EP 222: Classical Mechanics
Tutorial Sheet 8: Solution

This tutorial sheet contains problems related to canonical transformations, Poisson brack-
ets etc.

1. One of the attempts at combining two sets of Hamilton’s equations into one tries to
take ¢ and p as forming a complex quantity. Show directly from Hamilton’s equations
of motion that for a system of one degree of freedom the transformation

Q = q+ip, P=Q"

is not canonical if the Hamiltonian is left unaltered. Can you find another set of
coordinates " and P’ that are related to ), P by a change of scale only, and that are
canonical?

Soln: A given transformation is canonical if the Hamilton’s equations are satisfied in

the transformed coordinate system. Therefore, let us evaluate 2 Q and 24

OH OH 8q OH 8p

20 ~ 900 " p o0
OH OH aq OH 0p

9P~ 9q 0P  apoP

Using the fact that canonical variables (g, p) satisfy Hamilton’s equations, we obtain

O _ 00 op
oQ ~ Toq " aq
OH dq . 0Op

op = Pap Tigp
Given the fact that

1
—é(PJrQ)
1
— —(P—
L(P-0Q),
we have
9¢ _9¢ _1
8Q_8P_2

O _ _Op _ i
oQ  oP 2

Substituting these above, we obtain
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OH _ 1. i, i o ip
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Thus, Hamiltonian H expressed in terms of () and P does not satisfy the Hamilton’s

equations, making the transformation non-canonical. Let us scale these variables to
define Q' = A\Q, and P’ = uP, so that

OH 0HOQ P i
0Q  0QoQ 2% 2
OH O0HOP iQ i .
an_a_Pan_Z_mQ‘

>,

If we choose A and p such that Ay = %, the Hamilton’s equations will be satisfied in
variables Q" and P’ , and the transformation will become canonical. One choice which

will achieve that is
V2 2

. Show that the transformation for a system of one degree of freedom,

Q) =qgcosa — psina

P =gsina+pcosa,
satisfies the symplectic condition for any value of the parameter o. Find a generating
function for the transformation. What is the physical significance of the transformation

for a = 07 For v = 7/2? Does your generating function work for both the cases?
Soln: We will check the symplectic conditions using the order of variables

(1)
<:(§)

9Q  9Q
M= 5 5
dq  p
[ cosa —sina
~\ sina  cosa
Now we check the two symplectic conditions

MTIM — cosa  sina 0 1 cosa —sinao
—sina  cosa -1 0 sina  cosa

with this

[ sinacosa — sin o cos a sin? o + cos?
—sin®a — cos? a SIn ¢ cos & — Sin o cos &
0 1
P— pr— J
-1 0



Thus, symplectic condition 1 is satisfied. Similarly, it is easy to verify that the second
symplectic condition MJM?T = J is also satisfied for all values of a, making the
transformation canonical. Let us try to find a generating function of the first type,
i.e., Fi(q, Q) for the transformation. The governing equations for F are

_on
oF,

P _ -
oQ

Using the transformation equations, we can express both p and P in terms of ¢ and
Q, as follows

p=qcota— () csca

P =gsina+ pcosa = gsina + (gcot v — @ csc ) cos «v

cos®

- +sina) — Q cotaw = gesca — @ cot a.

sin v

Now we integrate the generating equations
OF;
=1L =p=gqgcota— Qcsca
Jdq

2
— I = %cota—Qqcsca—i—f(Q).

Using this in the second generating equation for Fi, %—13 = — P, we obtain
q
—qgcsco + % = —qcsca+ Qcota
d,
- % = @ cot
Q2
= f(Q) = —cotaq,

2
leading to the final expression for generating function
1
Fi(q,Q) = 3 (¢° + Q) cot e — Qg csc av.

Let us consider a« = 0, which is nothing but the identity transformation, and our
F} is indeterminate for that case. This is understandable because we know that this
transformation is generated by Fy, = ¢P. We would have got the correct limiting
behavior for this case if we had instead used Fy generating function. For o = 7/2, we
have the interchange transformation, and our generating function becomes F} = —qQ,
which is the correct result.

3. Show directly that the transformation
1.
Q:log(—smp), P =gqcotp
q

3



is canonical.
Soln: We need to just check one of the symplectic conditions, with

9Q  9Q
M=\ 5t ob
dq op
_ —é cotp
~ \cotp —gesc?p )
Now we check the symplectic condition
1 1
MTTM — — cot p2 0 1 4 cot p2
cotp —qcsctp -1 0 cotp —qcsctp
_ —é cot p cotp —qesc?p
~ \cotp —gcsc?p é —cotp
cotp _ cotp csc?p — cot? p 0 1
—(csc?p —cot?p) —qesc?peotp + gesc? peot p -1 0

Because the symplectic condition is satisfied, the transformation is canonical.

Show directly that for a system of one degree of freedom the transformation

2 2
Q:arctan%, p=2C <1+ ]; 2)
p 2 a’q

is canonical, where « is an arbitrary constant of suitable dimensions.
Soln: We will just check one of the symplectic conditions, with

9Q  9Q
M=<3_$ 3_}%>
dq op

ap _ aq
_ ( p2talq? p2talq? )
p .
aq o

Let us check the symplectic condition

L aq 0 1 ap _ aq
MTJM _ p?+a2q? P2 talq? PP ralq?
__a¢__ p 1 0 o P
P12 a q o
ap

. Ptz 4 aq p/a
o %9 P ___ap aq

p2+a2q2 a p2+a2q2 p2+oz2q2

a?pg—a’pq  p2+aq? 0 1
p2_2‘_a2322 PPta2q? _ —J
_ p’+a’q Pg—pq -1 0 ’

p2+a2q2 p2+a2q2

Thus the transformation is canonical.
The transformation between two sets of coordinates are

Q = log(1 + ¢"/* cos p),
P =2(1 4 ¢*? cosp)q*/?sin p.
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(a) Show directly from these transformation equations that ), P are canonical vari-

ables if ¢ and p are.

Soln: We will just check one of the symplectic conditions, with

9Q  9Q
M=\ 5 o
dq op

cos p

2¢/2(1+¢1/2 cos p)

. ql/2 sin p
(1+q7/% cos p)

- (142¢'/2 cos p) sinp
772

so that

_ cosp
2q1/2(l+ql/2 cos p)
_qY2sinp
1—1—(]1/2 cos p)

_cosp
x 2¢172(1+41/2 cosp) cosp)

MTJIM =

1-1—2q1/2 cos p) sin p
q/2

_ cosp
2(11/2(1+q1/2 cos p)
_ ¢*/%sinp
1—|—q1/2 cosp)

2¢'/2(cos p + ¢/

(142¢*/2 cos p) sin p
472

2¢'/2(cos p + q'/% cos 2p)
. ql/2 sin p
{Tta72 cosp)
2¢'/%(cos p + ¢'/% cos 2p)

(1+2ql/2 cos p) sinp
7172

2¢'/2(cos p 4 ¢'/% cos 2p)

(142¢*/2 cos p) sinp
/2
q
X cosp

" 2¢12(1+4¢ /2 cos p)

ql/2 sinp

(1+¢172 cos p)

cos 2p)

2¢'/%(cos p + ¢'/% cos 2p)

0 1
-1 0

Upon multiplying the two matrices on the right hand side, we obtain the desired

roa (0 1Y _
MJM_(_10 =J

result

Show that the function that generates this transformation is

Soln: Given the fact that F3 =
terms of p and (), as shown below
Q =log(1 + ¢*/?)cosp

— ¢ =(e? —1)*sec’p

— P =2(1+¢"?cosp)g/*sinp = 2{1—|— (eQ —

— P =2e%(e? — 1) tanp.

—(e®? — 1)?tanp.

Using the first generating equation, we have

OF,
dp

—q

—(e? —1)?sec’p
—(e? = 1)*tanp + f(Q),

1) secp cosp} (e9 —

F3(p, @), we must first express the ¢ and P in

1)secpsinp



where f(Q) is only a function of Q). We substitute this in the second generating

equation
o _ p
oQ
d
— —2(e? — 1)e“tanp + % = —2e9(e? — 1) tanp
d
— % =0 = f(Q) = constant, which can be ignored
Thus

Fy(p, @) = —(e? — 1) tanp.
6. Prove directly that the transformation

Q1=CI17 Py = p1 — 2po,
Q2 = p2, Py=—2q — ¢

is canonical and find a generating function.
Soln: We will check the symplectic conditions using the order of variables

q1
q2
b1
P2

@1
Q2

with this

01 01 901 91
8, 58 5 B8
on, ob 9P 9P
o, 5B oF OB
dq1  Og2  Op1  Op2

1 0 0 0
o o0 0 1
| 0o 0 1 -2

—2 -1 0 0



so that

10 0 -2 0 0 10 1 0 0 0

. |00 0 -1 0 0 01 0 0 0 1
MEJM=1"0 9 1 o0 -1 0 00 0 0 1 -2
01 -2 0 0 -1 00 —2 -1 0 0

10 0 -2 0 0 1 -2 0 10
oo 0o -1 2 10 0 | | 0o 0o 01
“loo 1 o0 -1 0 0 0 |~ | -1 0 00
01 —2 0 0 0 0 —1 0 —-10 0

=J

Thus, the symplectic condition is satisfied, making the transformation canonical. In
order to obtain the generating function, given the structure of transformation equa-
tions, it is best to choose a function F' = F'(p1,ps, Q1, P, t). Note this generating
function does not belong to one of the four standard types. The total generating
function in this case will be F' = F'(py, pa, Q1, P2, t) — Q2 P2 + q1p1 + q2p2. Now, the
condition for canonical transformation is, as usual
. . : : dF
piGi +p2ge — H = PiQ1 + PQs — K—i-g
= PiQ1 + P2Qs — K — P2Qs — Qo
+p1G1 + D1 + P2ge + @2p2
oF" . OF' OF’ oF" . OF'

+ 8p1p1+ P2+ anQl-i- o, P, + En

which simplifies to

OF . [OF . [OF OF' : OF'
(3])1 +q1) p1+<8p2 +CJ2) p2+(8Q1 ) Q1+(ap2 QQ) P2+<H+ 5 K) =0,

leading to equations

“w=-5_ 0
w=—3 2)
P55 ®)
@=or (@)
K—H+ a;; y (5)

We have to cast the canonical transformation equations such that we can easily inte-



grate the generating function equations. The desired equations are

G = (6)
Q2 = p2 (7)
q2 = 201 — P, (8)
P1 =P1 — 2}72 (9)
Using Egs. (1) and (6)
oF’
q1 = — O =

= = —-Qip1 + f(Q1,p2, ).
Using this in Eqgs (2) and (8)

0
—f =201+ P,
(9]92
= [ =20Q1p2 + Pops + 9(Q1, P2)

_— F/ = —lel + 2Q1p2 + P2p2 + g(Q17 P2)

Using this with Egs. (3) and (9)

dg
D1+ 2pp + — = —py + 2
p1+ pz—f—an P11+ 2p2
dg
= —— =0
01
— g = h(P)

— F''= —Qup1 + 2Qip2 + Paps + h(P2).

Using this in Eqgs. (4) and (7), we have

dh

p2+ i, P2

— dn_ 0 = h = 0(by choice)
AP, ’

leading to the final expression for the generating function
F' = =Qip1 +2Q1p2 + Paps.

7. (a) Using the fundamental Poisson brackets find the values of o and § for which the
equations

Q) = q“ cos Bp, P = ¢%sin Bp



represent a canonical transformation.
Soln: The fundamental Poisson brackets should remain invariant under a canon-
ical transformation, i.e.,

[Q> P]q,p =1
0QOP 9QIP
d¢ dp Op 0q

—> (aq™ " cos Bp)(Bq™ cos Bp) — (—Bq* sin Bp) (g™ ' sin fp) = 1
— afg**(sin® Bp + cos® Bp) = 1
afg* ! =

This equation is satisfied if 2 —1 =0 = a=1/2and f =1/a =2,
(b) For what values of @ and 8 do these equations represent an extended canonical

transformation? Find a generating function of the F3 form for the transformation.
Soln: When o = 1/2 and f is taken to be an arbitrary constant, we have

[va]q,p = gv

which represents an extended canonical transformation for any value of 5 # 2.
Now, our transformation equations are

Q = ¢"/* cos Bp
P = ¢"?sin Bp

For extended canonical transformation for a system with one degree of freedom,
we have

: dF
)\(Z?CJ—H):PQ—KJr%.

When F = F3(p, Q,t) + Apg, we obtain

. . A . OFy . OF; . O0F;3
Apig—H)=PQ— K+ X\ A
(pg — H) = PQ — K + \pq + Apq + P T30 B
which leads to
0F3
Y 10
oy M (10)
0F3
> _ _p 11
50 (1)
OF3
K=)MH+ — 12
We first express P and ¢ in terms of p and @), as below
g = Q”sec’ fp (13)
P = QsecfBpsin fp = Q tan Bp (14)



Combining Egs. (10) and (13), we have

0F;

— = \Q%sec? Bp
Ip

=¢f§:%@%mmm+f@w

Using this in combination with Eqs. (11) and (14), we have

Q%Q tan Op + % = () tan Bp.
d, A
= % =(1- %)Qtanﬁp
A
— Q) = 51~ 2)Q*tan pp,

leading to the final expression for the generating function
1
F3 = §Q2 tan Bp

. Show by the use of Poisson brackets that for a one-dimensional harmonic oscillator,
there is a constant of motion u defined as

k
u(q,p,t) = In(p + imwq) — iwt, w=1/—.
m

Soln: We know that a quantity u is a constant of motion provided

du ou
— =|u,H| + — =0.
a = I
For the 1D simple harmonic oscillator, the Hamiltonian is
2
p 1 2 2
H=—+—
o + 2mw q,

so that

) D (uDHouoH
’ ~\9q dp 9p Oq

ot
1mw P 1 9 .
— ) (=) - | ———— ) g —iw
p+imwqg) m P+ 1mwq

iwp — mw?q .
= W
P+ 1mwq

iwp — mw?q — iwp + mwiq

P+ tmwq
= ()’

hence, u is a constant of motion.
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9. A system of two degrees of freedom is described by the Hamiltonian
H = qip1 — q2p2 — aq; + ba3,

where a and b are constants. Show that

_ P11 — aq
q2

F and Iy = qiq2

are constants of the motion.

Soln: Because both F; and F; have no explicit dependence on time (% = % =0),
therefore, using the general result above, they will be constants of motion, if their
Poisson brackets with the Hamiltonian vanish, i.e.,

dFy

2R H =
dt [Fy, H] =0
dF,

22 R, H] =0.
dt [F2, H] =0

Let us calculate these Poisson brackets

2
oroH o0F 8H>

Fi,H| = —

[ ' ] ; (a%’ Op; Op; 0q;

S gy oL
~{Cafmn + P ) -
0

o~ 2a) ~ 0

and

[FQaH]

2
i=

Z (8F2 OH 0F, 8H)

1 0q; Op; a Op; 0q;
@@+ ¢1(—q2) —0—0}

'O/—’H

Thus both F; and F5 are constants of motion.
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