
EP 222: Classical Mechanics
Tutorial Sheet 4: Solution

This tutorial sheet contains problems related to rigid body kinematics.

1. (a) By examining the eigenvalues of an antisymmetric 3×3 real matrix A, show that
I ± A is nonsingular, where I is the identity matrix.
Soln: Let us examine the nature of eigenvalues of A, which satisfies AT = −A.
If λ is an eigenvalue with eigenvector X, then

AX = λX

=⇒ (AX)† = λ∗X†

=⇒ X†AT = λ∗X†

=⇒ X†ATX = λ∗X†X

=⇒ −X†AX = λ∗X†X

=⇒ −λX†X = λ∗X†X

=⇒ λ = −λ∗

This implies that the eigenvalues of A are either purely imaginary or zero. Thus
the eigenvalues of I ±A will be 1± λ, which will never be zero. Thus det(I ±A)
will never be zero, i.e., matrix I ± A is nonsingular

(b) Show then that under the same conditions the matrix

B = (I + A)(I − A)−1

is orthogonal.
Soln: If B is orthogonal, it must satisfy

BTB = BBT = I

(i) Check BTB

BTB = {(I + A)(I − A)−1}T (I + A)(I − A)−1

= {(I − A)T}−1(I + A)T (I + A)(I − A)−1

= (I + A)−1(I − A)(I + A)(I − A)−1

But (I −A)(I +A) = (I −A+A−A2) = (I −A2) = (I +A)(I −A). Therefore,

BTB = (I + A)−1(I + A)(I − A)(I − A)−1 = I

(ii) Check BBT

BBT = (I + A)(I − A)−1{(I + A)(I − A)−1}T

= (I + A)(I − A)−1(I + A)−1(I − A)

= (I + A){(I + A)(I − A)}−1(I − A)

= (I + A){(I − A)(I + A)}−1(I − A)

= (I + A)(I + A)−1(I − A)−1(I − A) = I
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Hence B is an orthogonal matrix.

2. Show that the components of the angular velocity along the space set of axes are given
in terms of the Euler angles by

ωx = θ̇ cosφ+ ψ̇ sin θ sinφ,

ωy = θ̇ sinφ− ˙˙ sin θ cosφψ

ωz = ψ̇ cos θ + φ̇

Soln:

The angular velocities corresponding to three Euler angles, along with their directions
are:

(a) φ̇ about z axis

(b) θ̇ about x′ axis in the middle figure, so that it has components θ̇ cosφ about x
axis, and θ̇ sinφ about the y axis.

(c) ψ̇ about the z′ axis, so that in the primed axis, it can be expressed as

ω′ =

 0
0

ψ̇


. We can find its components along the x, y, and z by applying the inverse of
A = BCD (see notes, or book for an explanation), i.e., A−1 = AT which yields

ATω′ =

 sin θ sinφψ̇

− sin θ cosφψ̇

cos θψ̇


Combining the conclusions of (a), (b), and (c), we obtain the final result

ωx = θ̇ cosφ+ sin θ sinφψ̇

ωy = θ̇ sinφ− sin θ cosφψ̇

ωz = φ̇+ cos θψ̇

3. A particle is thrown up vertically with initial speed v0, reaches a maximum height
and falls back to ground. Show that the Coriolis deflection when it again reaches the
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ground is opposite in direction, and four times greater in magnitude, than the Coriolis
deflection when it is dropped at rest from the same maximum height.
Soln: Let us use the coordinate system shown below:
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Above, θ is the co-latitude, and the x, y, and z axis are in the local south, east, and
vertical directions, respectively. In this coordinate system, the earth’s angular velocity
ω at the location is given by

ω = −ω sin θî+ ω cos θk̂

Case (a): When the particle is thrown up from the ground with initial speed v0, its
velocity v = (v0 − gt)k̂, so that the Coriolis force on it will be

Fcor = −2m(ω × v) = −2mω sin θ(v0 − gt)ĵ
d2y

dt2
= −2ω sin θ(v0 − gt)

=⇒ ∆y = −ω sin θ(v0t
2 − 1

3
gt3),

where ∆y is the deflection for time of flight t, obtained by integrating the acceleration
equation. Because total time of flight will be t = 2v0/g, so the deflection is

∆y1 = −4

3

v30ω sin θ

g2

Case (b): When the particle is dropped from the rest from the same height, then
v = −gtk̂, so that we have

Fcor = −2m(ω × v) = 2mω sin θgtĵ

d2y

dt2
= 2ω sin θgt

=⇒ ∆y =
1

3
ω sin θgt3.

Here the time of flight t = v0/g, so that the deflection is

∆y2 =
1

3

v30ω sin θ

g2
.

Thus ∆y1 = −4∆y2.
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4. A projectile is fired horizontally along Earth’s surface. Show that to a first approx-
imation the angular deviation from the direction of fire resulting from the Coriolis
effect varies linearly with time at a rate ω cos θ, where ω is the angular frequency of
Earth’s rotation and θ is co-latitude, the direction of deviation being to the right in
the northern hemisphere.
Soln: Using the same coordinate system as above, we assume that the projectile is
initially fired horizontally towards east with initial speed v0, so that

v = v0ĵ.

Now the Coriolis force on the projectile will be

Fcor = −2m(ω × v),

using ω = −ω sin θî+ ω cos θk̂, we obtain

Fcor = 2mωv0(cos θî+ sin θk̂).

Clearly, z component of the force is insignificant as compared to gravity, so we ignore
it. Then the Coriolis force is in the x direction which is to the right of the direction
of motion. Now, deviation ∆x due to the Coriolis force can be calculated as

m
d2x

dt2
= 2mωv0 cos θ

=⇒ ∆x = ωv0t
2 cos θ.

Ignoring air friction, displacement in the y direction in time t is

∆y = v0t.

If φ is the angular deviation from the original direction of motion, then clearly

tanφ =
∆x

∆y

=⇒ tanφ ≈ φ = ωt cos θ

5. A wagon wheel with spokes is mounted on a vertical axis so it is free to rotate in the
horizontal plane. The wheel is rotating with an angular speed of ω = 3.0 radians/s. A
bug crawls out on one of the spokes of the wheel with a velocity of 0.5 cm/s holding
on the spoke with a coefficient of friction µ = 0.30. How far can the bug crawl along
the spoke before it starts to slip?
Soln: In the rotating frame we use cylindrical coordinates. If the bug is moving with
an outward velocity v0, we have

v = v0r̂

ω = ωk̂
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So that
Fcor = −2m(ω × v) = −2mωv0θ̂

so that the normal force due to the Coriolis force is Ncor = −Fcor = 2mωv0θ̂. Normal
force due to gravity is Ng = mgk̂, so that the total normal force is

N = Ncor + Ng = 2mωv0θ̂ +mgk̂

=⇒ N = m
√
g2 + 4ω2v20.

When the centrifugal force experienced by the bug exceeds the net frictional force, the
bug will no longer be able to crawl. The limiting condition is

mω2rmax = µN = m
√
g2 + 4ω2v20

rmax =

√
g2 + 4ω2v20
ω2
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