
EP 222: Classical Mechanics
Tutorial Sheet 6: Solution

This tutorial sheet contains problems related to small oscillations of coupled harmonic
oscillators, their eigenfrequencies, and normal modes.

1. Consider a double pendulum composed of two identical pendula of massless rods of
length l, and masses m, attached along the vertical direction. Obtain the frequencies
of the normal modes and the normal coordinates for small oscillations of this system.
Soln:

Using the point of suspension of the upper pendulum as the origin of the coordinate
system, the kinetic energy and the potential energies of the system can be written in
terms of two generalized coordinates θ1 and θ2 as (refer to classnotes for the derivation)

T =
1

2
(2m)l2θ̇21 +

1

2
ml2θ̇22 +ml2 cos(θ1 − θ2)θ̇1θ̇2

V = −2mgl cos θ1 −mgl cos θ2

The equilibrium positions of both the pendula correspond to θ(0)1 = θ
(0)
2 = 0

◦ , so the
displacements from the equilibrium positions are η1 = θ1; η2 = θ2, so that in terms of
them

T = ml2η̇21 +
1

2
ml2η̇22 +ml2 cos(η1 − η2)η̇1η̇2

V = −2mgl cos η1 −mgl cos η2.

For small oscillations, i.e., small values of η1 and η2, up to quadratic terms we have

cos η1 ≈ 1− η21
2

cos η2 ≈ 1− η22
2

cos(η1 − η2) ≈ 1,
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so we have

T ≈ ml2η̇21 +
1

2
ml2η̇22 +ml2η̇1η̇2

V ≈ −3mgl +mglη21 +
1

2
mglη22.

Ignoring the constant term in the potential energy, we have the matrix representation
of the T and V operators

T =

(
2ml2 ml2

ml2 ml2

)
V =

(
2mgl

mgl

)
,

with the Lagrangian being L = 1
2
η̇TT η̇ − 1

2
ηTV η, where η̇ =

(
η̇1
η̇2

)
and η =

(
η1
η2

)
.

Frequencies of the normal modes are obtained by solving the characteristic polynomial

det(V − ω2T ) = 0

=⇒
∣∣∣∣ 2ml(g − lω2) −ml2ω2

−ml2ω2 ml(g − lω2)

∣∣∣∣ = 0

=⇒ 2(g − ω2l)2 − l2ω4 = 0

=⇒ (g
√
2− ω2l

√
2− ω2l)(g

√
2− ω2l

√
2 + ω2l) = 0

=⇒ ω4l2 − 4ω2gl + 2g2 = 0

=⇒ ω2
1,2 =

4gl ±
√

16g2l2 − 8g2l2

2l2

=⇒ ω2
1,2 =

g

l
(2±

√
2)

ω1,2 =

√
g

l

(
2±
√
2
)1/2

.

For obtaining the normal coordinates, we need to solve the secular equation

(V − ω2
jT )aj = 0

=⇒
(

2ml(g − lω2
j ) −ml2ω2

j

−ml2ω2
j ml(g − lω2

j )

)(
a1j
a2j

)
= 0

=⇒ 2(g − lω2
j )a1j − lω2

ja2j = 0

−lω2
ja1j + (g − lω2

j )a2j = 0

For j = 1, i.e. ω2
1 = g

l
(2 +

√
2), the equations are

2(−1−
√
2)ga11 − (2 +

√
2)ga21 = 0

−(2 +
√
2)ga11 + (−1−

√
2)ga21 = 0

=⇒ a11 = −
a21√
2
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In this mode, at a given point in time the two pendula will oscillate in opposite
directions, with the displacement of the upper pendulum will be less than that of the
lower one. For j = 2, with ω2

2 = g
l
(2−

√
2), we will obtain

2(−1 +
√
2)ga11 − (2−

√
2)ga21 = 0

−(2−
√
2)ga11 + (−1 +

√
2)ga21 = 0

=⇒ a11 =
a21√
2

In this mode, at a given point in time the two pendula will oscillate in the same
direction, and the displacement of the upper pendulum will again be less than that of
the lower one.

2. Two particles move in one dimension at the junction of three springs, as shown in the
figure. The springs all have unstretched lengths equal to a, and the force constants
and masses are shown. Find their eigenfrequencies, and normal modes.
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Soln: This problem has only two generalized coordinates x1 and x2, the coordinates
of the two masses starting from left. Let X1 be the coordinate of the left end of the
left most spring, and X2 be the coordinate of the right end of the right-most spring
(note X1 and X2) are fixed. Then it is obvious that

T =
1

2
mẋ21 +

1

2
mẋ22

V =
1

2
k(x1 −X1 − a)2 +

1

2
(3k)(x2 − x1 − a)2 +

1

2
k(X2 − x2 − a)2

If η1 and η2 are deviations from the equilibrium position of the two masses, then clearly

x1 = X1 + a+ η1

x2 = X1 + 2a+ η2 = X2 − a+ η2,

we have

T =
1

2
mη̇21 +

1

2
mη̇22

=⇒ T =

(
m 0
0 m

)
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and

V =
1

2
kη21 +

1

2
(3k)(η2 − η1)2 +

1

2
kη22

=
1

2

(
4kη21 − 6kη1η2 + 4kη22

)
=⇒ V =

(
4k −3k
−3k 4k

)
Frequencies of the normal mode are obtained by solving

det(V − ω2T ) = 0

=⇒
∣∣∣∣ 4k − ω2m −3k
−3k 4k − ω2m

∣∣∣∣ = 0

=⇒ (4k − ω2m)2 − 9k2 = 0

=⇒ ω2m = 4k ± 3k

=⇒ ω1,2 =

√
k

m
or

√
7k

m

The secular equation for normal coordinates is(
4k − ω2

jm −3k
−3k 4k − ω2

jm

)(
a1j
a2j

)
= 0

For j = 1 (ω1 =
√

k
m
) (

3k −3k
−3k 3k

)(
a1j
a2j

)
= 0

=⇒ a1j = a2j

For j = 2 (ω2 =
√

7k
m
) (

−3k −3k
−3k −3k

)(
a1j
a2j

)
= 0

=⇒ a1j = −a2j

which means both the masses are displaced by the same amount, but in the opposite
directions. As a result, the middle spring is now stretched and compressed, leading to
a larger frequency.

3. Two mass points of equal mass m are connected to each other and to fixed points by
three equal springs of force constant k, as shown in the diagram. The equilibrium
length of each sprint is a. Each mass point has charge +q, and they repel each other
according to Coulomb law. Set up the secular equation for the eigenfrequencies.
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Soln: This problem also has two generalized coordinates x1 and x2, the coordinates
of the two masses starting from left. So kinetic energy operator will be same as in the
previous problem.

T =
1

2
mη̇21 +

1

2
mη̇22

=⇒ T =

(
m 0
0 m

)
As far as potential energy is concerned, besides the contribution from the three springs,
we will have one extra contribution due to the Coulomb repulsion between the two
charges (we have used cgs units for electrostatic potential energy)

V =
1

2
kη21 +

1

2
k(η2 − η1)2 +

1

2
kη22 +

q2

|x1 − x2|

=
1

2

(
2kη21 − 2kη1η2 + 2kη22

)
+

q2

|η2 − η1 − a|

Because |η2 − η1|/a � 1, we obtain by expanding the last term in the powers of
|η2 − η1|/a, and retaining up to quadratic terms

V =
1

2

(
2kη21 − 2kη1η2 + 2kη22

)
+
q2

a

(
1− |η2 − η1|

a

)−1

=
1

2

(
2kη21 − 2kη1η2 + 2kη22

)
+
q2

a
+
q2|η2 − η1|

a2
+
q2(η2 − η1)2

a3
+ · · ·

Noting that constant terms and the terms which are linear in displacement coordinates
do not contribute to the potential energy matrix, we have

V =
1

2

{
(2k +

2q2

a3
)η21 − 2(k +

2q2

a3
)η1η2 + (2k +

2q2

a3
)η22

}
=⇒ V =

(
2(k + q2

a3
) −(k + 2q2

a3
)

−(k + 2q2

a3
) 2(k + q2

a3
)

)
.
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So we note that the presence of charges on the two masses have effectively modified
the force constants of the springs. The problem can be easily solved by setting up the
secular equation det(V − ω2T ) = 0 .

4. A plane triatomic molecule consists of equal masses m at vertices of an equilateral
triangle of sides a. Assume the molecule is held together by forces that are harmonic
for small oscillations and that the force constants are identical and equal to k. Allow
motion only in the plane of the molecule.

(a) Set up the secular equation for the eigenfrequencies of the system.
Soln:

This problem clearly as six degrees of freedom, e.g., (x, y) coordinates of each of
the three particles. If we number the masses as shown, and place the origin of
the coordinate system at the leftmost mass, then their equilibrium coordinates
are (0, 0), (a, 0), (a/2, a

√
3/2). For the motion confined to the xy plane, their

coordinates at a given instance of time can be written as (η1, η2), (a+η3, η4), and
(a/2 + η5, a

√
3/2 + η6), and . Clearly, the kinetic energy is

T =
1

2
m(η̇21 + η̇22 + η̇23 + η̇24 + η̇25 + η̇26)

=⇒ T =


m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m


The potential energy can be written as

V =
1

2
k
(
(r12 − a)2 + (r13 − a)2 + (r23 − a)2

)
,
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where

r12 =
√

(η3 + a− η1)2 + (η4 − η2)2

r23 =

√
(η5 − η3 − a/2)2 + (η6 + a

√
3/2− η4)2

r13 =

√
(η5 + a/2− η1)2 + (η6 + a

√
3/2− η2)2

These expressions for the distances are complicated, and involve square roots.
Best is to expand them geometrically, to the first order in ηi coordinates. That
gives us

r12 ≈ a+ η3 − n1

r23 ≈ a− 1

2
(η5 − η3) +

√
3

2
(η6 − η4)

r13 ≈ a+
1

2
(η5 − η1) +

√
3

2
(η6 − η2)

These expressions will lead to potential energy which is correct to quadratic terms
in ηis. With this

V =
1

2
k{(η3− η1)2 + (

1

2
(η5− η1) +

√
3

2
(η6− η2))2 + (

√
3

2
(η6− η4)−

1

2
(η5− η3))2}.

Which leads to

V = k



5/4
√
3/4 −1 0 −1/4 −

√
3/4√

3/4 3/4 0 0 −
√
3/4 −3/4

−1 0 5/4 −
√
3/4 −1/4

√
3/4

0 0 −
√
3/4 3/4

√
3/4 −3/4

−1/4 −
√
3/4 −1/4

√
3/4 1/2 0

−
√
3/4 −3/4

√
3/4 −3/4 0 3/2


(b) Identify the zero frequency modes of this system.

Soln: Calculations for this case are tedious, but solving det(V − ω2T ) = 0,
leads to three zero frequency modes corresponding to: (a) rigid motion in the x
direction, (b) rigid motion in the y direction, and (c) rigid rotation of the sys-
tem about its center of mass (centroid). In all three cases the springs are left
unstretched/uncompressed leading to zero frequencies. These modes are shown
below
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