PH 422: Quantum Mechanics II Tutorial Sheet 1: Solution

This tutorial sheet contains problems related to the addition of angular momenta for quantum mechanical particles.

1. Verify the values of the following C-G coefficients

use the normalization condition

(a) $\langle j1j0|j1jj\rangle = \sqrt{\frac{j}{j+1}}$ Soln: In this CGC, $j_1 = j$, $j_2 = 1, m_1 = j$, $m_2 = 0$, j = j and m = j, which makes it of the form $\langle j_1j_2j_1j - j_1|j_1j_2jj\rangle$. CGCs of this form can be computed by using the normalization condition, coupled with the recursion relations. We

$$\langle j1jj|j1jj\rangle = 1$$

resolution of identity in the uncoupled respresentation $\sum_{m_1,m_2} |j1m_1m_2\rangle\langle j1m_1m_2| = 1$

using this in the first equation, we obtain $\sum_{m_1,m_2} \langle j1m_1m_2|j1jj\rangle^2 = 1$

$$\sum_{m_1} \langle j1m_1 - 1|j1jj\rangle^2 + \sum_{m_1} \langle j1m_10|j1jj\rangle^2 + \sum_{m_1} \langle j1m_11|j1jj\rangle^2 = 1$$

Above first term will go to zero because $m = m_1 + m_2 = j$ requires $m_1 = j + 1$. Thus, we have

$$\langle j1j0|j1jj\rangle^2 + \langle j1j - 11|j1jj\rangle^2 = 1.$$
 (1)

Using recursion relation with the upper sign

$$\sqrt{(j \mp m)(j \pm m + 1)} \langle j_1 j_2 m_1 m_2 \mid j_1 j_2 j m \pm 1 \rangle
= \sqrt{(j_1 \pm m_1)(j_1 \mp m_1 + 1)} \langle j_1 j_2 m_1 \mp 1 m_2 \mid j_1 j_2 j m \rangle
+ \sqrt{(j_2 \pm m_2)(j_2 \mp m_2 + 1)} \langle j_1 j_2 m_1 m_2 \mp 1 \mid j_1 j_2 j m \rangle$$
(2)

and m = j, $j_1 = j$, $j_2 = 1$, $m_1 = j$, and $m_2 = 1$, we obtain

$$\sqrt{2j}\langle j1j-11|j1jj\rangle = -\sqrt{2}\langle j1j0|j1jj\rangle$$
$$\langle j1j-11|j1jj\rangle = -\frac{1}{\sqrt{j}}\langle j1j0|j1jj\rangle$$

Using this in Eq. 1, we obtain the desired result, with the positive choice for the phase

$$\langle j1j0|j1jj\rangle^2 \left(1+\frac{1}{j}\right) = 1$$

 $\langle j1j0|j1jj\rangle = \sqrt{\frac{j}{j+1}}$

(b)
$$\langle j2j0|j2jj\rangle = \sqrt{\frac{j(2j-1)}{(j+1)(2j+3)}}$$

(b) $\langle j2j0|j2jj\rangle = \sqrt{\frac{j(2j-1)}{(j+1)(2j+3)}}$ **Soln:** This CGC is also of the form $\langle j_1j_2j_1j - j_1|j_1j_2jj\rangle$, with $j_1 = j$, $j_2 = 2$, $m_1 = j$, $m_2 = 0$, j = j, and m = j. Again, we start out with the normalization condition, which combined with $m = m_1 + m_2$ conservation, leads to

$$\sum_{m_1, m_2} \langle j2m_1 m_2 | j2jj \rangle^2 = 1$$

$$\langle j, 2j - 2, 2|j2jj \rangle^2 + \langle j, 2, j - 1, 1|j2jj \rangle^2 + \langle j, 2, j, 0|j2jj \rangle^2 = 1$$
(3)

Again, using the recursion relations of Eq. 2 with the upper sign, and $j_1 = j$, $m = j, j_2 = 2, m_1 = j, \text{ and } m_2 = 1, \text{ we obtain}$

$$\sqrt{2j}\langle j2j - 11|j2jj\rangle = -\sqrt{6}\langle j2j0|j2jj\rangle$$

$$\langle j2j - 11|j2jj\rangle = -\sqrt{\frac{3}{j}}\langle j2j0|j2jj\rangle. \tag{4}$$

On using the same recursion relation with $j_1 = j$, m = j, $j_2 = 2$, $m_1 = j - 1$, and $m_2 = 2$, we obtain

$$\sqrt{2(2j-1)}\langle j2j-22|j2jj\rangle = -2\langle j2j-11|j2jj\rangle$$

$$\langle j2j-22|j2jj\rangle = -\sqrt{\frac{2}{2j-1}}\langle j2j-11|j2jj\rangle$$
Using Eq. 4 we obtain
$$\langle j2j-22|j2jj\rangle = \sqrt{\frac{6}{j(2j-1)}}\langle j2j0|j2jj\rangle \tag{5}$$

Using Eqs. 4 and 5, in Eq. 3, we obtain

$$\langle j2j0|j2jj\rangle^2 \left(1 + \frac{3}{j} + \frac{6}{j(2j-1)}\right) = 1$$

$$\implies \langle j2j0|j2jj\rangle^2 \left\{\frac{(2j+3)(j+1)}{j(2j-1)}\right\} = 1$$

$$\implies \langle j2j0|j2jj\rangle = \sqrt{\frac{j(2j-1)}{(2j+3)(j+1)}}.$$

2. Compute the following C-G coefficients

(a) $\langle j_1, 1/2, m - 1/2, 1/2 | j_1, 1/2, j_1 \pm 1/2, m \rangle = \pm \sqrt{\frac{j_1 \pm m + 1/2}{2j_1 + 1}}$ **Soln:** (i) We first start to evaluate the CGC $\langle j_1, 1/2, m-1/2, 1/2|j_11/2, j_1+1/2\rangle$ 1/2, m, using the recursion relation

$$\sqrt{(j+m)(j-m+1)}\langle j_1, j_2, m_1, m_2 | j_1, j_2, j, m-1 \rangle =
\sqrt{(j_1-m_1)(j_1+m_1+1)}\langle j_1, j_2, m_1+1, m_2 | j_1, j_2, j, m \rangle
+ \sqrt{(j_2-m_2)(j_2+m_2+1)}\langle j_1, j_2, m_1, m_2+1 | j_1, j_2, j, m \rangle$$

In this relation when we substitute $j_1 = j_1$, $m_1 = m - \frac{1}{2}$, $j_2 = \frac{1}{2}$, $m_2 = \frac{1}{2}$, $j = j_1 + \frac{1}{2}$, and $m \to m + 1$, the second term on the RHS of the recursion relation vanishes leading to

$$\sqrt{(j_1 + \frac{1}{2} + m + 1)(j_1 + \frac{1}{2} - m - 1 + 1)} \langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle$$

$$= \sqrt{(j_1 + m - \frac{1}{2} + 1)(j_1 - m + \frac{1}{2})} \langle j_1, \frac{1}{2}, m + \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m + 1 \rangle$$

This implies

$$\langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle = \sqrt{\frac{(j_1 + m + \frac{1}{2})}{(j_1 + m + \frac{3}{2})}} \langle j_1, \frac{1}{2}, m + \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m + 1 \rangle.$$
(6)

We apply the same recursion relation this time with $m \to m+2$, and $m_1 = m+1/2$ (or just substitute $m \to m+1$, in equation above), with rest of the quantum numbers unchanged, and obtain

$$\langle j_1, \frac{1}{2}, m + \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m + 1 \rangle = \sqrt{\frac{(j_1 + m + \frac{3}{2})}{(j_1 + m + \frac{5}{2})}} \langle j_1, \frac{1}{2}, m + \frac{3}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m + 2 \rangle.$$

$$(7)$$

Using Eq. 7 on the RHS of 6, we obtain

$$\langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle = \sqrt{\frac{(j_1 + m + \frac{1}{2})}{(j_1 + m + \frac{3}{2})}} \sqrt{\frac{(j_1 + m + \frac{3}{2})}{(j_1 + m + \frac{5}{2})}} \times \langle j_1, \frac{1}{2}, m + \frac{3}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m + 2 \rangle.$$
(8)

Noting the cancellations above in the numerator and the denominator, after we apply this recursion relation i times, we will have

$$\langle j_{1}, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} + \frac{1}{2}, m \rangle = \sqrt{\frac{(j_{1} + m + \frac{1}{2})}{(j_{1} + m + \frac{2i+1}{2})}} \times \langle j_{1}, \frac{1}{2}, m + \frac{(2i-1)}{2}, \frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} + \frac{1}{2}, m + i \rangle.$$
(9)

This can be continued till the maximum allowed value of i such that $m+i_{max}=j_1+1/2 \implies i_{max}=j_1+\frac{1}{2}-m$ is reached on the RHS, leading to

$$\langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle = \sqrt{\frac{(j_1 + m + \frac{1}{2})}{(2j_1 + 1)}} \langle j_1, \frac{1}{2}, j_1, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, j_1 + \frac{1}{2} \rangle.$$
(10)

Because maximum possible values of all the angular momenta are involved, thus, it is obvious

$$|j_1, \frac{1}{2}, j_1, \frac{1}{2}\rangle = |j_1, \frac{1}{2}, j_1 + \frac{1}{2}, j_1 + \frac{1}{2}\rangle$$

$$\Longrightarrow \langle j_1, \frac{1}{2}, j_1, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, j_1 + \frac{1}{2}\rangle = 1$$

which, when combined with Eq. 10, gives the desired result

$$\langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle = \sqrt{\frac{(j_1 + m + \frac{1}{2})}{(2j_1 + 1)}}.$$

We can calculate the magnitude of the CGC $\langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 - \frac{1}{2}, m \rangle$ by using the normalization condition

$$\langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} \rangle = 1$$

$$\Longrightarrow \sum_{j=j_1-1/2}^{j_1+1/2} \langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j, m \rangle \langle j_1, \frac{1}{2}, j, m | j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} \rangle = 1$$

$$\langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 - \frac{1}{2}, m \rangle^2 + \langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle^2 = 1$$

$$\Longrightarrow \langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 - \frac{1}{2}, m \rangle$$

$$= \pm \sqrt{1 - \langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle^2}$$

$$= \pm \sqrt{\frac{(j_1 - m + \frac{1}{2})}{(2j_1 + 1)}} .$$

We will fix the sign of this CGC in the next part.

(b) $\langle j_1, 1/2, m+1/2, -1/2|j_1, 1/2, j_1 \pm 1/2, m \rangle = \sqrt{\frac{j_1 \mp m+1/2}{2j_1+1}}$ **Soln:** We will first evaluate the CGC $\langle j_1, 1/2, m+1/2, -1/2|j_11/2, j_1+1/2, m \rangle$. For the purpose, in the original recursion relation (Eq. 2), we use the upper sign, and set $m \to m-1$, to obtain the recursion relation

$$\sqrt{(j+m)(j-m+1)}\langle j_1, j_2, m_1, m_2 | j_1, j_2, j, m \rangle =
\sqrt{(j_1+m_1)(j_1-m_1+1)}\langle j_1, j_2, m_1-1, m_2 | j_1, j_2, j, m-1 \rangle
+ \sqrt{(j_2+m_2)(j_2-m_2+1)}\langle j_1, j_2, m_1, m_2-1 | j_1, j_2, j, m-1 \rangle$$

In this, if we use $j = j_1 + 1/2$, $j_2 = 1/2$, $m_1 = m + 1/2$, $m_2 = -1/2$, we get

$$\sqrt{(j_1+m+\frac{1}{2})(j_1-m+\frac{3}{2})}\langle j_1,\frac{1}{2},m+\frac{1}{2},-\frac{1}{2}|j_1,\frac{1}{2},j_1+\frac{1}{2},m\rangle = \sqrt{(j_1+m+\frac{1}{2})(j_1-m+\frac{1}{2})}\langle j_1,\frac{1}{2},m-\frac{1}{2},-\frac{1}{2}|j_1,\frac{1}{2},j_1+\frac{1}{2},m-1\rangle$$

or

$$\langle j_1,\frac{1}{2},m+\frac{1}{2},-\frac{1}{2}|j_1,\frac{1}{2},j_1+\frac{1}{2},m\rangle = \sqrt{\frac{(j_1-m+\frac{1}{2})}{(j_1-m+\frac{3}{2})}}\langle j_1,\frac{1}{2},m-\frac{1}{2},-\frac{1}{2}|j_1,\frac{1}{2},j_1+\frac{1}{2},m-1\rangle$$

which on setting $m \to m-1$ yields

$$\langle j_1,\frac{1}{2},m-\frac{1}{2},-\frac{1}{2}|j_1,\frac{1}{2},j_1+\frac{1}{2},m-1\rangle = \sqrt{\frac{(j_1-m+\frac{3}{2})}{(j_1-m+\frac{5}{2})}} \langle j_1,\frac{1}{2},m-\frac{3}{2},-\frac{1}{2}|j_1,\frac{1}{2},j_1+\frac{1}{2},m-2\rangle$$

so that on substituting this in the previous equation, we obtain (after two iterations)

$$\begin{split} \langle j_1, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle &= \sqrt{\frac{(j_1 - m + \frac{1}{2})}{(j_1 - m + \frac{3}{2})}} \sqrt{\frac{(j_1 - m + \frac{3}{2})}{(j_1 - m + \frac{5}{2})}} \\ &\times \langle j_1, \frac{1}{2}, m - \frac{3}{2}, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m - 2 \rangle, \end{split}$$

or after i iterations

$$\langle j_1, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle = \sqrt{\frac{(j_1 - m + \frac{1}{2})}{(j_1 - m + \frac{(2i+1)}{2})}} \times \langle j_1, \frac{1}{2}, m - \frac{(2i-1)}{2}, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m - i \rangle.$$

Just, as before, maximum allowed value of i is determined by $m - i_{max} = -j_1 - \frac{1}{2} \implies i_{max} = m + j_1 + \frac{1}{2}$, leading to

$$\langle j_1, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, m \rangle = \sqrt{\frac{(j_1 - m + \frac{1}{2})}{(2j_1 + 1)}} \times \langle j_1, \frac{1}{2}, -j_1, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 + \frac{1}{2}, -j_1 - \frac{1}{2} \rangle$$

$$= \sqrt{\frac{(j_1 - m + \frac{1}{2})}{(2j_1 + 1)}},$$

where we used the fact that $\langle j_1, \frac{1}{2}, -j_1, -\frac{1}{2}|j_1, \frac{1}{2}, j_1+\frac{1}{2}, -j_1-\frac{1}{2}\rangle=1$. Using the normalization condition $\langle j_1, \frac{1}{2}, m+\frac{1}{2}, -\frac{1}{2}|j_1, \frac{1}{2}, m+\frac{1}{2}, -\frac{1}{2}\rangle=1$, and inserting the resolution of identity in the coupled representation, as we did in the previous part, we obtain

$$\langle j_1, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 - \frac{1}{2}, m \rangle = \pm \sqrt{\frac{(j_1 + m + \frac{1}{2})}{(2j_1 + 1)}}$$

To figure out the signs of the two CGCs, we use the orthogonality condition of the coupled states

$$\langle j_{1}, \frac{1}{2}, j_{1} + \frac{1}{2}, m | j_{1}, \frac{1}{2}, j_{1} - \frac{1}{2}, m \rangle = 0$$

$$\implies \sum_{m_{1}, m_{2}} \langle j_{1}, \frac{1}{2}, j_{1} + \frac{1}{2}, m | j_{1}, \frac{1}{2}, m_{1}, m_{2} \rangle \langle j_{1}, \frac{1}{2}, m_{1}, m_{2} | j_{1}, \frac{1}{2}, j_{1} - \frac{1}{2}, m \rangle = 0$$

$$\implies \sum_{m_{1}} \langle j_{1}, \frac{1}{2}, m_{1}, \frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} + \frac{1}{2}, m \rangle \langle j_{1}, \frac{1}{2}, m_{1}, \frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} - \frac{1}{2}, m \rangle$$

$$+ \sum_{m_{1}} \langle j_{1}, \frac{1}{2}, m_{1}, -\frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} + \frac{1}{2}, m \rangle \langle j_{1}, \frac{1}{2}, m_{1}, -\frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} - \frac{1}{2}, m \rangle = 0$$

$$\implies \langle j_{1}, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} + \frac{1}{2}, m \rangle \langle j_{1}, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} - \frac{1}{2}, m \rangle$$

$$+ \langle j_{1}, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} + \frac{1}{2}, m \rangle \langle j_{1}, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2} | j_{1}, \frac{1}{2}, j_{1} - \frac{1}{2}, m \rangle = 0.$$

$$(11)$$

Let us use the notations $\langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 \pm \frac{1}{2}, m \rangle = x_1/y_1$ and $\langle j_1, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 \pm \frac{1}{2}, m \rangle = x_2/y_2$. There is no ambiguity about the signs of x_1/x_2 , both of which have been calculated to be positive. Eq. 11 is

$$x_1 y_1 + x_2 y_2 = 0$$
$$y_1 = -\frac{x_2}{x_1} y_2$$

This implies that sign of y_1 will be opposite to that of y_2 . So if we take y_2 to be positive

$$y_2 = \langle j_1, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2} | j_1, \frac{1}{2}, j_1 - \frac{1}{2}, m \rangle = \sqrt{\frac{(j_1 + m + \frac{1}{2})}{(2j_1 + 1)}},$$

 y_1 will be negative

$$y_1 = \langle j_1, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2} | j_1, \frac{1}{2}, j_1 - \frac{1}{2}, m \rangle = -\sqrt{\frac{(j_1 - m + \frac{1}{2})}{(2j_1 + 1)}}$$

3. Show that the eigenvectors of total angular momentum \mathbf{J} , obtained by coupling the orbital angular momentum (l) and the spin angular momentum (s=1/2) of an electron can be written as

$$\mathcal{Y}_{l}^{jm}(\theta,\phi) = \mathcal{Y}_{l}^{l\pm 1/2,m}(\theta,\phi) = \frac{1}{\sqrt{2l+1}} \begin{pmatrix} \pm \sqrt{l\pm m + \frac{1}{2}} Y_{l}^{m-1/2}(\theta,\phi) \\ \sqrt{l\mp m + \frac{1}{2}} Y_{l}^{m+1/2}(\theta,\phi) \end{pmatrix}.$$

Also verify that \mathcal{Y}_l^{jm} is an eigenfunction of \mathbf{J}^2 operator, where $\mathbf{J} = \mathbf{L} + \mathbf{S}$. Soln: Here we have to couple the eigenfunctions of \mathbf{L}^2 operator, $|lm_l\rangle$, and those of spin operator \mathbf{S}^2 , $|\frac{1}{2}m_s\rangle$ (with $m_s=\pm\frac{1}{2}$) to obtain the coupled states $|l\frac{1}{2}jm\rangle$, with $j=l\pm\frac{1}{2}$, which are eigenfunctions of \mathbf{J}^2 operator. Obviously

$$\begin{split} |l,\frac{1}{2},j,m\rangle &= \sum_{m_l,m_s} \langle l,\frac{1}{2},m_l,m_s|l,\frac{1}{2},j,m\rangle |l,\frac{1}{2},m_l,m_s\rangle \\ &= \sum_{m_l} \langle l,\frac{1}{2},m_l,\frac{1}{2}|l,\frac{1}{2},j,m\rangle |l,\frac{1}{2},m_l,\frac{1}{2}\rangle + \sum_{m_l} \langle l,\frac{1}{2},m_l,-\frac{1}{2}|l,\frac{1}{2},j,m\rangle |l,\frac{1}{2},m_l,-\frac{1}{2}\rangle \\ &= \langle l,\frac{1}{2},m-\frac{1}{2},\frac{1}{2}|l,\frac{1}{2},j,m\rangle |l,\frac{1}{2},m-\frac{1}{2},\frac{1}{2}\rangle + \langle l,\frac{1}{2},m+\frac{1}{2},-\frac{1}{2}|l,\frac{1}{2},j,m\rangle |l,\frac{1}{2},m+\frac{1}{2},-\frac{1}{2}\rangle \end{split}$$

CGCs required in this equation were computed in the previous problem, and can be obtained by setting $j_1 = l$, and $j = l \pm \frac{1}{2}$. Thus

$$|l, \frac{1}{2}, j, m\rangle \equiv |l, \frac{1}{2}, l \pm \frac{1}{2}, m\rangle$$

$$= \pm \sqrt{\frac{l \pm m + 1/2}{2l + 1}} |l, \frac{1}{2}, m - \frac{1}{2}, \frac{1}{2}\rangle + \sqrt{\frac{l \mp m + 1/2}{2l + 1}} |l, \frac{1}{2}, m + \frac{1}{2}, -\frac{1}{2}\rangle$$
 (12)

This is the desired result in the Dirac notation. To express this result in the $|\mathbf{x}\rangle = |\mathbf{r}\rangle \otimes |\sigma\rangle = |\mathbf{r}\sigma\rangle$, we take the inner product of the equation above with the understanding

$$\langle \mathbf{x}|l, \frac{1}{2}, j, m \rangle \equiv \mathcal{Y}_{l}^{jm}(\theta, \phi) \equiv \mathcal{Y}_{l}^{l\pm 1/2, m}(\theta, \phi),$$

and

$$\langle \mathbf{x} | l, \frac{1}{2}, m', \pm \frac{1}{2} \rangle = \langle \mathbf{r} | lm' \rangle \langle \sigma | \frac{1}{2}, \pm \frac{1}{2} \rangle = Y_l^{m'}(\theta, \phi) \alpha / \beta,$$
 where $\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$

With this in Eq. 12, the LHS is

$$\langle \mathbf{x}|l, \frac{1}{2}, j, m \rangle = \langle \mathbf{x}|l, \frac{1}{2}, l \pm \frac{1}{2}, m \rangle = \mathcal{Y}_l^{jm}(\theta, \phi) = \mathcal{Y}_l^{l\pm 1/2, m}(\theta, \phi)$$

while the RHS becomes

$$\begin{split} &=\pm\sqrt{\frac{l\pm m+\frac{1}{2}}{2l+1}}\langle\mathbf{x}|l,\frac{1}{2},m-\frac{1}{2},\frac{1}{2}\rangle+\sqrt{\frac{l\mp m+\frac{1}{2}}{2l+1}}\langle\mathbf{x}|l,\frac{1}{2},m+\frac{1}{2},-\frac{1}{2}\rangle\\ &=\pm\sqrt{\frac{l\pm m+\frac{1}{2}}{2l+1}}Y_{l}^{m-1/2}(\theta,\phi)\alpha+\sqrt{\frac{l\mp m+\frac{1}{2}}{2l+1}}Y_{l}^{m+1/2}(\theta,\phi)\beta\\ &=\frac{1}{\sqrt{2l+1}}\left(\begin{array}{c}\pm\sqrt{l\pm m+\frac{1}{2}}Y_{l}^{m-1/2}(\theta,\phi)\\ \sqrt{l\mp m+\frac{1}{2}}Y_{l}^{m+1/2}(\theta,\phi)\end{array}\right) \end{split}$$

leading to the final result

$$\mathcal{Y}_{l}^{jm}(\theta,\phi) \equiv \mathcal{Y}_{l}^{l\pm 1/2,m}(\theta,\phi) = \frac{1}{\sqrt{2l+1}} \begin{pmatrix} \pm \sqrt{l \pm m + \frac{1}{2}} Y_{l}^{m-1/2}(\theta,\phi) \\ \sqrt{l \mp m + \frac{1}{2}} Y_{l}^{m+1/2}(\theta,\phi) \end{pmatrix}.$$

To show that \mathcal{Y}_l^{jm} are eigenfunctions of \mathbf{J}^2 operator, we note

$$\mathbf{J}^2 = (\mathbf{L} + \mathbf{S})^2 = \mathbf{L}^2 + \mathbf{S}^2 + 2\mathbf{L} \cdot \mathbf{S}.$$

It is easy to evaluate the action of \mathbf{L}^2 and \mathbf{S}^2 on $\mathcal{Y}_l^{jm}(\theta,\phi)$, because

$$\mathbf{L}^{2}Y_{l}^{m}(\theta,\phi) = l(l+1)\hbar^{2}Y_{l}^{m}(\theta,\phi)$$
$$\mathbf{S}^{2}(\alpha/\beta) = \frac{3}{4}\hbar^{2}(\alpha/\beta).$$

With this

$$\mathbf{L}^{2}\mathcal{Y}_{l}^{jm}(\theta,\phi) = l(l+1)\hbar^{2}\mathcal{Y}_{l}^{jm}(\theta,\phi)$$
$$\mathbf{S}^{2}\mathcal{Y}_{l}^{jm}(\theta,\phi) = \frac{3}{4}\hbar^{2}\mathcal{Y}_{l}^{jm}(\theta,\phi)$$

To compute the action of $\mathbf{L} \cdot \mathbf{S}$ operator, we write it as

$$\mathbf{L} \cdot \mathbf{S} = L_x S_x + L_y S_y + L_z S_z$$
$$= \frac{\hbar}{2} \begin{pmatrix} L_z & L_- \\ L_+ & -L_z \end{pmatrix},$$

so that

$$2\mathbf{L} \cdot \mathbf{S} \mathcal{Y}_{l}^{jm}(\theta, \phi) = 2\mathbf{L} \cdot \mathbf{S} \mathcal{Y}_{l}^{l\pm 1/2, m}(\theta, \phi) \frac{\hbar}{\sqrt{2l+1}} \begin{pmatrix} L_{z} & L_{-} \\ L_{+} & -L_{z} \end{pmatrix} \begin{pmatrix} \pm \sqrt{l \pm m + \frac{1}{2}} Y_{l}^{m-1/2}(\theta, \phi) \\ \sqrt{l \mp m + \frac{1}{2}} Y_{l}^{m+1/2}(\theta, \phi) \end{pmatrix}$$
$$= \frac{\hbar}{\sqrt{2l+1}} \begin{pmatrix} \pm \sqrt{l \pm m + \frac{1}{2}} L_{z} Y_{l}^{m-1/2}(\theta, \phi) + \sqrt{l \mp m + \frac{1}{2}} L_{-} Y_{l}^{m+1/2}(\theta, \phi) \\ \pm \sqrt{l \pm m + \frac{1}{2}} L_{+} Y_{l}^{m-1/2}(\theta, \phi) - \sqrt{l \mp m + \frac{1}{2}} L_{z} Y_{l}^{m+1/2}(\theta, \phi) \end{pmatrix}. \tag{13}$$

Using the relations

$$L_z Y_l^m(\theta, \phi) = m\hbar Y_l^m(\theta, \phi)$$

$$L_{\pm} Y_l^m(\theta, \phi) = \hbar \sqrt{l(l+1) - m(m \pm 1)} Y_l^{m\pm 1}(\theta, \phi),$$

we obtain for the first (upper) component of the spinor on the RHS of Eq. 13

$$\pm \sqrt{l \pm m + \frac{1}{2}} L_z Y_l^{m-1/2}(\theta, \phi) + \sqrt{l \mp m + \frac{1}{2}} L_- Y_l^{m+1/2}(\theta, \phi)$$

$$= \pm \hbar \sqrt{l \pm m + \frac{1}{2}} (m - \frac{1}{2}) Y_l^{m-1/2} + \hbar \sqrt{l \mp m + \frac{1}{2}} \sqrt{l(l+1) - (m + \frac{1}{2})(m - \frac{1}{2})} Y_l^{m-1/2}$$

We use the fact that $\sqrt{l(l+1) - (m+\frac{1}{2})(m-\frac{1}{2})} = \sqrt{(l+m+\frac{1}{2})(l-m+\frac{1}{2})}$ to simplify

$$\pm \sqrt{l \pm m + \frac{1}{2}} L_z Y_l^{m-1/2}(\theta, \phi) + \sqrt{l \mp m + \frac{1}{2}} L_- Y_l^{m+1/2}(\theta, \phi)$$

$$= \pm \hbar \sqrt{l \pm m + \frac{1}{2}} Y_l^{m-1/2} \left(m - \frac{1}{2} \pm \frac{\sqrt{l \mp m + \frac{1}{2}}}{\sqrt{l \pm m + \frac{1}{2}}} \sqrt{(l + m + \frac{1}{2})(l - m + \frac{1}{2})} \right)$$

$$= \pm \hbar \sqrt{l \pm m + \frac{1}{2}} Y_l^{m-1/2} \left\{ l \text{ (for upper sign) and } - (l + 1) \text{ (for lower sign)} \right\}$$

Similarly, we can show for the second (lower) component of the spinor on the RHS of Eq. 13

$$\pm \sqrt{l \pm m + \frac{1}{2}} L_{+} Y_{l}^{m-1/2}(\theta, \phi) - \sqrt{l \mp m + \frac{1}{2}} L_{z} Y_{l}^{m+1/2}(\theta, \phi)$$

$$= \hbar \sqrt{l \mp m + \frac{1}{2}} Y_{l}^{m+1/2}(\theta, \phi) \{ l \text{ (for upper sign) and } - (l+1) \text{ (for lower sign)} \}.$$

But, it is easy to see that the factor common to both the upper and the lower components can be simplified as

$$\{l \text{ (for upper sign) and } -(l+1) \text{ (for lower sign)}\} = \pm (l+\frac{1}{2}) - \frac{1}{2}$$

As a result we have

$$2\mathbf{L} \cdot \mathbf{S} \mathcal{Y}_{l}^{l \pm \frac{1}{2}, m}(\theta, \phi) = (\pm (l + \frac{1}{2}) - \frac{1}{2}) \mathcal{Y}_{l}^{l \pm \frac{1}{2}, m}(\theta, \phi).$$

Combining all the terms, we obtain

$$\mathbf{J}^{2} \mathcal{Y}_{l}^{l \pm \frac{1}{2}, m}(\theta, \phi) = (\mathbf{L}^{2} + \mathbf{S}^{2} + 2\mathbf{L} \cdot \mathbf{S}) \mathcal{Y}_{l}^{l \pm \frac{1}{2}, m}(\theta, \phi)$$

$$= \hbar^{2} \{ l(l+1) + \frac{3}{4} + (\pm (l+\frac{1}{2}) - \frac{1}{2}) \} \mathcal{Y}_{l}^{l \pm \frac{1}{2}, m}(\theta, \phi)$$

$$= \hbar^{2} (l \pm \frac{1}{2}) (l \pm \frac{1}{2} + 1) \mathcal{Y}_{l}^{l \pm \frac{1}{2}, m}(\theta, \phi).$$

On substituting $j = l \pm \frac{1}{2}$ above, we obtain the desired relation

$$\mathbf{J}^{2}\mathcal{Y}_{l}^{jm}(\theta,\phi) = \hbar^{2}j(j+1)\mathcal{Y}_{l}^{jm}(\theta,\phi).$$

Note: Try to verify by explicit calculations that $J_z \mathcal{Y}_l^{jm}(\theta, \phi) = m\hbar \mathcal{Y}_l^{jm}(\theta, \phi)$. For the purpose use $J_z = L_z + S_z \equiv L_z \otimes I_s + I_l \times S_z$, and note that I_l is just number 1, while I_s is a 2×2 identity matrix.

4. Suppose you have two spin $\frac{1}{2}$ particles, with their individual spin operators $\mathbf{S_1}$ and $\mathbf{S_2}$. Obtain the eigenstates of $\mathbf{S^2}$ and \mathbf{S}_z operators, where $\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2$, by the following two approaches:

(a) Using the C-G coefficients

Soln: When we couple two spin 1/2 particles, the possible values of coupled angular momenta J as per triangular inequality are $0 \le J \le 1$, i.e., J = 0, 1, for the coupled states. Because in this problem both $j_1 = j_2 = 1/2$, we define a shorter notation in which values of j_1 and j_2 are suppressed, as follows

$$|j_1, j_2, j, m\rangle \equiv |1/2, 1/2, j, m\rangle \equiv |jm\rangle$$

$$|j_1, j_2, m_1, m_2\rangle \equiv |1/2, 1/2, m_1, m_2\rangle \equiv |m_1, m_2\rangle$$

$$\langle j_1, j_2, m_1, m_2 | j_1, j_2, j, m\rangle = \langle 1/2, 1/2, m_1, m_2 | 1/2, 1/2, j, m\rangle \equiv \langle m_1, m_2 | jm\rangle$$

Here $|jm\rangle = |0,0\rangle$, $|1,-1\rangle$, $|1,0\rangle$ and, $|1,1\rangle$. The uncoupled states in $|m_1,m_2\rangle$ format are $|\frac{1}{2},\frac{1}{2}\rangle$, $|\frac{1}{2},-\frac{1}{2}\rangle$, $|-\frac{1}{2},\frac{1}{2}\rangle$, $|-\frac{1}{2},-\frac{1}{2}\rangle$. Using the compact notation for CGCs $\langle m_1,m_2|jm\rangle$ defined above, we have

$$|0,0\rangle = \langle \frac{1}{2}, -\frac{1}{2}|00\rangle |\frac{1}{2}, -\frac{1}{2}\rangle + \langle -\frac{1}{2}, \frac{1}{2}|00\rangle |-\frac{1}{2}, \frac{1}{2}\rangle.$$

Taking $j_1 = \frac{1}{2}$, we can compute the required CGCs from the results of problem 2

$$\langle \frac{1}{2}, -\frac{1}{2} | 00 \rangle = \frac{1}{\sqrt{2}}$$

 $\langle -\frac{1}{2}, \frac{1}{2} | 00 \rangle = -\frac{1}{\sqrt{2}},$

so that

$$|0,0\rangle = \frac{1}{\sqrt{2}} |\frac{1}{2}, -\frac{1}{2}\rangle - \frac{1}{\sqrt{2}} |-\frac{1}{2}, \frac{1}{2}\rangle = \frac{1}{\sqrt{2}} \left\{ \alpha(1)\beta(2) - \beta(1)\alpha(2) \right\}.$$

Similarly

$$\begin{split} |1,-1\rangle &= \langle -\frac{1}{2}, -\frac{1}{2}|1-1\rangle| - \frac{1}{2}, -\frac{1}{2}\rangle \\ |1,0\rangle &= \langle \frac{1}{2}, -\frac{1}{2}|10\rangle| \frac{1}{2}, -\frac{1}{2}\rangle + \langle -\frac{1}{2}, \frac{1}{2}|10\rangle| - \frac{1}{2}, \frac{1}{2}\rangle \\ |1,1\rangle &= \langle \frac{1}{2}, \frac{1}{2}|11\rangle| \frac{1}{2}, \frac{1}{2}\rangle. \end{split}$$

Using the formulas of Prob 2 above

$$\begin{split} \langle -\frac{1}{2}, -\frac{1}{2}|1-1\rangle &= \langle \frac{1}{2}, \frac{1}{2}|11\rangle = 1 \\ \langle \frac{1}{2}, -\frac{1}{2}|10\rangle &= \langle -\frac{1}{2}, \frac{1}{2}|10\rangle = \frac{1}{\sqrt{2}} \end{split}$$

we have

$$\begin{split} |1,-1\rangle &= |-\frac{1}{2},-\frac{1}{2}\rangle = \beta(1)\beta(2) \\ |1,0\rangle &= \frac{1}{\sqrt{2}}|\frac{1}{2},-\frac{1}{2}\rangle + \frac{1}{\sqrt{2}}|-\frac{1}{2},\frac{1}{2}\rangle = \frac{1}{\sqrt{2}}\left\{\alpha(1)\beta(2) + \beta(1)\alpha(2)\right\} \\ |1,1\rangle &= |\frac{1}{2},\frac{1}{2}\rangle = \alpha(1)\alpha(2). \end{split}$$

(b) By constructing the S^2 operator in the uncoupled basis, and diagonalizing it. Soln: We will construct the S^2 operator in the uncoupled basis as follows

$$\mathbf{S}^{2} = (\mathbf{S}_{1} + \mathbf{S}_{2})^{2} = \mathbf{S}_{1}^{2} + \mathbf{S}_{2}^{2} + 2\mathbf{S}_{1} \cdot \mathbf{S}_{2}$$

$$= \mathbf{S}_{1}^{2} \otimes I_{2} + I_{1} \otimes \mathbf{S}_{2}^{2} + 2S_{x1} \otimes S_{x2} + 2S_{y1} \otimes S_{y2} + 2S_{z1} \otimes S_{z2}.$$

Using the fact that $\mathbf{S}_1^2 = \mathbf{S}_2^2 = \frac{3\hbar^2}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{3\hbar^2}{4} I_{1/2}$, and the standard representations of S_x , S_y , and S_z , we obtain

$$\begin{split} \mathbf{S}^2 &= \frac{3\hbar^2}{4} I_1 \otimes I_2 + \frac{3\hbar^2}{4} I_2 \otimes I_2 + \frac{\hbar^2}{2} \left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array} \right) \otimes \left(\begin{array}{ccc} 0 & -i \\ 1 & 0 \end{array} \right) + \frac{\hbar^2}{2} \left(\begin{array}{ccc} 0 & -i \\ i & 0 \end{array} \right) \otimes \left(\begin{array}{ccc} 0 & -i \\ i & 0 \end{array} \right) \\ &+ \frac{\hbar^2}{2} \left(\begin{array}{ccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \\ &= \frac{3\hbar^2}{2} \left(\begin{array}{ccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \\ &+ \frac{\hbar^2}{2} \left(\begin{array}{ccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{array} \right) \\ &+ \frac{\hbar^2}{2} \left(\begin{array}{ccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \\ &= \hbar^2 \left(\begin{array}{ccc} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array} \right). \end{split}$$

Above, the ordered basis is $\{|\frac{1}{2}, \frac{1}{2}\rangle, |\frac{1}{2}, -\frac{1}{2}\rangle, |-\frac{1}{2}, \frac{1}{2}\rangle, |-\frac{1}{2}, -\frac{1}{2}\rangle\}$. To diagonalize \mathbf{S}^2 , we obtain its eigenvalues and eigenvectors. The characteristic polynomial of \mathbf{S}^2 is

$$|\mathbf{S}^{2} - \lambda I| = \hbar^{2} \begin{vmatrix} 2 - \lambda & 0 & 0 & 0 \\ 0 & 1 - \lambda & 1 & 0 \\ 0 & 1 & 1 - \lambda & 0 \\ 0 & 0 & 0 & 2 - \lambda \end{vmatrix} = 0$$
$$= (2 - \lambda)^{2} \{ (1 - \lambda)^{2} - 1 \} = \lambda (\lambda - 2)^{3} = 0$$
$$\implies \lambda = 0, 2, 2, 2.$$

Because the eigenvalue of S^2 will be of the form s(s+1), so $\lambda = 0 \implies s = 0$ (singlet) and $\lambda = 2 \implies s = 1$ (triplet). Let us find the eigenvectors from

the homogeneous equation
$$(\mathbf{S}^2 - \lambda I)C = 0$$
, where $C = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix}$ denotes the

eigenvector. For $\lambda = 0$

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = 0.$$

This leads to

$$c_1 = c_4 = 0$$
$$c_2 + c_3 = 0$$

which leads to the normalized solution

$$|\lambda = 0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} |\frac{1}{2}, -\frac{1}{2}\rangle - \frac{1}{\sqrt{2}} |-\frac{1}{2}, \frac{1}{2}\rangle = \frac{1}{\sqrt{2}} \left\{\alpha(1)\beta(2) - \beta(1)\alpha(2)\right\}.$$

For $\lambda = 2$, we have

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = 0.$$

This leaves c_1 and c_4 uncertain, while $c_2 - c_3 = 0$. This allows three linearly independent solutions

$$|\lambda=2\rangle_1=\begin{pmatrix}1\\0\\0\\0\end{pmatrix},\ |\lambda=2\rangle_2=\frac{1}{\sqrt{2}}\begin{pmatrix}0\\1\\1\\0\end{pmatrix},\ |\lambda=2\rangle_3=\begin{pmatrix}0\\0\\0\\1\end{pmatrix},$$

which can, respectively be written in the uncoupled basis as

$$|\lambda = 2\rangle_1 = |\frac{1}{2}, \frac{1}{2}\rangle = |11\rangle$$

$$|\lambda = 2\rangle_2 = \frac{1}{\sqrt{2}}|\frac{1}{2}, -\frac{1}{2}\rangle + \frac{1}{\sqrt{2}}|-\frac{1}{2}, \frac{1}{2}\rangle = |10\rangle$$

$$|\lambda = 2\rangle_3 = |-\frac{1}{2}, -\frac{1}{2}\rangle = |1-1\rangle$$

5. Calculate the C-G coefficients needed to couple the two angular momenta $j_1 = 3/2$ and $j_2 = 1$ to the possible j values, and express the coupled states $|j_1 j_2 jm\rangle$ in terms of the uncoupled state $|j_1 j_2 m_1 m_2\rangle$.

Soln: Allowed values of coupled angular momenta according to the triangular inequality are j = 1/2, 3/2, 5/2. Let us construct the coupled states for each of those values.

$$(i)j = 1/2$$

We can write $|\frac{1}{2}m\rangle, m = \pm \frac{1}{2}$ as

$$\begin{split} |\frac{1}{2},\frac{1}{2}\rangle &= \sum_{m_1,m_2} \langle m_1,m_2|\frac{1}{2},\frac{1}{2}\rangle |m_1,m_2\rangle \\ &= \sum_{m_1} \langle m_1,-1|\frac{1}{2},\frac{1}{2}\rangle |m_1,-1\rangle + \sum_{m_1} \langle m_1,0|\frac{1}{2},\frac{1}{2}\rangle |m_1,0\rangle + \sum_{m_1} \langle m_11|\frac{1}{2},\frac{1}{2}\rangle |m_1,1\rangle \\ &= \langle \frac{3}{2},-1|\frac{1}{2},\frac{1}{2}\rangle |\frac{3}{2},-1\rangle + \langle \frac{1}{2},0|\frac{1}{2},\frac{1}{2}\rangle |\frac{1}{2},0\rangle + \langle -\frac{1}{2},1|\frac{1}{2},\frac{1}{2}\rangle |-\frac{1}{2},1\rangle. \end{split}$$

One can compute

$$\begin{split} \langle \frac{3}{2}, -1 | \frac{1}{2}, \frac{1}{2} \rangle &= \frac{1}{\sqrt{2}} \\ \langle \frac{1}{2}, 0 | \frac{1}{2}, \frac{1}{2} \rangle &= -\frac{1}{\sqrt{3}} \\ \langle -\frac{1}{2}, 1 | \frac{1}{2}, \frac{1}{2} \rangle &= \frac{1}{\sqrt{6}}, \end{split}$$

so that

$$|\frac{1}{2},\frac{1}{2}\rangle = \frac{1}{\sqrt{2}}|\frac{3}{2},-1\rangle - \frac{1}{\sqrt{3}}|\frac{1}{2},0\rangle + \frac{1}{\sqrt{6}}|-\frac{1}{2},1\rangle.$$

Similarly

$$|\frac{1}{2}, -\frac{1}{2}\rangle = \langle -\frac{3}{2}, 1|\frac{1}{2}, -\frac{1}{2}\rangle| -\frac{3}{2}, 1\rangle + \langle -\frac{1}{2}, 0|\frac{1}{2}, -\frac{1}{2}\rangle| -\frac{1}{2}, 0\rangle + \langle \frac{1}{2}, -1|\frac{1}{2}, -\frac{1}{2}\rangle|\frac{1}{2}, -1\rangle$$

Using the symmetry property of CGCs

$$\langle m_1, m_2 | j, m \rangle = (-1)^{j-j_1-j_2} \langle -m_1, -m_2 | j, -m \rangle,$$

we obtain

$$|\frac{1}{2}, -\frac{1}{2}\rangle = \frac{1}{\sqrt{2}}|-\frac{3}{2}, 1\rangle - \frac{1}{\sqrt{3}}|-\frac{1}{2}, 0\rangle + \frac{1}{\sqrt{6}}|\frac{1}{2}, -1\rangle.$$

(ii) j = 3/2

We can write $|\frac{3}{2}m\rangle, m = \pm \frac{1}{2}, \pm \frac{3}{2}$ as

$$|\frac{3}{2}, \frac{3}{2}\rangle = \sum_{m_1, m_2} \langle m_1, m_2 | \frac{3}{2}, \frac{3}{2}\rangle | m_1, m_2\rangle$$

$$= \sum_{m_1} \langle m_1, -1 | \frac{3}{2}, \frac{3}{2}\rangle | m_1, -1\rangle + \sum_{m_1} \langle m_1, 0 | \frac{3}{2}, \frac{3}{2}\rangle | m_1, 0\rangle + \sum_{m_1} \langle m_1 1 | \frac{3}{2}, \frac{3}{2}\rangle | m_1, 1\rangle$$

$$= \langle \frac{3}{2}, 0 | \frac{3}{2}, \frac{3}{2}\rangle | \frac{3}{2}, 0\rangle + \langle \frac{1}{2}, 1 | \frac{3}{2}, \frac{3}{2}\rangle | \frac{1}{2}, 1\rangle$$

$$= \sqrt{\frac{3}{5}} | \frac{3}{2}, 0\rangle - \sqrt{\frac{2}{5}} | \frac{1}{2}, 1\rangle.$$

Using the symmetry of CGCs, we obtain

$$|\frac{3}{2}, -\frac{3}{2}\rangle = -\sqrt{\frac{3}{5}}|-\frac{3}{2}, 0\rangle + \sqrt{\frac{2}{5}}|-\frac{1}{2}, -1\rangle.$$

The two results can be combined as

$$|\frac{3}{2}, \pm \frac{3}{2}\rangle = \pm \sqrt{\frac{3}{5}}|\pm \frac{3}{2}, 0\rangle \mp \sqrt{\frac{2}{5}}|\pm \frac{1}{2}, \pm 1\rangle.$$

Similarly

$$\begin{split} |\frac{3}{2}, \pm \frac{1}{2}\rangle &= \langle \pm \frac{3}{2}, \mp 1 | \frac{3}{2}, \pm \frac{1}{2}\rangle | \pm \frac{3}{2}, \mp 1\rangle + \langle \pm \frac{1}{2}, 0 | \frac{3}{2}, \pm \frac{1}{2}\rangle | \pm \frac{1}{2}, 0\rangle \\ &+ \langle \mp \frac{1}{2}, \pm 1 | \frac{3}{2}, \pm \frac{1}{2}\rangle | \mp \frac{1}{2}, \pm 1\rangle \\ &= \pm \sqrt{\frac{2}{5}} | \pm \frac{3}{2}, \mp 1\rangle \pm \sqrt{\frac{1}{15}} | \pm \frac{1}{2}, 0\rangle \mp \sqrt{\frac{8}{15}} | \mp \frac{1}{2}, \pm 1\rangle \end{split}$$

(iii) j = 5/2For $m = \pm \frac{5}{2}$

$$|\frac{5}{2},\pm\frac{5}{2}\rangle = \langle\pm\frac{3}{2},\pm1|\frac{5}{2},\pm\frac{5}{2}\rangle|\pm\frac{3}{2},\pm1\rangle = |\pm\frac{3}{2},\pm1\rangle$$

For $m = \pm \frac{3}{2}$

$$\begin{split} |\frac{5}{2}, \pm \frac{3}{2}\rangle &= \langle \pm \frac{3}{2}, 0|\frac{5}{2}, \pm \frac{3}{2}\rangle |\pm \frac{3}{2}, 0\rangle + \langle \pm \frac{1}{2}, \pm 1|\frac{5}{2}, \pm \frac{3}{2}\rangle |\pm \frac{1}{2}, \pm 1\rangle \\ &= \sqrt{\frac{3}{5}} |\pm \frac{3}{2}, 0\rangle - \sqrt{\frac{2}{5}} |\pm \frac{1}{2}, \pm 1\rangle \end{split}$$

For $m = \pm \frac{1}{2}$

$$|\frac{5}{2}, \pm \frac{1}{2}\rangle = \langle \pm \frac{3}{2}, \mp 1|\frac{5}{2}, \pm \frac{1}{2}\rangle | \pm \frac{3}{2}, \mp 1\rangle + \langle \pm \frac{1}{2}, 0|\frac{5}{2}, \pm \frac{1}{2}\rangle | \pm \frac{1}{2}, 0\rangle + \langle \mp \frac{1}{2}, \pm 1|\frac{5}{2}, \pm \frac{1}{2}\rangle | \mp \frac{1}{2}, \pm 1\rangle$$

$$= \sqrt{\frac{1}{10}} | \pm \frac{3}{2}, \mp 1\rangle + \sqrt{\frac{3}{5}} | \pm \frac{1}{2}, 0\rangle + \sqrt{\frac{3}{10}} | \mp \frac{1}{2}, \pm 1\rangle$$