EP 222: Classical Mechanics
Tutorial Sheet 4: Solution

This tutorial sheet contains problems related to rigid body kinematics.

1. (a) By examining the eigenvalues of an antisymmetric 3 x 3 real matrix A, show that
I + A is nonsingular, where [ is the identity matrix.
Soln: Let us examine the nature of eigenvalues of A, which satisfies AT = —A.
If X\ is an eigenvalue with eigenvector X, then

AX = X
— (AX)T =1 XT
— XTAT = \*XT
— XTATX = \*XTX
— —XTAX = XXX
— —AXTX = XXX
== A==\

This implies that the eigenvalues of A are either purely imaginary or zero. Thus
the eigenvalues of I + A will be 1 £ A, which will never be zero. Thus det(I + A)
will never be zero, i.e., matrix I + A is nonsingular

(b) Show then that under the same conditions the matrix
B=(I+A)(I-A""

is orthogonal.
Soln: If B is orthogonal, it must satisfy

B'"B=BBT" =1

(i) Check BTB
BTB={(I+A)I-A)"Y(I+A)U—-A)""
={I - A"} I+ AT+ A)(I - A
=T+ AT -AT+ AT - A
But (I -A)(I+A)={T—-A+A—-A?) = (—-A?) =+ A)(I—A). Therefore,
B'B=(IT+A) I +AI-AI-A) =1

(ii) Check BBT

BB = (I+A)I —A) I+ A)1I-A)"
= (I+A)I A T+A) T - A
=TI+ A{(IT+A)T—-AYH - A
= (I+ A){(I - AT+ A} (I - A)
=T+ AT+ T-ATT-A) =1



Hence B is an orthogonal matrix.

2. Show that the components of the angular velocity along the space set of axes are given
in terms of the Euler angles by

wy = Bcosd+sinfdsin g,
Wy = ésingzﬁ — sin 6 cos
w, = tcosh+ ¢

Soln:

The angular velocities corresponding to three Euler angles, along with their directions
are:
(a) ¢ about z axis

(b) 6 about 2’ axis in the middle figure, so that it has components 6 cos ¢ about x
axis, and fsin ¢ about the y axis.

(c) 1/} about the 2’ axis, so that in the primed axis, it can be expressed as
0
Ww=120
(G
. We can find its components along the z, y, and z by applying the inverse of

A = BCD (see notes, or book for an explanation), i.e., A=t = AT which yields

sin 6 sin ¢y '
AT = | —sinb cos ¢y
cos 01

Combining the conclusions of (a), (b), and (c), we obtain the final result

wy = 6 cos ¢ + sin O sin ¢y
Wy = 0 sin ¢ — sin 6 cos 1)
W, = q5+cos91/}

3. A particle is thrown up vertically with initial speed vy, reaches a maximum height
and falls back to ground. Show that the Coriolis deflection when it again reaches the
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ground is opposite in direction, and four times greater in magnitude, than the Coriolis
deflection when it is dropped at rest from the same maximum height.
Soln: Let us use the coordinate system shown below:

Scanned by CamScanner

Above, 0 is the co-latitude, and the x, y, and z axis are in the local south, east, and
vertical directions, respectively. In this coordinate system, the earth’s angular velocity
w at the location is given by

w = —wsin 67 + wcos bk

Case (a): When the particle is thrown up from the ground with initial speed vy, its
velocity v = (vg — gt)k, so that the Coriolis force on it will be

~

Foor = —2m(w x v) = —2mwsin f(vy — gt)J

d2
d_ti/ = —2wsin f(vy — gt)
1
= Ay = —wsinf(vot* — —gt*),
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where Ay is the deflection for time of flight ¢, obtained by integrating the acceleration
equation. Because total time of flight will be t = 2vy/g, so the deflection is

Ay, = _Avjwsind
3 g°
Case (b)j When the particle is dropped from the rest from the same height, then
v = —gtk, so that we have

Foor = —2m(w X v) = 2mwsin gt
d2
d_t;y = 2wsin gt

1
— Ay = i sin Ogt>.

Here the time of flight ¢ = vy/g, so that the deflection is

1v3wsin @
Ay, = _0—2
3 g

Thus Ay; = —4Ays,.



4. A projectile is fired horizontally along Earth’s surface. Show that to a first approx-
imation the angular deviation from the direction of fire resulting from the Coriolis
effect varies linearly with time at a rate wcosf, where w is the angular frequency of
Earth’s rotation and 6 is co-latitude, the direction of deviation being to the right in
the northern hemisphere.

Soln: Using the same coordinate system as above, we assume that the projectile is
initially fired horizontally towards east with initial speed vg, so that

v = .
Now the Coriolis force on the projectile will be
Foor = —2m(w x v),
using w = —wsin 0 + w cos 0k, we obtain
F.,. = 2mwuvy(cos 01 + sin 6’]2:)

Clearly, z component of the force is insignificant as compared to gravity, so we ignore
it. Then the Coriolis force is in the x direction which is to the right of the direction
of motion. Now, deviation Az due to the Coriolis force can be calculated as
d*x
m—s = 2mwuvg cos 0
dt? ’
= Az = wuyt? cos .

Ignoring air friction, displacement in the y direction in time ¢ is
Ay = vgt.

If ¢ is the angular deviation from the original direction of motion, then clearly

tan(b: A_y

= tan ¢ ~ ¢ = wtcosl

5. A wagon wheel with spokes is mounted on a vertical axis so it is free to rotate in the
horizontal plane. The wheel is rotating with an angular speed of w = 3.0 radians/s. A
bug crawls out on one of the spokes of the wheel with a velocity of 0.5 cm/s holding
on the spoke with a coefficient of friction p = 0.30. How far can the bug crawl along
the spoke before it starts to slip?

Soln: In the rotating frame we use cylindrical coordinates. If the bug is moving with
an outward velocity vy, we have



So that )
F.r = —2m(w x v) = —2mwvy0

so that the normal force due to the Coriolis force is N.,, = —F.,, = Qmwvoé. Normal

force due to gravity is N, = mgl%, so that the total normal force is

N = N, + N, = Qmwvoé + mg/;’

= N =my/g?+ 4wvd.

When the centrifugal force experienced by the bug exceeds the net frictional force, the
bug will no longer be able to crawl. The limiting condition is

MW T e = N = my/ g2 + 4w203

B V9% + 4w208

Tmaa: - wg



