EP 222: Classical Mechanics
Tutorial Sheet 5: Solution

This tutorial sheet contains problems related to angular momentum, inertia tensor, and
rigid body motion.

1. Three equal point masses m are located at (a,0,0), (0,a,2a), and (0,2a,a). Find the
principal moments of inertia about the origin and a set of principal axes.
Soln: By using the formulas for various components of inertia tensor, one can easily
calculate it to be

10ma? 0 0
I = 0 6ma? —4ma®
0 —4ma®  6ma’

on setting up the characteristic polynomial

det(I — AI) = 0,
leads to eigenvalues A\ = 2ma?, 10ma?, 10ma?, last two of which are degenerate. One
0 1 0
. . 1 1
can show that the corresponding eigenvectors are % 1 , 8 , and % 11

~

leading to principle axes directions u; = \/Lﬁ <j + l%), Gy = 1, and G = \% <§ —k

2. Obtain the inertia tensor of a system, consisting of four identical particles of mass m
each, arranged on the vertices of a square of sides of length 2a, with the coordinates
of the four particles given by (+a, +a,0).

Soln: Consider four identical particles of mass m, arranged on the vertices of a square,
with sides of length 2a, as shown
Y

(—a,a) (a,a)

(-a,—a) (a,—a)

Noting that for all particles, the z coordinate is zero (z; = 0), we obtain
4

=1

4
Iy, = Zml(l’? +27) = dma’®
i=1

1
I,= Zml(wf + y?) = 8ma®

=1



Now

Zmleyl = (a —a? - az—i—aQ) =0=1y,
Zmlxlzz— mO+0+0+0)=0=1I,
Zmzy,zz— mO0+0+0+0)=0=1,

Thus, tensor of inertia is diagonal here, due to the high symmetry of the problem

. A rigid body consists of three point masses of 2 kg, 1 kg, and 4 kg, connected by
massless rods. These masses are located at coordinates (1, -1,1), (2,0,2), and (-1,1,0)
in meters, respectively. Compute the inertia tensor of this system. What is the angular
momentum vector of this body, if it is rotating with an angular veloctiy w = 3i— 2J +4Kk?
Soln: We have

Lo =Y mi(yl +27) =2(1+1) + 1(0+4) + 4(1 + 0) = 12
= mmiy = =2(—1) = 1(0) = 4(=1) = 6 = I,

= mriz = —2(1) = 1(4) = 4(0) = —6 = I,

I
—
(=2}

I, = Zmz(xf +27) = 2(2) + 1(8) + 4(1)
T Zmiyizi = —2(=1) = 1(0) = 4(0) =2 = L,

L.=Y mi(a} +y7) = 2(2) + 1(4) + 4(2) = 16

Therefore
12 6 —6
I = 6 16 2
-6 2 16

Given angular velocity can be expressed as



We know that, in the matrix form, one can write

ng [xx [xy Ixz Wy
Ly | = Le Ly Iy Wy
Lz Izz ]zy ]zz Wy
Thus, for this case
L, 12 6 -6 3 0
L, | = 6 16 2 -2 |1 =1 -6
L, -6 2 16 4 42
or A X
L =-6j+42k

. Obtain the moment of inertia tensor of a thin uniform rod of length [, and mass M,
assuming that the origin of the coordinate system is at the center of mass of the rod.
Soln: We assume that the rod is lying in the zy plane, making an angle 6 with respect
to the z axis, as shown in the figure below

Because the rod lies in the xy plane with z = 0, therefore, all its off-diagonal compo-
nents involving 2z coordinate will be zero. Nonzero components are

Lo = [ dm + %) = [ dmy?

I

wy = /dm(:v2 +2%) = /dmx2

I, = /dm(m2 + %)

I, = —/dma:y

m
T

We define a linear density A = %, so that dm = A\dr, x = rcosf, and y = rsinf. Note



that here r varies from —[/2 to /2, while 6 is constant. Therefore,

I, = \sin® 9/ 2dr——sm 0
1
!
2
yy—)\cos 0/ 2dr— cos?
2
]ZZ:/\/ 2ar = "
1 12

. L mi*
I, = —AcosOsind r dr:—ﬁsmﬁcosé

N~

So that , .
ml sin? 6 1 sinfcosf 0
I = 12 sm@cos@ ml cos?d 0

0 0 mi?

12

. Obtain the moment of inertia tensor of a thin uniform ring of radius R, and mass M,
with the origin of the coordinate system placed at the center of the ring, and the ring
lying in the zy plane.

Soln: Consider a ririg of mass m and radius R, as shown

Let us compute I, for this
I.= /dm(x2 + %)

Mass is distributed uniformly on the ring, therefore, one can define a linear mass
density A

M

- 21R
Mass dm of a infinitesimal segment of ring which subtends angle df on the center is
dm = ARdf = %d@. This element is on a circle of radius R, therefore, 22 + y? = R?.
Thus

M M R?

R2d6 =

I, = dd = M R?
o 2m /0




Let us calculate other elements
L, = /dm(y2 + 2%)

Ring is in the xy plane, so z = 0, and using plane polar coordinates y = Rsin#, so

that o s o )
M T M " M

I, = i / sin? 0df = i / (1 — cos20)df = R

2w 0 4mr 0 2

Similarly, we can show

M R?
= Ima:
2

All the off-diagonal elements in this case are zero, for example

Iyy =

L, = —/dm:cy = —2% /(Rcos 0)(Rsin6)df
m

M 2 2
= — i / sin 20d0 = 0
A Jo

I,. = I,, = 0 trivially, because everywhere on the ring z = 0. Thus, the inertia tensor
of a uniform ring of mass M and radius R lying in the zy plane, with its center treated
as origin

Mo
_ MR?
I=( o M 0
0 0 MR?

Because the inertia tensor is diagonal, therefore, x, y, and z axes are its principal axes.

. Obtain the moment of inertia tensor of a thin uniform disk of radius R, and mass M,
with the origin of the coordinate system placed at the center of the disk, and the disk
lying in the zy plane.

Soln: Consider a uniform circular disk of mass M and radius R, as shown

A disk can be divided into a large number of rings with radii 0 < p < R

Because mass M is distributed uniformly, we can define a surface mass density (mass

5



per unit area) o
M
TR?
Therefore, mass dm of the ring of radius p, and width dp is

2M
dm = o2mpdp = ﬁpdp
Assuming that the disk lies in the zy plane, with origin at its center, so that 22+1? = p?

oM [
L.= /dm(x2 ) =5 | Pdp
0

_ M (R _ MR
CR2\4) 2

Other diagonal elements, keeping in mind that z = 0, on the disk

I, = /dm(az2 +2%) = /dmx2

Now we consider a area element located at (p, #) as shown

o
A<Dpfﬂ
dS=p dp df

So that M
dm = opdpd = — pdpdf
TR?

Given that © = pcosf, we have

M R 2m MRQ
Ly = [ dma® = —; ? cos® 0df) =
vy / mx e /p:o/ezop coS 1

Similarly we can prove I, = I, = MTR2, and all off-diagonal elements are zero, so that
the inertia tensor is diagonal
ME 00
_ MR?
I = 0 1 0
0 0 MR?

2

Thus the chosen coordinate axes are also the principal axis of the disk.

. Obtain the moment of inertia tensor of a uniform solid sphere of radius R, and mass
M, with the origin of the coordinate system placed at the center of the sphere. Note
that this problem can be done by dividing the sphere into a large number of infinites-
imally thin disks.

Soln: Because of high symmetry, any three mutually perpendicular axes passing

6



through the center will be its principle axes, and moment of inertia about any of
those axes will be the same. Let us calculate the moment of inertia about one such

axis

Axis

We divide the sphere into a large number of disks of thickness dz, and integrate their

contribution

Moment of inertia of the the disk shown, with respect to the axis

1
dl = —dmr?
2

dm is the mass of the given disk, given by

So that, using 7> = R? — 22, we have

dm = pdV = %WR?’ nride = 4—R3r2dx,
3M 3M
dl = @TZLCZI’ = @(Rz — 1’2)2dl'

On integrating over x € [—R, R], we obtain the required moment of inertia

I

So that its inertia tensor is

3M R 3M (R
= @ _R(R2 — 1'2)2611' = 4_R3 ; (R2 — 1’2)2dl'
3M (R
= — R* — 2R%2% 4+ 2Y)dx
4R3 J, ( )
3M 2R® RS 3M [8R? 2
= (RP - L )y =" [/ | =ZMR?
4R3( 3 +5) 4R3<15> 5
2M R? 0 O
= o M
0 0 2M R?
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8. Obtain the moment of inertia tensor of a uniform hollow sphere of radius R, and

mass M, with the origin of the coordinate system placed at the center of the sphere.
Note that this problem can be done by dividing the sphere into a large number of
infinitesimally thin rings.
Soln: For a spherical shell, all three Cartesian directions are the same, therefore, it
will have only one unique value of moment of inertia, and all off-diagonal elements will
be zero. Its moment of inertia can be calculated by dividing the spherical shell into a
large number of infinitesimally thin rings as shown

For the shell we define a surface mass density o

B M
7= 47 R?

If the mass of each ring is dm, its moment of inertia dI about the axis will be
dI = dmr?.

Because, area of each ring is dA = 2nrdx , we have dm = o2nrdx = %rdm, so that

axis

Assuming that the radius R shown in the figure makes an angle 6 from the axis, and
the ring width dz subtends angle df on the center, we obtain

dr = Rdf
r = Rsinf
So that MR [T MR 4 9
I= / sin® 0dh = X — = ~MR?
2 0 2 3 3

8



9. Consider an asymmetric rigid body with principal moments of inertia Iy # I, # I3.
Assuming that it is initially rotating about the principle axis €;, with angular velocity
w1, without any external torque. Suddenly, an external torque is applied to it for a
brief time. Using the Euler equations show that

(a)
(b)

If I; is the smallest or the largest of Iy, I, I3, the rotation of the rigid body will
continue about the €; axis, in a stable manner

Otherwise, if the value of I; is intermediate compared to I, and I3, then after the
application of the external torque, the body will spin out of control.

Soln: Consider a totally asymmetric rigid body with I; # I, # I3 on which
no external torque is applied (N = 0). Assume that initially it is rotating with a
constant angular velocity is in the 1-direction w = w;€;. Then it is perturbed by
an external agency for a short period, at the end of which it has small components
of w in the other two directions also

W = wi€1 + we€s + wses,

with wy, w3 < wy. Euler equations immediately after the perturbation ends

Ilwl - WQW?)(IQ - Ig) =0 (].)
[2@2 — w1w3(13 — [1> =0 (2)
]3&)3 - w1w2(]1 - 12) =0 (3)

We can neglect the second term of the first equation, because wows ~ 0, leading
to
L, =0 = w; = constant.

Keeping this in mind, we differentiate Eq. 3, w.r.t. ¢, to obtain
IQ(.ZJQ — wlw:),(]g — [1) =0
Using the value of w3 from Eq. 4, we obtain

I — L) (L — L)w}
C-&2+(1 3) (11 2)w1w2:0
L1

Or
(I)g -+ A(UQ = O, (4)

L —I3) (1~ Io)w?
where A = L=flhi-lwy
Lls

(I, — I3)([; — I)w?

A=
LI

Similarly, by taking time derivative of Eq. 4, and then eliminating w, term using
Eq. (3), we obtain identical equation for ws

W3 + AW?, =0. (5)



Consider two possibilities: Case I I; > I > I3 or I} < Iy < I5: here clearly
A > 0, therefore Egs. (5) and (6) denote simple harmonic motion, leading to
bound oscillatory solutions for wy and w3 of the form e*"VA  This means motion
about principal axis 1 is stable, if [; is either smallest or the largest moment of
inertia.

Case II: Iy > I} > I3 or I3 > I; > I5: here clearly A < 0, therefore Egs. (5) and
(6) denote exponential type motion, leading to unbound solutions for wy and ws of
the form e*"V4. This means that the values of wy and w; will grow exponentially
with time after motion about principal axis 1 is perturbed. Thus, motion about
the principal axis corresponding to intermediate moment of inertia is unstable.
To summarize the torque free rotation of a perfectly asymmetric rigid body: (a)
Rotation about the principal axes corresponding to max/min moment of inertia
is stable, (b) Rotation about the principal axis corresponding to intermediate
moment of inertia is unstable.

10. Consider a rigid body with cylindrical symmetry so that its moments of inertia with
respect to the principle axes are Iy = I, I, = I3 = [, . If this body is rotating about a
general axis without any external torque, write down its Euler’s equations, and solve
them.

Soln: Euler’s equations for a rigid body are
L, — w2w3(12 - ]3) =T
Thwy — W1W3(]3 - —71) = T2

Tsws — W1W2([1 - [2) = T3

Here no external torque is acting on the body, therefore, 7y = 7, = 73 = 0, and using
the given values I =1, I, =13 =1,

Iy =0 (6)
Ing—wlwg(IL—I):() (7)
[J_CE.):} — wlwg([ — [J_) =0 (8)

Eqn. (6) can be integrated immediately to yield
w; = ws( a constant)

Next, we differentiate Eq.(7) and (8) to obtain

IJ_CJQ—wagg(IJ_—I):O (9)
IJ_Q.}?, — wswg(l — IJ_) =0 (10)
Eliminating w3 from Eq. (9), and w, from Eq. (10), using Eqs. (8) and (7), respectively,
we obtain
I—1,)%W?
Gy + & j) Sy =0
Iy
. I—1,)%2
by LTI
Iy

10



11.

Thus both the frequencies ws and w3 execute simple harmonic oscillations of frequency

y= ’(I Lws | Onpe possible solution to these equations is

wo(t) = Asinyt
ws(t) = Acost.

This, as explained in the lectures, corresponds to a precession of the angular velocity
vector w around wq, by frequency 7.

In the lectures we proved the following result about the angular momentum of a rigid
body of mass M
L=Rx(MVy,)+ Y mr,x i,

above V., is the velocity of the center of mass, R its location, while r} and r} are
positions and velocities, respectively of the i-th particle of the rigid body w.r.t. to its
center of mass. Using this equation show that

(a)
Lz = I()w + M(R X ch)za

where [ is the moment of inertia of the body about z-axis passing through the
center of mass of the body.
Soln: It is given

L=Rx(MVe,)+ Y mr; x i,

therefore,
L,=MRXVu,),+ Zmi(rg X 1),

if p’; is the vector which is perpendicular to the axis of rotation (z axis), and
connects it to the i-th particle (see the figure), then

(rf X 1). = (pi X p))--

Center
of mass

But p) = w x pl, therefore,
(r; x r;)z = (p; X p;)z = p;Qw

11



leading to
L.=M®Rx V). + (> mip)w
= MR x V). + Iow

where Iy = ). m;p,? is the moment of inertia about the z axis passing through
the CM of the body.

kinetic energy of the rigid body also splits in similar two terms, and can be written
as

1 1
K= -Iw>+ =-MV?
g o+ oM Ve

Soln: Kinetic energy of a rigid body which is both rotating and translating can
be written as

1
K = 527}%1}3 (11)

But, if V., is the velocity of the center of mass of the rigid body, then we can
write

But, from the figure above it is obvious that
r; = a; + pj,

where a; is a constant vector for the i-th particle, which connects the origin to
that point on z axis where vector p; begins. Therefore,

= i
Putting this in Eq. (12), we obtain
Using Eq. (13) in (11), we obtain
1 = /\2

! St + ! S m+ %(Z i) - Ve

Using the fact that p; = plw, and )", m;p; = 0, we obtain
K = l(z mip;)w? + 1<Z m;) V2
D) i 1 9 - v}V em
1 1
= —Igw? + =MV?
g 0 M em
12



(¢) work-energy theorem holds for the rotational motion

% 1 2 1 2
. Tode = élowb - 5]0(4}(”

where 7y is the torque acting on the rigid body, while subscript a and b denote
initial and final quantities, respectively.

Soln: If a torque 7 is acting on a rigid body of moment of inertia I, then
its angular acceleration a can be computed from

T:I()Oé

If in time dt, the body rotates by angle df, then by multiplying the equation
above by df = wdt, on both sides, we obtain

dw dw d (1
= [y— = [yw—dt = — | = Iw?
Tdo 0 wdt ow 7 dt o (2 ow ) dt

b b
1 d 1 1
— /a Tdf = élo/a E(uﬂ)dt = 5[0&)? — 5[0&)27

12. Prove the following results about the rotational kinetic energy K,,; = % > m,;r’? of a
general rigid body

(a) X
Krot = §w -L

Soln: We have {
Kot = 5 Z mzr?

But
./ /
I, =w Xr],

therefore

13



L2 L2 L2

el R I

2 21, 213

where L; and I; are the angular momentum component, and moment of inertia,
respectively, with respect to the i-th principal axis.

Krot =

Soln: If we align our coordinate axes with the principal axes of the rigid body,
the inertia tensor becomes diagonal, and we obtain

L= Ilwli + IQ(,UQj + [30031; = Lli + LQj + LSIAQ (14)
with this

W = w1i+ng+w3f<
Li: Ly  Ls;

Sl b e 1
]11+ ]23+ T (15)

Using Eqgs (14) and (15), in the expression of part (a), we have

1 (Li; Ly; Lzn s : -
S22 Bk -(L L Lk,)
2([114‘[2.14‘[3 ) 11+ Lo + L3

_ Ly Ly I3

~ a1, 21, o

Krot =

14



