
EP 222: Classical Mechanics
Tutorial Sheet 5: Solution

This tutorial sheet contains problems related to angular momentum, inertia tensor, and
rigid body motion.

1. Three equal point masses m are located at (a, 0, 0), (0, a, 2a), and (0, 2a, a). Find the
principal moments of inertia about the origin and a set of principal axes.
Soln: By using the formulas for various components of inertia tensor, one can easily
calculate it to be

I =

 10ma2 0 0
0 6ma2 −4ma2
0 −4ma2 6ma2


on setting up the characteristic polynomial

det(I − λI) = 0,

leads to eigenvalues λ = 2ma2, 10ma2, 10ma2, last two of which are degenerate. One

can show that the corresponding eigenvectors are 1√
2

 0
1
1

,

 1
0
0

, and 1√
2

 0
1
−1


leading to principle axes directions û1 = 1√

2

(
ĵ + k̂

)
, û2 = î, and û3 = 1√

2

(
ĵ − k̂

)
2. Obtain the inertia tensor of a system, consisting of four identical particles of mass m

each, arranged on the vertices of a square of sides of length 2a, with the coordinates
of the four particles given by (±a,±a, 0).
Soln: Consider four identical particles of mass m, arranged on the vertices of a square,
with sides of length 2a, as shown

X

Y

(a,a)

(a,−a)

O

(−a,a)

(−a,−a)

m m

mm

Noting that for all particles, the z coordinate is zero (zi = 0), we obtain

Ixx =
4∑
i=1

mi(y
2
i + z2i ) = 4ma2

Iyy =
4∑
i=1

mi(x
2
i + z2i ) = 4ma2

Izz =
4∑
i=1

mi(x
2
i + y2i ) = 8ma2
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Now

Ixy = −
4∑
i=1

mixiyi = −m
(
a2 − a2 − a2 + a2

)
= 0 = Iyx

Ixz = −
4∑
i=1

mixizi = −m(0 + 0 + 0 + 0) = 0 = Izx

Iyz = −
4∑
i=1

miyizi = −m(0 + 0 + 0 + 0) = 0 = Izy

Thus, tensor of inertia is diagonal here, due to the high symmetry of the problem

I =

 4ma2 0 0
0 4ma2 0
0 0 8ma2


3. A rigid body consists of three point masses of 2 kg, 1 kg, and 4 kg, connected by

massless rods. These masses are located at coordinates (1, -1,1), (2,0,2), and (-1,1,0)
in meters, respectively. Compute the inertia tensor of this system. What is the angular
momentum vector of this body, if it is rotating with an angular veloctiy ω = 3̂i−2ĵ+4k̂?
Soln: We have

Ixx =
∑
i

mi(y
2
i + z2i ) = 2(1 + 1) + 1(0 + 4) + 4(1 + 0) = 12

Ixy = −
∑
i

mixiyi = −2(−1)− 1(0)− 4(−1) = 6 = Iyx

Ixz = −
∑
i

mixizi = −2(1)− 1(4)− 4(0) = −6 = Izx

Iyy =
∑
i

mi(x
2
i + z2i ) = 2(2) + 1(8) + 4(1) = 16

Iyz = −
∑
i

miyizi = −2(−1)− 1(0)− 4(0) = 2 = Izy

Izz =
∑
i

mi(x
2
i + y2i ) = 2(2) + 1(4) + 4(2) = 16

Therefore

I =

 12 6 −6
6 16 2
−6 2 16


Given angular velocity can be expressed as

ω =

 3
−2
4


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We know that, in the matrix form, one can write Lx
Ly
Lz

 =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ωx
ωy
ωz


Thus, for this case Lx

Ly
Lz

 =

 12 6 −6
6 16 2
−6 2 16

 3
−2
4

 =

 0
−6
42


or

L = −6ĵ+ 42k̂

4. Obtain the moment of inertia tensor of a thin uniform rod of length l, and mass M ,
assuming that the origin of the coordinate system is at the center of mass of the rod.
Soln: We assume that the rod is lying in the xy plane, making an angle θ with respect
to the x axis, as shown in the figure below

dr

Y

X

O

P

r

θ

Because the rod lies in the xy plane with z = 0, therefore, all its off-diagonal compo-
nents involving z coordinate will be zero. Nonzero components are

Ixx =

∫
dm(y2 + z2) =

∫
dmy2

Iyy =

∫
dm(x2 + z2) =

∫
dmx2

Izz =

∫
dm(x2 + y2)

Ixy = −
∫
dmxy

We define a linear density λ = m
l
, so that dm = λdr, x = r cos θ, and y = r sin θ. Note
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that here r varies from −l/2 to l/2, while θ is constant. Therefore,

Ixx = λ sin2 θ

∫ l
2

− l
2

r2dr =
ml2

12
sin2 θ

Iyy = λ cos2 θ

∫ l
2

− l
2

r2dr =
ml2

12
cos2 θ

Izz = λ

∫ l
2

− l
2

r2dr =
ml2

12

Ixy = −λ cos θ sin θ
∫ l

2

− l
2

r2dr = −ml
2

12
sin θ cos θ

So that

I =

 ml2

12
sin2 θ −ml2

12
sin θ cos θ 0

−ml2

12
sin θ cos θ ml2

12
cos2 θ 0

0 0 ml2

12


5. Obtain the moment of inertia tensor of a thin uniform ring of radius R, and mass M ,

with the origin of the coordinate system placed at the center of the ring, and the ring
lying in the xy plane.
Soln: Consider a ring of mass m and radius R, as shown

dθ

dθR

Y

X

R

θ

Let us compute Izz for this

Izz =

∫
dm(x2 + y2)

Mass is distributed uniformly on the ring, therefore, one can define a linear mass
density λ

λ =
M

2πR

Mass dm of a infinitesimal segment of ring which subtends angle dθ on the center is
dm = λRdθ = M

2π
dθ. This element is on a circle of radius R, therefore, x2 + y2 = R2.

Thus

Izz =
M

2π

∫
R2dθ =

MR2

2π

∫ 2π

0

dθ =MR2
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Let us calculate other elements

Ixx =

∫
dm(y2 + z2)

Ring is in the xy plane, so z = 0, and using plane polar coordinates y = R sin θ, so
that

Ixx =
MR2

2π

∫ 2π

0

sin2 θdθ =
MR2

4π

∫ 2π

0

(1− cos 2θ)dθ =
MR2

2

Similarly, we can show

Iyy =
MR2

2
= Ixx

All the off-diagonal elements in this case are zero, for example

Ixy = −
∫
dmxy = −M

2π

∫
(R cos θ)(R sin θ)dθ

= −MR2

4π

∫ 2π

0

sin 2θdθ = 0

Ixz = Iyz = 0 trivially, because everywhere on the ring z = 0. Thus, the inertia tensor
of a uniform ring of massM and radius R lying in the xy plane, with its center treated
as origin

I =

 MR2

2
0 0

0 MR2

2
0

0 0 MR2

 .

Because the inertia tensor is diagonal, therefore, x, y, and z axes are its principal axes.

6. Obtain the moment of inertia tensor of a thin uniform disk of radius R, and mass M ,
with the origin of the coordinate system placed at the center of the disk, and the disk
lying in the xy plane.
Soln: Consider a uniform circular disk of mass M and radius R, as shown

A disk can be divided into a large number of rings with radii 0 ≤ ρ ≤ R

Because mass M is distributed uniformly, we can define a surface mass density (mass
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per unit area) σ

σ =
M

πR2

Therefore, mass dm of the ring of radius ρ, and width dρ is

dm = σ2πρdρ =
2M

R2
ρdρ

Assuming that the disk lies in the xy plane, with origin at its center, so that x2+y2 = ρ2

Izz =

∫
dm(x2 + y2) =

2M

R2

∫ R

0

ρ3dρ =
2M

R2

(
R4

4

)
=
MR2

2

Other diagonal elements, keeping in mind that z = 0, on the disk

Iyy =

∫
dm(x2 + z2) =

∫
dmx2

Now we consider a area element located at (ρ, θ) as shown

So that
dm = σρdρdθ =

M

πR2
ρdρdθ

Given that x = ρ cos θ, we have

Iyy =

∫
dmx2 =

M

πR2

∫ R

ρ=0

∫ 2π

θ=0

ρ3 cos2 θdθ =
MR2

4

Similarly we can prove Ixx = Iyy =
MR2

4
, and all off-diagonal elements are zero, so that

the inertia tensor is diagonal

I =

 MR2

4
0 0

0 MR2

4
0

0 0 MR2

2

 .

Thus the chosen coordinate axes are also the principal axis of the disk.

7. Obtain the moment of inertia tensor of a uniform solid sphere of radius R, and mass
M , with the origin of the coordinate system placed at the center of the sphere. Note
that this problem can be done by dividing the sphere into a large number of infinites-
imally thin disks.
Soln: Because of high symmetry, any three mutually perpendicular axes passing
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through the center will be its principle axes, and moment of inertia about any of
those axes will be the same. Let us calculate the moment of inertia about one such
axis

We divide the sphere into a large number of disks of thickness dx, and integrate their

contribution

Moment of inertia of the the disk shown, with respect to the axis

dI =
1

2
dmr2

dm is the mass of the given disk, given by

dm = ρdV =
M

4
3
πR3

πr2dx =
3M

4R3
r2dx,

So that, using r2 = R2 − x2, we have

dI =
3M

8R3
r4dx =

3M

8R3
(R2 − x2)2dx

On integrating over x ∈ [−R,R], we obtain the required moment of inertia

I =
3M

8R3

∫ R

−R
(R2 − x2)2dx =

3M

4R3

∫ R

0

(R2 − x2)2dx

=
3M

4R3

∫ R

0

(R4 − 2R2x2 + x4)dx

=
3M

4R3
(R5 − 2R5

3
+
R5

5
) =

3M

4R3

(
8R3

15

)
=

2

5
MR2

So that its inertia tensor is

I =

 2MR2

5
0 0

0 2MR2

5
0

0 0 2MR2

5

 .
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8. Obtain the moment of inertia tensor of a uniform hollow sphere of radius R, and
mass M , with the origin of the coordinate system placed at the center of the sphere.
Note that this problem can be done by dividing the sphere into a large number of
infinitesimally thin rings.
Soln: For a spherical shell, all three Cartesian directions are the same, therefore, it
will have only one unique value of moment of inertia, and all off-diagonal elements will
be zero. Its moment of inertia can be calculated by dividing the spherical shell into a
large number of infinitesimally thin rings as shown

For the shell we define a surface mass density σ

σ =
M

4πR2

If the mass of each ring is dm, its moment of inertia dI about the axis will be

dI = dmr2.

Because, area of each ring is dA = 2πrdx , we have dm = σ2πrdx = M
2R2 rdx, so that

dθ

dθ

dx

x

O
axis

θ

R

R

r

Assuming that the radius R shown in the figure makes an angle θ from the axis, and
the ring width dx subtends angle dθ on the center, we obtain

dx = Rdθ

r = R sin θ

So that
I =

MR2

2

∫ π

0

sin3 θdθ =
MR2

2
× 4

3
=

2

3
MR2
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9. Consider an asymmetric rigid body with principal moments of inertia I1 6= I2 6= I3.
Assuming that it is initially rotating about the principle axis ê1, with angular velocity
ω1, without any external torque. Suddenly, an external torque is applied to it for a
brief time. Using the Euler equations show that

(a) If I1 is the smallest or the largest of I1, I2, I3, the rotation of the rigid body will
continue about the ê1 axis, in a stable manner

(b) Otherwise, if the value of I1 is intermediate compared to I2 and I3, then after the
application of the external torque, the body will spin out of control.

Soln: Consider a totally asymmetric rigid body with I1 6= I2 6= I3 on which
no external torque is applied (N = 0). Assume that initially it is rotating with a
constant angular velocity is in the 1-direction ω = ω1ê1. Then it is perturbed by
an external agency for a short period, at the end of which it has small components
of ω in the other two directions also

ω = ω1ê1 + ω2ê2 + ω3ê3,

with ω2, ω3 � ω1. Euler equations immediately after the perturbation ends

I1ω̇1 − ω2ω3(I2 − I3) = 0 (1)
I2ω̇2 − ω1ω3(I3 − I1) = 0 (2)
I3ω̇3 − ω1ω2(I1 − I2) = 0 (3)

We can neglect the second term of the first equation, because ω2ω3 ≈ 0, leading
to

I1ω̇1 = 0 =⇒ ω1 = constant.

Keeping this in mind, we differentiate Eq. 3, w.r.t. t, to obtain

I2ω̈2 − ω1ω̇3(I3 − I1) = 0

Using the value of ω̇3 from Eq. 4, we obtain

ω̈2 +
(I1 − I3)(I1 − I2)ω2

1

I2I3
ω2 = 0

Or
ω̈2 + Aω2 = 0, (4)

where A =
(I1−I3)(I1−I2)ω2

1

I2I3

A =
(I1 − I3)(I1 − I2)ω2

1

I2I3

Similarly, by taking time derivative of Eq. 4, and then eliminating ω̇2 term using
Eq. (3), we obtain identical equation for ω3

ω̈3 + Aω3 = 0. (5)
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Consider two possibilities: Case I I1 > I2 > I3 or I1 < I2 < I3: here clearly
A > 0, therefore Eqs. (5) and (6) denote simple harmonic motion, leading to
bound oscillatory solutions for ω2 and ω3 of the form e±it

√
A. This means motion

about principal axis 1 is stable, if I1 is either smallest or the largest moment of
inertia.
Case II: I2 > I1 > I3 or I3 > I1 > I2: here clearly A < 0, therefore Eqs. (5) and
(6) denote exponential type motion, leading to unbound solutions for ω2 and ω3 of
the form e±t

√
A. This means that the values of ω2 and ω3 will grow exponentially

with time after motion about principal axis 1 is perturbed. Thus, motion about
the principal axis corresponding to intermediate moment of inertia is unstable.
To summarize the torque free rotation of a perfectly asymmetric rigid body: (a)
Rotation about the principal axes corresponding to max/min moment of inertia
is stable, (b) Rotation about the principal axis corresponding to intermediate
moment of inertia is unstable.

10. Consider a rigid body with cylindrical symmetry so that its moments of inertia with
respect to the principle axes are I1 = I, I2 = I3 = I⊥. If this body is rotating about a
general axis without any external torque, write down its Euler’s equations, and solve
them.
Soln: Euler’s equations for a rigid body are

I1ω̇1 − ω2ω3(I2 − I3) = τ1

I2ω̇2 − ω1ω3(I3 − I1) = τ2

I3ω̇3 − ω1ω2(I1 − I2) = τ3

Here no external torque is acting on the body, therefore, τ1 = τ2 = τ3 = 0, and using
the given values I1 = I, I2 = I3 = I⊥,

Iω̇1 = 0 (6)
I⊥ω̇2 − ω1ω3(I⊥ − I) = 0 (7)
I⊥ω̇3 − ω1ω2(I − I⊥) = 0 (8)

Eqn. (6) can be integrated immediately to yield

ω1 = ωs( a constant)

Next, we differentiate Eq.(7) and (8) to obtain

I⊥ω̈2 − ωsω̇3(I⊥ − I) = 0 (9)
I⊥ω̈3 − ωsω̇2(I − I⊥) = 0 (10)

Eliminating ω̇3 from Eq. (9), and ω̇2 from Eq. (10), using Eqs. (8) and (7), respectively,
we obtain

ω̈2 +
(I − I⊥)2ω2

s

I2⊥
ω2 = 0

ω̈3 +
(I − I⊥)2ω2

s

I2⊥
ω3 = 0
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Thus both the frequencies ω2 and ω3 execute simple harmonic oscillations of frequency
γ =

∣∣∣ (I−I⊥)ωs

I⊥

∣∣∣. One possible solution to these equations is

ω2(t) = A sin γt

ω3(t) = A cos γt.

This, as explained in the lectures, corresponds to a precession of the angular velocity
vector ω around ω1, by frequency γ.

11. In the lectures we proved the following result about the angular momentum of a rigid
body of mass M

L = R× (MVcm) +
∑
i

mir
′
i × ṙ′i,

above Vcm is the velocity of the center of mass, R its location, while r′i and ṙ′i are
positions and velocities, respectively of the i-th particle of the rigid body w.r.t. to its
center of mass. Using this equation show that

(a)
Lz = I0ω +M(R×Vcm)z,

where I0 is the moment of inertia of the body about z-axis passing through the
center of mass of the body.
Soln: It is given

L = R× (MVcm) +
∑
i

mir
′
i × ṙ′i,

therefore,
Lz =M(R×Vcm)z +

∑
i

mi(r
′
i × ṙ′i)z,

if ρ′
i is the vector which is perpendicular to the axis of rotation (z axis), and

connects it to the i-th particle (see the figure), then

(r′i × ṙ′i)z = (ρ′i × ρ̇′i)z.

But ρ̇′i = ω × ρ′i, therefore,

(r′i × ṙ′i)z = (ρ′i × ρ̇′i)z = ρ
′2
i ω
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leading to

Lz =M(R×Vcm)z + (
∑
i

miρ
′2
i )ω

=M(R×Vcm)z + I0ω

where I0 =
∑

imiρ
′2
i is the moment of inertia about the z axis passing through

the CM of the body.

(b) kinetic energy of the rigid body also splits in similar two terms, and can be written
as

K =
1

2
I0ω

2 +
1

2
MV 2

cm

Soln: Kinetic energy of a rigid body which is both rotating and translating can
be written as

K =
1

2

∑
i

miv
2
i . (11)

But, if Vcm is the velocity of the center of mass of the rigid body, then we can
write

vi = Vcm + ṙ′i. (12)

But, from the figure above it is obvious that

r′i = ai + ρ
′
i,

where ai is a constant vector for the i-th particle, which connects the origin to
that point on z axis where vector ρi begins. Therefore,

ṙ′i = ρ̇
′
i

Putting this in Eq. (12), we obtain

vi = Vcm + ρ̇′i. (13)

Using Eq. (13) in (11), we obtain

K =
1

2

∑
i

mi(Vcm + ρ̇′i)
2

=
1

2

∑
i

miρ̇
′
i
2 +

1

2

∑
i

miV
2
cm +

1

2
(
∑
i

miρ̇
′
i) ·Vcm

Using the fact that ρ̇′i = ρ′iω, and
∑

imiρ̇
′
i = 0, we obtain

K =
1

2
(
∑
i

miρ
′2
i )ω

2 +
1

2
(
∑
i

mi)V
2
cm

=
1

2
I0ω

2 +
1

2
MV 2

cm
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(c) work-energy theorem holds for the rotational motion∫ θb

θa

τ0dθ =
1

2
I0ω

2
b −

1

2
I0ω

2
b ,

where τ0 is the torque acting on the rigid body, while subscript a and b denote
initial and final quantities, respectively.

Soln: If a torque τ is acting on a rigid body of moment of inertia I0, then
its angular acceleration α can be computed from

τ = I0α

If in time dt, the body rotates by angle dθ, then by multiplying the equation
above by dθ = ωdt, on both sides, we obtain

τdθ = I0
dω

dt
ωdt = I0ω

dω

dt
dt =

d

dt

(
1

2
I0ω

2

)
dt

=⇒
∫ b

a

τdθ =
1

2
I0

∫ b

a

d

dt
(ω2)dt =

1

2
I0ω

2
b −

1

2
I0ω

2
a,

12. Prove the following results about the rotational kinetic energy Krot =
1
2

∑
imiṙ

′2
i of a

general rigid body

(a)

Krot =
1

2
ω · L

Soln: We have
Krot =

1

2

∑
i

miṙ
′
i
2

But
ṙ′i = ω × r′i,

therefore

Krot =
1

2

∑
i

miṙ
′
i · (ω × r′i)

=
1

2
ω ·
∑
i

(r′i ×miṙ
′
i)

=
1

2
ω ·
∑
i

(r′i × p′i)

=
1

2
ω · L
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(b)

Krot =
L2
1

2I1
+
L2
2

2I2
+
L2
3

2I3
,

where Li and Ii are the angular momentum component, and moment of inertia,
respectively, with respect to the i-th principal axis.

Soln: If we align our coordinate axes with the principal axes of the rigid body,
the inertia tensor becomes diagonal, and we obtain

L = I1ω1î+ I2ω2ĵ+ I3ω3k̂ = L1î+ L2ĵ+ L3k̂, (14)

with this

ω = ω1î+ ω2ĵ+ ω3k̂

=
L1

I1
î+

L2

I2
ĵ+

L3

I3
k̂ (15)

Using Eqs (14) and (15), in the expression of part (a), we have

Krot =
1

2

(
L1

I1
î+

L2

I2
ĵ+

L3

I3
k̂

)
·
(
L1î+ L2ĵ+ L3k̂,

)
=
L2
1

2I1
+
L2
2

2I2
+
L2
3

2I3
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