EP 222: Classical Mechanics
Tutorial Sheet 7: Solution

This tutorial sheet contains problems related to Hamiltonian formalism of classical me-
chanics.

1. Consider a double pendulum composed of two identical pendula of massless rods of
length [, and masses m, attached along the vertical direction. Obtain the Hamiltonian
of this system, and derive Hamilton’s equations of motion.

Soln:

We showed in the lectures that using the point of suspension of the upper pendulum as
the origin of the coordinate system, the Lagrangian of a double pendulum consisting
of equal masses m, and equal length (/) pendula is given by

. 1 . .
L= ml20% + §ml29§ + ml2 COS(@l — 02)&192
+ 2mgl cos 01 + mgl cos 05.

Using the definition of the generalized momenta, we have

oL
Pr=6,
oL
D2 8(927

leading to
P = 2ml291 + ml? cos(f — 92)92
pa = ml%0y + mi? cos(fy — 92)é1-

We can solve for 91 and 92 in terms of p; and ps, to obtain

_ D= cos(ty — 05) (1)
P mi2(1 + sin(6; — 6,))
2Dy — 6, — 0
, P2 — D1 COS( 1 2) (2)

T mi2(1 +sin?(6;, — 62))



Hamiltonian is defined as the Legendre transform of the Lagrangian
H= p191 +p292 - L,

where the generalized velocities 91 and 92 are expressed in terms of generalized mo-
menta p; and po, using Eqs (1) and (2) above

H=p p1 — pacos(fy — 0) +p 2py — p1 cos(01 — 6)
\mi2(1 + sin?(6; — 6y)) 2\ mi?(1 + sin(6;, — 6,))

—mi? P1— P2 005(91 - 92) ? _ lmlz 2p2 — Py COS(91 - 92) ?
ml2(1 + sin®(0, — 6)) mi2(1 + sin*(0; — 6y))

2

p1 — pacos(fy — 6) 2py — py cos(fy — 02)
mi2(1 + sin®(6; — 6y)) ) \mi2(1 + sin*(6; — 6,))
— 2mgl cos 01 — mgl cos 6.

— ml?cos(0; — 65) (

This, after some tedious algebra, can be simplified to

1 p? )
0T B, - ) {5 12 = P12 cos(th = 0)

— 2mgl cos 01 — mgl cos 0.

Question: Is the Hamiltonian same as total energy for this system, i.e., H =T + V?
Answer: We studied in the lectures that it is the case if the following two conditions are
followed: (a) Potential energy is independent of generalized velocity, which is the case
here, and (b) kinetic energy is a homogeneous function of degree 2 of the generalized
velocities, which in this case means that g—iél + g—éég = 27T, which can be verified to
be true here. Hence, the given Hamiltonian is the total energy of the system.

. The Lagrangian for a system can be written as

L= ai?+ b% Fociy+ fytid + gy — k2 + o2,

where a, b, ¢, f, g, and k are constants. What is the Hamiltonian? What quantities
are conserved?
Soln: Hamiltonian will be

H =p,2 +pyy+p.2 — L,

where
_aL
Pe =5z
_8L
py_ay
_8L
P== 5z



Thus

pe = 2ai + cy + fy*z (3)
b
py=_tcttyg (4)

Here, Egs. (4) and (5) give separate expressions for & in terms of momenta, so it is
better to first compute the Hamiltonian in terms of velocities, and then eliminate them
to get the momenta. With this we have

H = #(2a% + cy + fy?2) + y(; +ci +g) + 2(fyid)
—ai? —bL — iy — fytii — gy + ky/a? + 42
x
= ai® + ciy + fyPii + k22 + 2
= (2ad + ¢y + fy?2) — ai® + ky/22 + 12
— (L, — () 4 kP

fy? fy
:pgg@z—g§g+kvﬁ+y2

Above, we used Egs. (3) and (5) to eliminate the velocities. This Hamiltonian cannot
be total energy because it is easy to verify that the velocity dependent part of it is not
a second degree homogeneous function of velocities. However, Hamiltonian is not an
explicit function of time, therefore, it is conserved. Furthermore, it does not depend
on z, i.e., z is a cyclic coordinate, therefore, p, will also be conserved.

. A dynamical system has the Lagrangian
i3
a+ bg?
where a, b, k1, and k5 are constants. Find the equations of motion in the Hamiltonian

formalism.

Soln: As before

L= Cﬁ + + le% + k2q1Go,

H = qip1 + ¢ap2 — L,

with
p1 = Do = 2q1 + kago
q1
oL 2q9 )
=—=—+k
D2 EX) ot bq% 241

These can be solved to obtain ¢;/ds in terms of py/py

. A{=2p1 + ka(a + bgi)pa}

" b)) o
o {(a+ bg?)(kapr — 2p2)}
© = T R0+ b)) — 4} 0



But the velocity dependent part of the Lagrangian is a homogeneous function of degree
2 in the velocities, there is a part which is totally independent of the velocity. Thus,
Hamiltonian will be total energy

-2

. q ..
H = Q% + rzbq% + kaqg1g2 — kl(ﬁ-
With this
{201+ oa + bad)pa}” 1 {(a+bg})(kapr — 2ps)}

{k3(a+bg3) — 4} (a+0a7)  {k3(a+bg}) — 4}
y {=2p1 + ko(a +bg?)p2}  {(a+bgi)(kapr — 2p2)} T
{k3(a +bg?) — 4} {k3(a +bg?) — 4} !

pi (a+ bq?)p3 ka(a + bgi)pipe

TU-RBar) | (-Blatbd)  [-Batbd)

Hamilton’s equations of motion are

._6H
qi_@pi
. 0H
pi__aqz"

Thus, we have

_ 8_H _2py — ka(a + bCI%)pz

SO {4-K(a+bat)}

iy = OH _ (a+ bqi)(2p2 — kap1)
Op2 {4 ki(a+bgi)}

0

These equations are the same as Eqs. (6) and (7) above. The other two Hamilton’s
equations are

. 0H
1= _5_(]1
_ 2bk3q1pi _ 2bq1p5
{4 - k3(a+bg})} {4 —Hki(a+bad)}
_ 2bkiqu(a + bai)ps 2k2bq1p1p2

{4 —K2(a+0bg2)}°  {4—Kki(a+bg?)}
2k3b bq?

50(a + Q1)€71p1]922 2%,
{4 —k3(a+bgi)}

and, because ¢, is a cyclic coordinate, we have

OH

)y = ——— =0.
P2 0
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4. A Hamiltonian of one degree of freedom has the form

2 b k 2
g—a — bgpe ™ + anze’“t((x +be™ ) + —,

H =

where a, b, a, and k are constants.

(a)

Find a Lagrangian corresponding to this Hamiltonian
Soln: Here we have the reverse problem, compared to earlier ones. We have to
obtain the Lagrangian from the Hamiltonian, using the formula

where p will be eliminated using the Hamilton’s equation

OH p
-:_:__b —at
i=%, =, b
= p=a(g+bge™™) 9)

Using Eq. (9) in (8), we obtain the Lagrangian in terms of ¢ and ¢

L = ga(g + bge™ ") — @4 —|—2baqe_at) + baq(q + bge " )e
— %aqge“t(oz + be™ ) — %q?
= %q? — %2 + bache_”t — abTa(f —ot
so that IF
L=1Ly+ o

with Ly = “q % and F(q,t) = ( abg®e _at) Note that Lg is the Lagriangian
for a one- dlmensional simple Harmonic oscillator of mass a, and force constant k.

Is it possible to find an equivalent Lagrangian that is not explicitly dependent on
time?

Soln: Above we showed that the original Lagrangian L differs from a time inde-
pendent Lagrangian Lg by a total time derivative. Which means that L and L
are equivalent.

If you are able to solve part (b), what is the Hamiltonian corresponding the new
Lagrangian, and what is the relationship between the two Hamiltonians?
Soln: It is obvious that the Hamiltonian Hy corresponding to Ly will also be

that for 1D SHO P2
Hy=—+ kQ
2a



where new canonical variables are P = ¢ and () = ¢, so that the original Hamil-
tonian is

b
H = Hy — bgpe™ ™ + anQe_at(a + be ).

On using the fact that p = a(¢ + bge™*) = a(P + bQe~*'), we obtain
H = Hy — abQ(P + bQe " )e " + bEaQQe_at(oz + be )
= Hy — abQPe  — %abQQ%_Qat + baTaQ%_"‘t
(a) The Lagrangian for a system of one degree of freedom can be written as
L= % (q’2 sin? wt + gqw sin 2wt + q2w2) )

What is the corresponding Hamiltonian? Is it conserved?
Soln: We have

oL . . 9 1 )
p = — = mqsin” wt + —mqw sin 2wt
0q 2
. (p— 3mqwsin 2wt)
e q = )
m sin® wt
So that
H=pq—L
p(p — %mqw sin2wt)  m(p— %mqw sin 2wt)?
B m sin® wt 2 m? sin* wt
1 .
— =mgw sin 2wt 1
— @qw (p 2 q 5 ) sin 2wt — —mw?¢>
2 msin® wt 2

which leads to a tedious time-dependent expression

2 1 1
H=2- 2 T 54
2m \sin“wt  2sin® wt

1 1 1
— —pqw sin 2wt —
o1 (sin2 wt  2sin? wt>

1 9 9 . 9 1 1
= —mw“q” sin” 2wt — - — -1,
2 2sin“wt  4sin” wt

which is not conserved because of its explicit time dependence.

(b) Introduce a new coordinate defined by

Q) = gsinwt.



Find the Lagrangian in terms of the new coordinate and the corresponding Hamil-
tonian. Is H conserved?
Soln: We make the substitutions in the Lagrangian

q= ©
sin wt
. Q —wQcotwt
q= - )
sin wt

and after some tedious algebra we obtain the Lagrangian in terms of new variables

1 1

L= EmQ2 + §mw2Q2.
Clearly, the Hamiltonian in new coordinates (with P = g—g = mQ) will be
P o1,
Tom 2™

which depends on canonical variables P and (), both of which are explicitly time
dependent. Therefore, Hamiltonian will not be conserved.



