PH 422: Quantum Mechanics 11
Tutorial Sheet 1: Solution

This tutorial sheet contains problems related to the addition of angular momenta for
quantum mechanical particles.

1. Verify the values of the following C-G coeflicients

() (1001j5) = \/ 75
Soln: In this CGC, j; = j, jo = 1omy = j, my = 0, j = 7 and m = j, which
makes it of the form (j1j2717 — ji1|j17247). CGCs of this form can be computed
by using the normalization condition, coupled with the recursion relations. We
use the normalization condition

(J17jlilig) =1
resolution of identity in the uncoupled respresentation Z |71mima) (jlmyma| = 1

mi,ma2

using this in the first equation, we obtain Z (ilmima|jljj)* =1

mi,m2
> Gty — 151552 + D (GIma0]5155) + > (jlma1]5155)? = 1
mi mi mi

Above first term will go to zero because m = my; + mo = j requires m; = j + 1.
Thus, we have

(7150|5155)2 + (j1j — 11]155)* = 1. (1)

Using recursion relation with the upper sign

Vi Fm)(G£m+1) (jrjomume | jijejm £ 1)
= /(1 £m1)(r Fru + 1) (e F Ima | j1jajm) (2)
+v/(J2 £ ma) (J2 T ma + 1) (rjamama F 1| jijagm)

and m =7, j1 =7, Jjo =1, my = j, and my = 1, we obtain
V2i(i1j = 11]j1j5) = —v2(j1j0]j1jj)
1
(J1j = 11[j155) = ——=(j150[j157)
e

Using this in Eq. 1, we obtain the desired result, with the positive choice for the
phase
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150[51j5) = [ ——
(j150[5155) T



ol e i(25—1)
(b) (i24015215) = \/ Groms
Soln: This CGC is also of the form (j17271J — ji|j1J247), with j1 = j, jo = 2,
my = j, me =0, 7 = j, and m = j. Again, we start out with the normalization
condition, which combined with m = m; + ms conservation, leads to

S (j2mimalj2j5)? = 1

mi,m2
(7,25 — 2,2/5249)° + (4,2, — 1, 1]5245)* + (j, 2, 4,05245)* = 1 (3)

Again, using the recursion relations of Eq. 2 with the upper sign, and j; = j,
m=7j, jo =2, m; = j, and my = 1, we obtain

V25525 — 11]5247) = —v6(;j250|52;5)
(727 — 11]52j7) = —\/§<J2]0’JQJJ>- (4)

On using the same recursion relation with j; =7, m = j, 5o =2, m; = j— 1, and
msy = 2, we obtain

V2(2) = 1)(525 — 22152j5) = —2(j2j — 11[52j5)
(427 —2252j5) = — (725 —11]5255)

Using Eq. 4 we obtain

(427 — 22|52j7) = \/ML_UU?J'OU?Jﬂ ()

Using Eqgs. 4 and 5, in Eq. 3, we obtain

2j — 1

(72501245)° (1 +2 ML_I)) 1
(2j+3)(j+1)} _,
325 —1)

= (j250]52j5)* {

j(25 —1)
(27 +3)(G+1)

— (j2405275) = \/
2. Compute the following C-G coefficients

(a) (1, 1/2,m — 1/2,1/2]j1, 1/2, 5y + 1/2,m) = &, /2502
Soln: (i) We first start to evaluate the CGC (j1,1/2,m — 1/2,1/2|511/2, 71 +

1/2,m), using the recursion relation

\/(j +m)(j —m+1)(j1, j2, m1, malj1, jo, j,m — 1) =
V(1 —m1) (1 + ma + D), Jo, ma + 1,malji, Jo, J, m)
+\/(j2 —ma)(Jo + ma + 1)(j1, j2, M1, ma + 1|71, jo2, 5, m)




In this relation when we substitute j; = j1, m; = m—%, Jo = %,mz = %,j = jl—i-%,
and m — m + 1, the second term on the RHS of the recursion relation vanishes
leading to

. 1 . 1 o1 1 1 1 1
(]1+§+m+1)(.]1+§_m_1+1)<.]1)§7m |.]17 7.]1+2 m>

. 1 ) 1., 1 1 1 1 1
= (]1+m_§+1)(]1_m+§)<j17§7 |j17 aj1+2 m+1>

This implies

1 1 1 1 Gi+m+3) 1 1

A ( :
5o Mm— J1, 3 7]1 , M Ji, 5, M
(]1+m+ 2) 2

1 1
|j17 7]1+2 m+1>
(6)
We apply the same recursion relation this time with m — m+2, and my = m+1/2

(or just substitute m — m + 1, in equation above), with rest of the quantum
numbers unchanged, and obtain

(]1, 9 9

1 1 1 1 (i+m+3), 1 1 1
PP ) 7 +5 m+1 N ) o ) 7 +3 m+2 .
U gom !h ity ) = <ﬁ+m+ﬁm2 |ﬁ it )
(7)
Using Eq. 7 on the RHS of 6, we obtain
<,1 1H 1 +1 ) (i+m+3) [(Gi+m+3)
e P - . .
o ry Ty T G D\ G mr )
4 3 1 1 1
X <jl7§7 |jl> 7]1 + = 2 m+2> (8)

Noting the cancellations above in the numerator and the denominator, after we
apply this recursion relation ¢ times, we will have

1 11 1 1 +m+2
<]1’_ m — |j17 7]1+ >: \/<< ! -2)

2, 2 jl—f—m—f—%)
< {j 1 +(2i—1) 1‘, 1,+1 +4)
.7172>m 92 72]172731 27m ).
(9)

This can be continued till the maximum allowed value of ¢ such that m + 4,4, =
1+ 1/2 = e =1+ % — m is reached on the RHS, leading to

<.1 1H 1 +1 - M+m+)< 1_’ 1 +1_+5

oM — m Nz ) 7 ) o/
j1727 J1, 3 7]1 2 (2]1+1) j1727j17 J1, 3 ]1 9 N 9
(10)



Because maximum possible values of all the angular momenta are involved, thus,
it is obvious

1 1 1 1 1

|j17 7]172> ’jla 7j1+27j1+§>
SERTPIE SE (VR O S
]172a]17 Ji, = 7]1 2)]1 9 -
which, when combined with Eq. 10, gives the desired result
o1 1 1 1 1 (ji+m+13)
y oy M — ) 7 + < , M T a1\
We can calculate the magnitude of the CGC (ji,3,m — 3, 5|1, 3,51 — 3,m) by
using the normalization condition
1 1 1 1 11
.4 _ 2y
<.]1727m |.]1727 272>
J1+1/2
1 1 1 1 1 1 11
_ I ] V=1
— Z j1727m ‘.717 7]7 ><]1a27j7m‘.71727 272>
J=j1—1/2
1 1 1 1 . 1 9 1 1 1 1 1 9
— — = — 1
<]1727 |j1727j1 2Jm> +<j1727m |j17 7j1+2 m>
1 1 1 1 1
- <]1a§7m ’]1) a]l 2 m>

o1 1 1 1 1
:j:\/l—<j1,§,m ’]1, 7]1+ ,m)?

2’
(ji—m+3)
(271 +1)

We will fix the sign of this CGC in the next part.

. . . j1Fm+1/2
<]17 1/27 m + 1/27 _1/2|]1, 1/27j1 + 1/27 m> = \/ 3142:]1—_—:1/
Soln: We will first evaluate the CGC (j1,1/2,m+1/2,—1/2|711/2, 51 +1/2,m).
For the purpose, in the original recursion relation (Eq. 2), we use the upper sign,

and set m — m — 1, to obtain the recursion relation

V(i +m)(G —m+1){(j1, ja, m1, malju, j2, j,m) =
V(1 +m1) (G — ma + D)1, J2, ma — 1,malgh, ja, j,m — 1)
+\/(3.2 + m2)(j2 — Mg + 1)(j1,j2,m1,m2 - 1|j1,j2,j,m - 1>

In this, if we use j = j1 +1/2, jo = 1/2, my = m+1/2, my = —1/2, we get

. 1. . 3.,. 1 1 1 1
Jorem s Hoi-me St me 2L -

) 1. . 1., 1 1 1 1
\/(]1+m+§)(]1—m+§)<91,§7m—2 ’]17 7]1+2 m — 1)



or

1 1 1 1 (Gi—-m+1), 1 1 1 1
_ &’ — 1
<]1727m+2 ‘]17 7.71+2 m> (]1_m+%)<]1727m 2 ’jla 7]1+2 m— >
which on setting m — m — 1 yields
1 1 1.1 . 1 (i—m+3) 1 3 1 1
— m——, —=|j, = —m—1) = 27 2
<j1727m 27 2|.]1727.]1+27m > (jl_m+2)<.]1727 2 ’jb 7]1+2 m— >

so that on substituting this in the previous equation, we obtain (after two itera-
tions)

1 1 1 1 (ji—m+2) [(h—m+2)
<]1a§7m+2 |]1, ,]1+ ,my = \/ 2 : 2

2’ (Gi—m+3)\ (i —m+2)
1 3 1 1
= — )
X<]1727m 2 |]17 a]1+2 m >

or after 7 iterations

1 1 1 1 (j1 —m+3)
<j17 §Jm+ 9’ |.]17 7.]1 + 3 9’ m> \/(] (21+1))

—m+
1 21 —1 1 1
X<j17§7m_< Z2 ) ‘]17 7]1+2 m — ’l).
Just, as before, maximum allowed value of ¢ is determined by m — 4,0, = —71 —
% = ez =M+ J1 + %, leading to
1 1 1,1 . 1 (jp—m+13)
<]17§7m+§>_§‘jl7§731+§7m>_ W
< (j 1 . ’ 1 L1 1 ) 1>
J1, 2a Ju, =351, 5 7]1 2 1 9
(i —m+3)
(251 +1)

where we used the fact that (i, %, —j1, — |j1, 201 —|— 5 —J1 — > = 1. Using the
normalization condition (i, %, m+ %, — |j1, 3. M +1 —5> =1, and inserting the
resolution of identity in the coupled representatlon as we d1d in the previous

part, we obtain

1 1 1,1 . 1 (j1+m l)
Zm - __ _ —Zm)\=+ 2
<]1’27 2’ 2|]172’jl 2’ > (2j1+1)



To figure out the signs of the two CGCs, we use the orthogonality condition of
the coupled states

L +1 TRS SPR S,
j1a27.]1 ]172aj1 2a —
1 1 1 1 1 1
— Z 31,27]1—1‘ ,mljt, 5 m17m2><31,2 m1,m2|J1;27j1—§7 m) =0
mi,m2
1 1 1 1 1 . 1
- Z .]17 7m17 |j17 7]1+2 m><]172 mi, 5 |j1727j1_§7 >
1 1 . 1 o1 1 . 1
+Z .]1a 7 |.]1a27.]1+§7m><j17§7 |j172aj1_§a >_0
— 1 1 1‘ 1 +1 \ 1 1 1| 1 . 1 m)
—,m — m
.71727 Jis 5 7]1 2 ]1a2 ]1727]1 27
+<.1 +1 | 1 +1 ><1 +1 |,1, 1
j1727m 2 Ji, 5 7.]1 2 m j1a2am 2a 2]172aj1 2a

m) =0
(11)

Let us use the notations (ji, 3, m — %, %\jl, %,jl + %,m} = x1/y1 and (J1, %,m +
%7 _%Ul, %,]& + %, m) = z3/ys. There is no ambiguity about the signs of z/x,,
both of which have been calculated to be positive. Eq. 11 is

T1y1 + X2y = 0

X2

Y1 = ——Y2
T

This implies that sign of y; will be opposite to that of y5. So if we take y, to be

positive
G 1 +1 1|, 1. 1 ) Ghr+m+ 1)
= —.m _—, — — —_ — —.m) = _—
Y2 j1727 27 2.]1727.]1 27 <2j1+1>
y, will be negative
y 1 1 1| 1 1 ) (j1—m+3)
- y =y M — ) 7 ,m) = — 7Y
Y1 WAl 5 Ji, 5,01 — 2 (2j1+1)

3. Show that the eigenvectors of total angular momentum J, obtained by coupling the
orbital angular momentum (I) and the spin angular momentum (s = 1/2) of an electron
can be written as

1y m—1/2
Ym(0,6) = Y0, 0) = L | TR )
20+ 1 l:':m_i_%}/lm—Fl/Q(e’QS)

Also verify that y{m is an eigenfunction of J? operator, where J = L + S.
Soln: Here we have to couple the eigenfunctions of L? operator, |lm;), and those of

6



spin operator S?, |im,) (with m, = +1) to obtain the coupled states |I3jm), with
j=1+ %, which are eigenfunctions of J? operator. Obviously

1 . 1 1 . 1
’la Eajam> = Z <l7§7ml7m5’l7 §7jam>‘l7§7mlams>
mp,ms
1 1.1 1 1 1 1.1 1 1
=S = g, = = G m|L =y, = L= my,—= =, 4, m)|l, =, my, —~
<727ml72’723]7m>‘727ml72>+z<727ml7 2’727]7m>|727ml7 2)
my my
1 1 1.1 1 11 1 1 1.1 1 1 1
(= m— =, =l = Gl = m — =, =) 4 (I, = R | = S =
Lym=gglbgimllgm=5.5+{5m+3 =5lhgimlgm+s.—3)

CGCQCs required in this equation were computed in the previous problem, and can be
obtained by setting j; = [, and j =1+ % Thus
1 1

1
l,=,7 =\, =, + =
’727]7m> ’727 27m>

I£m+1/2, 1 11 ITm+1/2, 1 1 1
S e e N SR T S0y (12
i byt w1 bymtyy (12)

This is the desired result in the Dirac notation. To express this result in the |x) =
[r)®|o) = |ro), we take the inner product of the equation above with the understanding

1 ; m
(x|, =, j,m) = V™0, ) = W70, ),

2
and
1, 1 / 1 1 /
(Xl 3o d5) = (el o5, %5) = Y7 (6, 6)a/ 5,
Wherea:((l)), ﬁz(?).

With this in Eq. 12, the LHS is

1 . 1 1 im m
<X|l7 §7j7m> - <X|l7 §7lj: §7m> - lj (87¢) - D;ll:‘:l/27 (97¢>

while the RHS becomes
l+m+1 1 11 lFm+ 3 1 1 1
=4+ — 2|, = m— =, = —2(x|l, = - —=
V a1 Mgy T\ gy Xyt gy

1 i,/lim%—%Y}m*l/Q(e,@
= 2—l+1 /[:Fm—f-%}/lm—i_l/Q(e,Cb)

leading to the final result

4 £/l Em+ 2y,
yl]m<97¢> — ll:tl/2,m<97¢> _ 1 m 271 ( (fb)

VAT i m+ Ly (0, 0)
7




To show that yg’m are eigenfunctions of J? operator, we note
J2=(L+8S)*=L*+S*+2L-S.

It is easy to evaluate the action of L? and S on J7™(6, $),because
L*Y"(0, ) = U1+ DR*Y™ (0, ¢)

S*(a/5) = $*(a/).
With this
L2V{™(0,¢) = (L + DRV (0, ¢)
SV (0,0) = LIV (0,0)
To compute the action of L - S operator, we write it as

L-S=L,S,+L,S,+L.S.

B E L, L_
o2\ L, —L, )’
so that

m—1/2

’ JIFm+ 5 (0,0)

d iVE;?EIIL}WPUz )+ JlFm+ 5L ,)
VA +1 \/mL+ Y12 \/mL Ym+1/2

(13)

Using the relations

L.Y™(0,¢) = mhY™(0, )
L:Y™(0,¢) = hy/U(l + 1) — m(m £ 1)Y,"*(0, ),

we obtain for the first (upper) component of the spinor on the RHS of Eq. 13

£\ [IEm Ly A lFm g Ly, g)
1 1 m—1/2 1 1 m—1/2




We use the fact that \/l(l +1) = (m+3)(m—3) = \/(l +m+ 1)l —m+ 1) to sim-

plify
1 . 1. m
i\/l:tm—Ir—LzYm 1/2(9,q§)+\/lq:m+—L,Yl 209, )

1 m—1/2 @/l:Fm—i- 1
=+l m+ 2Y, l—l—m—l— Jl—m+ =)
2 ,/lim+ 2 2

=4m/l+m+ Ym Y2 (] (for upper sign) and — (I + 1) (for lower sign)}

Similarly, we can show for the second (lower) component of the spinor on the RHS of

Eq. 13
1 _ 1
£\ 1Em A S LY T 0.6) —\[1F m 4 S LY (6, 0)

m+1/2

IFm+ Y ®) {l (for upper sign) and — (I + 1) (for lower sign)}.

But, it is easy to see that the factor common to both the upper and the lower compo-
nents can be simplified as

{l (for upper sign) and — (I + 1) (for lower sign)} = (I + %) - %
As a result we have
ISV (0,6) = (£(0 4 5) — )VE(6,0)
Combining all the terms, we obtain
PV 0,0) = (L2 + 8 + 2L 8)Y, "7 (0, )
=h2{l<1+1>+§+<i<Z+ 3 - " 0,0)

4 2
1

=R+ - )(z o+ 1)Y= 0, ).
On substituting j =1+ % above, we obtain the desired relation
V™0, 0) = W + 1)V™ (0, 9).

Note: Try to verify by explicit calculations that J,J/™(0,¢) = mhY/™ (0, ¢). For the
purpose use J, =L, + S, =L, ® I, + I; X S,, and note that [;is just number 1, while
I, is a 2 x 2 identity matrix.

. Suppose you have two spin % particles, with their individual spin operators S; and Ss.
Obtain the eigenstates of S2 and S, operators, where S = S; + S,, by the following
two approaches:



(a) Using the C-G coefficients
Soln: When we couple two spin 1/2 particles, the possible values of coupled
angular momenta J as per triangular inequality are 0 < J < 1, i.e., J = 0,1,
for the coupled states. Because in this problem both j; = j, = 1/2; we define a
shorter notation in which values of j; and j, are suppressed, as follows

‘j1>j27j7m> = ‘1/27 1/2a]7 m> = ’jm>
1, J2, M1, mo) = [1/2,1/2,m1, mg) = |mq, ma)
<j17j27m17m2‘j17j2,ja m) = <1/27 1/2,m1,m2|1/2, 1/27j7 m> = (ml,m2|jm)

Here |jm) = 10,0), |1,—1), |1, 0> and, |1 1). The uncoupled states in |my, ma)
format are |3, 1), |% -3, | —%.4), | —3,—3). Using the compact notation for
CGCs (my, me|jm) defined above, we have

1 1 1 1 1 1 11
0,0) = <§,—§\00>\§,—§>+< |00> —§,§>-

Taking 7, = %, we can compute the required CGCs from the results of problem 2

1 1 1
575 00) = —
(33100 = 5
11 1
———00 o
( 00) = 7
so that
1 1 1 1 1 1
— D IV I IN— 1B(2) — B(1a(2)}.
0.0)= 15 —5) = 51~ 55) = 75 (VAR ~ ADa(2)}
Similarly
1 1 1 1
1, -Y={(—= —1—-1)] — =, —=
[1,-1) = =3, 511 = 1 = 5, —3)
1 1 1 1 1 1 11
1,0) = <5 ~5110) |5, =) + (=5, 5110)] = 5, 5)
1 1 1 1
Using the formulas of Prob 2 above
1 1 11
— —|1-1 11
(5 =3l 1) = {5, 3111) =
1 1 11 1
we have
1L,-1) = - 5,—5) = BA()
’ 27 2h

1 1 1 1 11 1

1,00 =—%l5, =50+ %l = 5,50 = 5 {aD)B2) + 5(1)a(2)}

V2'20 20 TR 272l T A
11 =I5, 5) = a(l)a().
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(b) By constructing the S? operator in the uncoupled basis, and diagonalizing it.
Soln: We will construct the S? operator in the uncoupled basis as follows

S?=(S;+8S,)* =52 +85+2S;,-S,

= S% ® [2 + [1 ® S% + Zle ® Sx? _'_ QSyl ® SyQ + 25,21 ® Sz2-
: 2 o a2 (10
Using the fact that ST = S5 = =~ 01

sentations of S, S,, and S, we obtain

3h2 32 R0 1 0 1 /o —i 0 —i
2
S° = 4[1®12+ 4[2®12 2(1 0>®(1 O)+2<i O)®(i 0

) — %[1/2, and the standard repre-

+h_2 Loy (Lo
2\ 0 —1 0 —1
1 000 0001
_3fo 100 | 0010
210010 20100
0001 1 000
0 00 —1 1 0 0 0
oo o | R0 -1 0 0
2 0 1.0 0 2 0 0 -1 0
-1 0 0 0 0O 0 0 1
2000
2] 01 10
=h 0110 [
000 2
Above, the ordered basis is {|1,1), |3, —3), | — 3.3), | — 3, —3)}. To diagonalize
S?, we obtain its eigenvalues and eigenvectors. The Characterlstlc polynomial of
S? is
2—X 0 0 0
1S — \I| = h? I=A 1 0 1_g

0
0 1 1-XA 0
0 0 0 2-A

— 2 A?{( >—1}=A<A—2>3=o

= A=0,2

Because the eigenvalue of S? will be of the form s(s+ 1), s0 A =0 = s =

0 (singlet) and A = 2 = s = 1 (triplet). Let us find the eigenvectors from
C1

the homogeneous equation (S? — A\I)C' = 0, where C = 22 denotes the
3
Cq

11



eigenvector. For A =0

2 0 00 1
01 10 Co —0
01 10 Cs3 -
00 0 2 cy
This leads to
cp=c4 =0
CQ+C3:0
which leads to the normalized solution
0
1 1 1 1 1 1 11 1
A=0)=— =—|=-,—=)———=|—=,2) = —=A{a(1)B(2) — B(1)a(2)}.
0
For A = 2, we have
0 0 0 O c1
0O -1 1 0 Co _ 0
0 1 -1 0 C3 e
0 0 0 O Cy

This leaves ¢; and ¢4 uncertain, while co — ¢3 = 0. This allows three linearly
independent solutions

1
a|)\:2>2:_

7|)\:2>3:

SO O
O~ =k O
_ o O O

which can, respectively be written in the uncoupled basis as

11

A=2 =|=,=)=]11
=2 =120 =)
1 1 1 1 11
1 1
A=2y=|— =, —)=|1-1
A=2)y= |- h-b=1- 1)

5. Calculate the C-G coefficients needed to couple the two angular momenta j; = 3/2
and jo = 1 to the possible j values, and express the coupled states |j1jojm) in terms
of the uncoupled state [jijamims).

Soln: Allowed values of coupled angular momenta according to the triangular inequal-
ity are j = 1/2, 3/2, 5/2. Let us construct the coupled states for each of those values.

12



(i)j =1/2

We can write |sm),m = +3 as

11 11
§7§> = Z <m17m2|§7§>|m17m2>

One can compute

so that

Similarly

1 1 3 .1 1 3 1 1 1
— ——)=(—=1|=,—=)| — =, 1 —.,0l=,—=)|—=,0 — —1|=, —=)|=, —1
Using the symmetry property of CGCs

<m17 m2|j7 m) - (_1)j_jl_j2<_m17 _m2|j7 _m>7

we obtain
1 1

| >_1| 1 1 1.1
2" 2/ 2

3

S S W
2! \/3’ 2
(i) j = 3/2

We can write |3m),m = £5, £2 as

3 3 3 3
0= S ] Dl

mi,ma2

3 3 3 3 3 3
—Z(ml,—l\g,éﬂml,—l)+mz<m1,0]§,§>|m1,0>+mz<m11|§,§>\m1,1>

3 3 3.3 1 33,1

Zool2. 2y 2 Z 112 2y =2
(5,005, 215,00+ (5,115, D),

AP

33 2.1
= 1/212,0) =4/ Z]2,1).
\/;2’0> \/;|2’>

1)

13



Using the symmetry of CGCs, we obtain

e

The two results can be combined as

3. .3 2 1
=44/ = —| £+ =, £1).
Jaedos el oy

Similarly

(iii)j = 5/2
For m = :I:%

R IOl YOI Uy Gy A
2 2 2 2 2 2 2
Formz:l:%
5 3 3 1 5
—:I: :|: + - +— +1|-. £+
2 1
\[yi —\/j|j:—,j:1)
5~ 3
For m = +1
5 1 3 5 3 1 1
2 e = @ w1 e h £ Lan + 0 >ri§o>+<¢—

h b3 b

F1) +

N o] w

14

1 3
+—.0|=, £
< 27 ’27

+\/§’ 1
5 2’

1
o]

1
27

0)

s 1
\—| F =, 1
F 15|:F2, )

/10 Iqt , 1)

1

1
2

3
-+ =, +1
% 5, %1)

41

5

57

:|:_
2>\$

1

1
2

= £1)



