — Ve (r)) )

0—-6y=1L



Integration of equations of motion contd.

@ Thus, by integrating these equations, we can obtain r(t), 6(t),
and r(0)

@ This will complete the solution of the problem
e But, to make further progress, we need to know what is f(r)

@ Next, we will discuss the case of gravitational problem such as
planetary orbits



Case of Planetary Motion: Keplerian Orbits

@ We want to use the theory developed to calculate the orbits of
different planets around sun

@ Planets are bound to sun because of gravitational force
@ Therefore

GMm
2

f(r)=—

e So that

vi=-Mm__€ 3)

r r

above, C = GMm, where G is gravitational constant, M is
mass of the Sun, and m is mass of the planet in question.



Derivation of Keplerian orbits

@ On substituting V/(r) from Eq. 3 into Eq. 2, we have

L2 C
2;,Lr2 + 7)

0_ OO—L/
r r2\/2u

(4)

_L/
r\/2[.LEr2+2[.LCr— L2

@ We converted the definite integral on the RHS to an indefinite
one, because 0y is a constant of integration in which the
constant contribution of the lower limit r = ry can be absorbed.
This orbital integral can be done by the following substitution

1
= 5
r=1—g ()
ds
dr = —
— dar (S—OC)2

r (s—o)



Orbital integral....

@ Substituting Egs. 5 and 6, in Eq. 4, we obtain

9—Oo:—L/ 2:25
_ 2
(s a)\/( £ )
—L/ ds
V2UE +2uC(s—a) — L2(s — a)2

ds
_ —L/
V2UE +2uCs —2uCa — [2s2 +212as — 22

@ The integrand is simplified if we choose o = ——, leading to
7L/ ds :
\/2/,LE—{—2 MC) — 252 _ (IJL(;)

_L/ ds
\/2”E+(uC) _[2g2




Orbital integral contd.

e Finally, the integral is
L2/ ds
\/2[,LEL2 +(uC)2 - L4s?

0—6)=—

—g2

/ \/2uEL2+(/.LC

2 2

@ On substituting s = asin @, where a= 14

integral transforms to

0= —b——sinL(2
60— 6= —¢ = —sin (a)
s = —asin(6 — 6)

1
= —+a=—asin(6 —6)
r
1

T T asin(6— )
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Keplerian Orbit

o We define rp = —% “C, to obtain
ro
r =
1—4/14 iECLZ sin(6 — 6)
e Conventionally, one takes 8y = —7/2, and we define
oo [ 2EL2
— 12

@ To obtain the final result

r
"~ 1—¢€cosH

@ We need to probe this expression further to find which curve it
represents.
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A Brief Review of Conic Sections

@ Curves such as circle, parabola, ellipse, and hyperbola are
called conic sections

in plane polar
coordinates, denotes different conic sections for various values
of €, which is nothing but the eccentricity

. ___ro
o We will show that the curve r = T feosd
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Nature of orbits: parabolic orbit

i — /X212 _ox_
o Using the fact that r = /x2+y2, and cos@ = X = \/)(;Tyz

we obtain

/2 2 o
X2+y2:1_ EX
= V/x2+y2=ry+ex

— x3(1—€*)—2rpex+y* =18

o Case |: € =1, which means E =0, we obtain
y? =2rox+ rg

which is nothing but a parabola. This is clearly an open or
unbound orbit. This is typically the case with comets.
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Nature of orbits: hyperbolic and circular orbits

@ Case ll: e>1 = E >0, let us define A=¢2—1>. With
this, the equation of the orbit is

y2—AX? —2rpV1+Ax =18

Here, the coefficients of x? and y? are opposite in sign,
therefore, the curve is unbounded, i.e., open. It is actually the
equation of a hyperbola. Therefore, whenever E > 0, the
particles execute unbound motion, and some comets and
asteroids belong to this class.

o Case lll: € =0, we have

X2y =r2
which denotes a circle of radius ry, with center at the origin.
This is clearly a closed orbit, for which the system is bound.

e=,/1+ iECL; =0 = E= —‘é—fj < 0. Satellites launched by

humans are put in circular orbits many times, particularly the
geosynchronous ones.
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Nature of orbits: elliptical orbits

o CaseIV: 0<e <1l = E <0, here we define
A= (1-¢€2)>0, to obtain

Ax? —2rV1—Ax+y? =18

Because coefficients of x? and y? are both positive, orbit will
be closed (i.e. bound), and will be an ellipse.

@ To summarize, when E > 0, orbits are unbound, i.e., hyperbola
or parabola

@ When E < 0, orbits are bound, i.e., circle or ellipse.
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Time Period of Elliptical orbit

@ There are two ways to compute the time needed to go around
its elliptical orbit once

e First approach involves integration of the equation

dr

I
tb—t‘;:/
ra \/ﬁ(E_

L2 C
2ur? + 7)

_ /’b rdr
1, V(UEr +2uCr — [2)

@ When this is integrated with the limit r, = r,, one obtains that
time period T satisfies

2
TR 43
T2="ZA

2C "7
where A is semi-major axis of the elliptical orbit. This result is
nothing but Kepler's third law.



Time period of the elliptical orbit...

@ Now we use an easier approach to calculate the time period
@ We use the constancy of angular momentum

do

L=ur’—

R
L 1

— —dt=-r’do
n 2"

@ R.H.S. of the previous equation is nothing but the area
element swept as the particle changes its position by d0

@ Now, the integrals on both sides can be carried out to yield

LT
2 = area of ellipse = mab.
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Time period of the orbit contd.

@ a and b in the equation are semi-major and semi-minor axes of
the ellipse as shown

/t\
"\zﬂ_-./

@ Now, we have

Tmin

—
rma\)(/

@ Therefore

2= A _ (rmin+rmax)
2

2
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Time period of the orbit....

@ Using the orbital equation r = 1_8’%, we have

a—l I n n 1 1 n 1 N
~2\l—¢gcost 1—ecosO0) 2 \14+e 1—¢e) 1—¢2

e Calculation of b is slightly involved. Following diagram is
helpful
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Calculation of time period...

@ X is the distance between the focus and the center of the
ellipse, thus
) n  néE

1—€2 14¢e 1—¢g2

X0 = a8~ I'min =

@ In the diagram b= ,/r2—xg, and for 8, we have cos0 = X7°
which on substitution in orbital equation yields

) o

T 1—_ecosh 120

— te + rog” 0
r=rn Xo=hnh+—"—F5=77—">
1—e2 1-—¢g2

e So that

/ r282 )
_X — —
0~ 1 82 1 82) \/1—52
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o Now

2EL2 2EL2
1-e2=1-(1+— | =——
‘ <+MC2> uc?

@ Using rnp = ”C, we have

. 2rg 212 uc?\  C
A=2=1"p = c <‘ =

2EL2 E
b— ) L2 [.LC2 _ 1
“Vi—e uc NV T2E2T 2uE

@ Using this, we have

2mu 2ru C 1 u Cc\¥?
Tzi _ — _— L e —_— _——
[ P=1 X( 2E)X \ 2uE " "V2c\"E
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Kepler's Third Law

@ Which can be written as

| M 430
T=n 2CA

@A3’

— T2:
2C

which is nothing but Kepler's third law.



