EP 222: Classical Mechanics
Tutorial Sheet 1

This tutorial sheet contains problems on the Newton’s laws of motion and Lagrangian
formalism.

1. Show that for a single particle with a constant mass the equation of motion implies
the following differential equation for the kinetic energy:
dr
—=F-v
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while if the mass varies with time the corresponding equation is

d(mT)
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Soln: (a) We know 7' = fmv? = smv - v. Thus, if m is constant
dT dv r
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(b) For a variable mass particle, let us consider

dimT) _ d (1 vov) = d—mv v+miv-a= d—mv+ al-(mv)=F
a —a\2" T A gy = b

because for a variable mass particle fl—i’ = dd—’?v + ma.

2. Prove that the magnitude R of the position vector for the center of mass from an
arbitrary origin is given by the equation

M2R? = MZmirf — %Zmimjr?j
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Soln: R is defined as

Z'miri
R =& ¢
M

— M2R2 = (Z miri) . (Z ’ITLjI'j)
( J

2p2 _ 2,2 T - T
= M-°R* = g m;m;r; - T = E m;r; + E M;Mm;T; * T
1,7 ( i#]



Using

we obtain
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In the second sum on the RHS, we can perform unrestricted sum over ¢ and j, because

for ¢ :j, Tij = 0.
. Show that the Lagrange equations
d (0T oT
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can also be written as )
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These are sometimes called the Nielsen form of Lagrange equations.

= Q.

Soln: Assuming that
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leading to
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Substituting this on the LHS of Lagrange equation, we obtain
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. If L is a Lagrangian for a system of n degrees of freedom satisfying the Lagrange
equations, show by direct substitution that

dF(Qla s 7Qn7t)
dt

also satisfies Lagrange’s equations where I’ is any arbitrary, but differentiable, func-
tion of its arguments.
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Soln: We have
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. Obtain the Lagrange equations of motion for a spherical pendulum, i.e., a point mass

suspended by a rigid weightless rod.

Soln: It is best to use spherical polar coordinates here. In the lectures we showed
that the kinetic energy of a particle in spherical polar coordinates is

1 . .
T = g™m (7’“2 + 1262 + 12 sin? 9¢2> .

If length of the rod is [, then » = [, and r = 0, we are left with two generalized

coordinates (6, ¢), with

1

T = 3™ <l292 + [ sin? 9¢2> ,

and using the point of suspension as the reference for potential energy, we have

V = —mgl cosb.



Thus {
L=T-V=T= g™ (1292 + 1 sin® 9@252) + mgl cos 6.

d (oY oL
dt \ 90 00

1 :
— mil%) — Eml2 sin 20¢% + mglsinf = 0

oLy oL
dt(aq's)_a(é

d(ml?sin® 0¢)
dt

Now the two Lagrange equations are

and

=0.

. Obtain the Lagrangian and equations of motion for a double pendulum, where the
lengths of the pendula are [; and Iy with corresponding masses m; and msy, confined
to move in a plane.

Soln: As discussed in the lectures, this system has two generalized coordinates 6,
and 65, the angles which the upper and the lower pendula make with respect to the
vertical.

With the motion of the pendula confined in a plane (say, zy plane), then the Cartesian
coordinates of the two particles can be written as

xr1 = ll sin Ql

y1 = —ly cos b
and

Ty = 21 + lpsinfy = [ sin 6, + lysin O

Yo = Y1 — la cosby = —Iy cos bty — Iy cos by



So that

1 . . 1 . .
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Now
(@1 = ll COSs 9191
yl = ll sin 919'1
Tg = Iy cos 9191 + l5 cos 9292
o = 1y sin 01601 + 1y sin 0505
Easy to verify
i+ g = 6
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With this
T = %(ml + m2)l%9% + %mﬂ%é% + m2lll29192 cos(b — 62),
and
V = mygy1 + magys
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L=T-V
1 . 1 . .
= §(TTL1 + 777&)[%‘9% + §m2l§9§ + m2l1l29192 COS(91 — 92)

+ (mq + ma)gly cos Oy + magls cos b;.
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f, equation of motion

leads to

Upon taking the time derivative, we obtain the final form
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which yields
d ) . L '
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Upon taking the time derivative, we obtain the final form

m2l1l2 COS(el — 92)&1 + mglgég - m21112 Sin(91 — 02)0% + mggl2 sin 02 =0

. If we want to obtain the equations of motion for a charged particle of mass m, moving
in an electromagnetic field (E, B), the potential in the Lagrangian has to be velocity
dependent U = g¢ — qA - v, where ¢ is the charge of the particle, and ¢, and A,
respectively, are the scalar and vector potentials of the electromagnetic field so that

0A
B=-vo—F

B=VxA.
Show that using this Lagrangian, we obtain the correct equations of motion for the

particle.

Soln: Using Cartesian coordinates and the fact that v = @i+ g) + ik, and A =
Agi+ Ay + ALk, we have
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Lagrange equation for x component
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Using the fact that

A
E--ve- 22

ot
B=VXxA,



we obtain above
mi = qF, + q(v X B),,

which is the z component of the Lorentz force equation. Using the same procedure for
y and z components, we obtain

mi = gE + q(v x B).

. The electromagnetic field is invariant under a gauge transformation of the scalar and
vector potential given by

A — A+ ViY(rt),
oY

(b — (25_57

where v is arbitrary (but differentiable). What effect does this gauge transformation
have on the Lagrangian of a moving particle in the electromagnetic field? Is the equa-
tion of motion affected?

Soln: On performing the gauge transformations, we have
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Because L' differs from L by the total time derivative of a differentiable function
¥ = 1(r,t), hence, from the result of Prob 4, it will lead to the same Lagrange
equations as L.



