PH 422: Quantum Mechanics 11
Tutorial Sheet 2: Solution

This tutorial sheet contains problems related to the Clebsch-Gordon series, tensor oper-
ators, and the Wigner-Eckart theorem.

1. By use of the unitary condition for the D matrices and the orthogonality condition of
the CGCs, derive from the Clebsch-Gordon series the result

> " (vjamymy i jajsms) DY = > DG (R)Grjamuma jrjojsm) D" (R).
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Soln: The Clebsch-Gordon series is
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Multiplying on both the sides by (j;jamms|j1j2jsms) and summing over m) and m;,
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Using the fact that 35, s (jijamims|jijajsms) (rjemyma|jijzim’) = 6 5,0m mq, we
obtain
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Multiplying on both the sides by Dl(zil)*, summing over mj, and using the fact that
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on replacing [ — m; we get the desired result
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2. Prove
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Verify that this result holds for j; = 1/2, jo =1, j = 3/2, when R denotes a rotation
by an angle 6 about the z axis.
Soln: We have '

DY) (R) = (jmle™ "% |jm').

When j is obtained by coupling two angular momenta j; and jo, then

[gm) = |jrjagm)
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Z |J1j2mima) (j1jamame| = I.
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Using these above
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Using the fact
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Using this above, we obtain the desired result
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For a rotation of angle 6 about the z-axis, for angular momentum j, we have

DY) (0) = (jmle™ "% |jm’) = €08,

Using this on the RHS of Eq. 1, we have
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If we take, my = ji, ma = jo, m = m = j, the CGC’s involved are both 1, and on
both the LHS and RHS we obtain e~ = ¢={(mi+m2)0  For other values of angular
momenta, one will have to use the CGCs to verify the result.

. Using the spherical harmonics Y;(0, ¢), establish the connection between components
of a Cartesian tensor of rank 2 defined as T}; = z;x;, and the corresponding spherical
tensor T;_,. Here x; denotes the i-th Cartesian component of the position vector.
Soln: Let us express the components of Y;” in Cartesian coordinates. For m = £2

15
Y520, ¢) = 327Tej”2¢ sin? 6
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For m = £1
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For m =0

5 (QTZZ — Ty — Tyy)
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So we can define various components of Ty tensor as follows

152 = Tyw — Ty £ 2T,
T3 = F2(T,. £iT,.)

2
T) = \/;(2@2 — Tpw — Tyyy)

Additionally, we also will have to define the scalar Ty = r? = (2% + y* + 2?) =
Tyw +Tyy + T2, to completely determine the spherical tensors.

. If [nlm) denotes an eigenfunction of the hydrogen atom (without considering its spin),
and we define

X = <n/ =310 =2,m = 2|zyln =3,1=0,m =0).
Compute, as a function of y, the matrix elements
(n' =3,0' =2,m'|Ty|n =3,1=0,m = 0),

where T;; is defined in the previous problem.
Soln: To solve this problem, we will be extensively using the Wigner-Eckart theorem

(o/'m/| T |ajm) = (jkmaljkj'm’)
(05| Tel|evj),
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From the results of the previous problem

ay="Ty=—(17-1T5).

| .

Thus

X = (322|T%,|300) = %(322\ (T2 — T2) |300)

on using the Wigner-Eckart theorem, the first term vanishes due to m selection rule

X = —i<0202|0222><32]]T2H30> = —i)\. (3)

Above we used the fact that (0202|0222) = 1, and A = (32||T3]|30) is the reduced
matrix element. We obtain A = 4ix. Now

(32 — 2|T,,|300) = %(32 — 2| (Ty% — T2) |300) = %(32 — 2|T52[300) = iA _—
The rest of the matrix elements of T}, are zero. Next, we compute T},

(32m/|T,,.]300) = =(32m/|T;"* — T1|300)

{(32m’|T2—1|300> - (32m/|T21|300>}
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All other matrix elements of T}, vanish. For T,

(32m/|T,,.|300) = i<32m'|TQ_1 + T1[300)

i
4
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=X (5m/71 + 5m’1) 5

while rest of the components of 7}, vanish. Next, we compute the diagonal components.



For T,., we have
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The first term above vanished because the CGC involved violates the triangular in-
equality. Rest of the matrix elements will be zero. For T,,, we have
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For T,
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5. Directly compute the matrix elements

»-Jhl’—‘ OJI}—H-PIH ool»—n =

(G =1,m'|JYj = 1,m),

where J? denotes the g-th spherical component of the angular momentum operator.
Verify that these matrix elements satisfy Wigner-Eckart theorem, and deduce the cor-
responding reduced matrix elements from them.

Soln: (i) Let J? = J° = J,, then, using the fact that J.|jm) = mh|jm), and
(ym’|jm) = Oprm, We obtain

(G=1,m|].|j =1,m) = mhd,um. (4)
Using Wigner-Eckart theorem, we have

G=1,m|Lj=1,m)=(=1,m[Jj=1,m)
— (11m0[111m/)(j = 1||J1]j = 1)

= (11m0[111m)AS,,,,,, ;m =1,0,—1, (5)
where A = (j = 1||J1]j = 1) is the reduced matrix element. From the table of CGCs’,
we have
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1
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m
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Substituting Eq. 6 in Eq. 5, we obtain from Wigner-Eckart theorem
’ m
=1,m|J.|j=1,m) =A\——=6,,,, 7
G= Ll =1m) =27 ™

On comparing Eqs. 4 and 7, we conclude that the two equations agree with each other
if the reduced matrix element is given by A = hv/2. Let us check this for the other
two spherical components. First by Wigner-FEckart theorem

G=1,m|JE =1, m) = Alm £ 1|111m ) (j = 1||4]|j = 1)
= (11m £ 1|111m )\
= (1,1,m,+1|1,1,1,m £ 1)\6, ,

m m=%1

— (j=1m[Jj=1m)=0 form=1

1
= _EACSm/m—&—l mZO,—l

and
G=1m[Jj=1,m)=0 form=—1
1

= E)\(smlm—i-l

Evaluating the same matrix element directly

m=0,1

. / . 1 . / .
G=1m|Jj=1,m)=F—={=1,m|Jlj = 1,m)
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1

_ E\/(liFm)(Qim)h(sm’mil
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m m—+1

and
(G=1,m|Jj=1,m)=0form=—1
= ho,,,,_, form=0,1
Both sets of values are consistent with each other and the fact that A = hv/2. Thus,
these matrix elements are consistent with Wigner-Eckart theorem.

6. Evaluate

J
> DY (8)Pm
m=—j

1

for any j (integer or half-integer), then check your answer for j = 3.



Soln: We can write

J J
S IDY B)Pm=>" DYV"(3)DY (B)m

m==j m=—j
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= 2 D (B, (Bym.
m=—j
: iJy B ’
using the definition Dfﬂbin, (8) = (jmle* |jm’), we have
! Ly BB . . _yB
= Y (m'le  m|jm)(jmle” 7" |jm)
m=—j
using J,|jm) = mh|jm), we have
1o Gn s e
57 G T jm) (mle F ),

m=—j
J
using resolution of identity Z |7ym){(jm| = I, we obtain
m=—j

iJyB iJyB

hoJ,e” h

—(m'|e im').
7 m | jm’)
. . iJyB iJyB .
Given the fact that operation e™» J,e™ "» represents a rotation by angle g about the
iJy B iJyB
y—axis, we will have e J,e~ #n = .J, cos 3 — J,sinf3, so that

J
. 1 / !
> DY (B)Pm = £ (jm'|. cos § — J,sin Bljm)
m=—j
-m cos 3.

Above we used (jm’|J.|jm’) = m'h and (jm'|J,|jm’) = 0. Let us verify this for j = %,

for which
cos2 —sin § )

With this we have for m' = %

J
» 1 1 1
ZA ]D;r]“)n, (B)]Pm = §COSQ § — ésin2§ = icosﬁ,
m=—j
and for m’ = -1
: () 2 2B 1 L f
m;J|Dnim,(,6)| m = g sin” o — o cos 52—50056

Thus the result has been verified



7. Prove the following results for j = 1, using the corresponding representation of .J,

. 2
e i (%) sin 8 — (%) (1 — cos )

Soln: Using the expressions for the matrix elements of the ladder operators J.

(a)

G| Jelim) = (G Fm)(j £ m + 1)hbm mat,

and then

PO
= — _
V2 0 ¢ 0
For even powers of J, we have
1 0 -1
h? h?
=5 02 0)=74
-1 0 1
It is easy to verify that
10 -1\° 1
A? = 02 0 =2 0
-1 0 1 -1
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For odd powers of J,

B (L) P (L) .
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Now

)
I

—iZuf S yﬁ
n'h
=0

_, Zﬁ)Qm—l—l J2m+1 N o (_Z'ﬁ)Qm Jme
B +Z (2m + 1)! h2m+1 L= (2m)! h2m

Using equations 8 and 9 along with (—i)*™ = (—1)™, we obtain

(o T oG ) () (5
:I—isinﬂ<%) (1 —cosf3) (ﬁ)

(b) Soln: On the RHS of the equation

<~

i JuB
e =1 —isinf

we substitute

ho (5

o v2\g i ¢
(%) =1 02 0

R 2\ 10 1)

to obtain the desired result
(3 (1 +cosp) — <\/L§> sinf (1) (1—cosf)
DUV (B) = (\%) sin 3 cos 3 - <\/L§> sin 3
(3) (1 —cos ) (\%) sinf  (3) (14 cosp)

. Consider a spherical tensor of rank 1 (that is, a vector)
Ve iV,
\/§ )

Using the expression for DY=Y(3) given in the previous problem, evaluate

1)
> D BV
q

‘/lﬂ:lz ‘/10:‘/;:
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9.

and show that your results are just what you expect from the transformation properties
of V..., under rotation about the y-axis.

Soln: Let
_ VotiVy
V2
V = V., ,
Ve—iVj,
V2

then expression »_ Dé? (8)V implies matrix multiplication of the column vector V

by DM () matrix of the previous problem

(3) X +cosp) — <\/L§) sinf (%) (1 —cosp) _sz;gvy
(\%) sin 3 cos 3 — (\%) sin 3 V‘?V
(3) (1 =cosB) (J)sinB  (3) (1+cosp) —
(Vi cos B4V sin B)+iV},

V2
= V,cos 8 — V,sinf3

(Vz cos B+V sin B)—iV,

V2
From the RHS it is obvious that under the transformation
V., — Vl: =V,cos+ V,sinf
V, =V, =V,
V.= V., =V.cos f — V,sin B,
which can be written as
V. cosf 0 sinf Ve
v, | = 0 1 0 v,
VZ' —sinf 0 cosf V.,

This is precisely how the Cartesian components of a vector will transform under a
rotation by angle S about the y axis.

(a) Construct a spherical tensor of rank 1 out of two different vectors U = (U,, U, U,)
and V = (V,,V,, V.). Explicitly write 777", in terms of U, . and V..
Soln: A vector which is bilinear in U and V the cross product of two vectors

W=UxV
= (U,V, — U.V)i + (U V, — U, V.)j + (U V, — UV, )k
= Wi+ W,j + W.k.
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Spherical vector components will be

Til — (Ww :l: ZWZ/)
' V2
_ :F(UyVZ — UZV;,) +i(U,V, — U V,)
V2
and

=W, =(UV, - U,V)

(b) Construct a spherical tensor of rank 2 out of two different vectors U and V.

Write down explicitly 75, +2,£1,0 , in terms of U, ,, . and V,, ..
Soln: Defining U = :F(U””?Uy U0 =0, Vit = $(ijf‘/y), VP = V., we have

TQiQ — Uilvil
U:tlvO + UOv:I:l
V2
UVt + UtV 4 20070
V6

The expressions in terms of U, , . and V,, . can be obtained by substituting the
expressions for the components of spherical vectors U{ and V{! given above.

+£1 _
T2 —

TY =

10. Consider a spinless particle bound to a fixed center by a central force potential.

(a) Relate, as much as possible, the matrix elements

1 4 ’ !’
—(z £ wy)|n,l,m and (n,l,m |z|n,l,m
\/5( y)l ) { 2] )
using only the Wigner-Eckart theorem. Make sure to state under what conditions
the matrix elements are nonvanishing.
Soln: Let X = :F\%(x +4y) and XV = z, then using Wigner-Eckart theorem
we have

(n/,ll,m/\ZF

’ !’ !/ 1 !/ / ! / ! i
(n,l,m|— E(m+iy)|n,l,m> = (n,l,m|X}|n,l,m) = {Im1|I1lm Y {n ]| X;|nl)

’ ’ / ].
n,l,m|—
o 1|

(', U m|zn, L,m) = (0 1, m | X0, [,m) = (11mO|I1'm ) (n'l'|| X1 |nl)

r —1y)|n,l,m) = (n/, l/,m,\Xf1|n, [,m) = (I1lm — 1]l1l/m/)<n/l/HX1\nl>

Thus it is obvious that all the three matrix elements are proportional to the
same reduced matrix element (n'l'||Xi|nl). Additionally, in all the three cases
the selection rule || — 1| < 1" < [+ 1. Must be satisfied. However, m selection
rules are different. They are: (a) m' =m + 1, (b) m' =m — 1, and (c) m’ = m,
respectively.
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(b)

Do the same problem using the wave function ¢, (r) = Ry (r)Y,™(0, ¢).
Soln: We know

(', 1, m' | X n, 1,m) = /dBer/l/m,(r)quwnlm(r).

On substituting the values of the wave functions, and using the fact that X{ =
\/ 2rY{(Q), in spherical polar coordinates we obtain

1 | X9 1 m) = {\/g /0 h TBRZIZ/(T)RM(T)CZT} { / m’*(@)}qq(sz)ylmm)dg}

In Eq. (17.74) of Merzbacher, the relevant angular integral is given

[ Y @Y @Y (2 = Ny (hlamymall bty

210 + 1)(2l, + 1
where Nlll213 = \/< 1471_(2;<+21) )<l1l200’l1l2l30>
3

Using this we get

/ / ’ / / 4 &0
(n,l,m|X{In,l,m) = (IImgq|l1l m) {qu/%/ R, (T)Rnl(T)dT} :
0

which is exactly of the same form as derived in part (a), using Wigner-Eckart
theorem, with the reduced matrix element given by

’or 47 e %
1 1%nD) = N[5 [ 7 R )R

Write zy, zz, and (z? — y?) as components of a spherical (irreducible) tensor of
rank 2.

The expectation value
Q = ela, j,m = j|(32* — r?)|a, j,m = j)
is known as quadrupole moment. Evaluate
elaj,m'|(* = y*)la, j,m = j),
(where m' = 4,7 — 1,5 — 2,...) in terms of @ and appropriate C-G coefficients.

Soln: Both parts (a) and (b) of this problem are similar to problem 4, and
can be solved using the same approach.
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12. The magnetic moment of an atom is defined as

(&
=——(g;L S
n e (9L + gsS),

where e is the electronic charge, m is the electronic mass, c¢ is the speed of light, L
is the total orbital angular momentum operator for the atom, S is total spin angular
momentum operator of the atom, and g and gg are, respectively, orbital and spin
Lande g factors.

(a)

Argue that the expectation value components (u;) = (ajj|p:|ajj), are propor-
tional to each other, where ¢ denotes a Cartesian component

Soln: We know that the spherical components of p in terms of its Cartesian
components are

w1 (pe Eipy)
M(l) = Hz-
From Wigner-Eckart theorem we have
(ajjlpilegi) = (i1iali1ig){edl|plle), (11)

where (aj||u||aj) denotes the reduced matrix element («j||u1||aj). Thus, the
expectation values of all the spherical components of uf is be proportional to
the same reduced matrix element (aj||u||aj). Using Eq. 10, we can write the
Cartesian components of p in terms of its spherical components

pe = =50 = p )

py = 5t + pyt) (12)
[z = 1

Using Eqs. 12 and 11, we conclude that various Cartesian components of (p;) =
(ajj|ps|ejj), are proportional to the same reduced matrix elements

(k) oc (aij|pllag)
{1y} o (ajl|pl|ag)
{nz) o< (agllpllag),

which is the desired result.

Using the projection theorem, prove that if g, = 1 and gs = 2, u = (u.) is given
by
eh

=———q,J,
2 chgJ

where

B J(J+1)—L(L+1)+S(S+1)
g"_{H 2J(J + 1) }
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and S, L, and J, respectively denote the total spin, orbital angular momentum,
and total angular momentum of the atom.
Soln: For g;, =1 and gs = 2, we have
=% (L+28)=—-(J+89)
b= e  2me ’
where J = L + S, is the total angular momentum operator. The projection the-
orem for a spherical vector operator A (see Eq. 108 of chapter 1) is given by

(o/gm|J - Alajm)
j( +1)h?

(o/jm/|A%ajm) = x (gm|J?|jm) (13)

Using this for A = u, and ¢ = 0 (note that A° = A.), we obtain

(ajjlp - J|ajs)
h?J(J+1)

p= (ajjlp-logj) = (JilJ:137)-
Above
(jilJ-135) = jh,
and
e
J=——"(J?+S-J
i 2mc ( + )

S-J=S*+L-S

L-S:%(JQ—LZ—SQ)

e 3., 1., 1

—J iy S p—
2me 2 + 2 2 )

Using the fact that
P|ajj) = J(J + )R |ajj)
S*|agij) = S(S + 1)R?|ejj)
L?|ajj) = L(L + 1)R*|jj),

we have
(sl Jajs) = —=—CI(T+1) + 28(S +1) = SL(L + )2
AT ] = 2me "2 2 2
Y e 3I(T+1)+35(S+1) - FL(L+1)}
= n=(ajjluslajs) = —5 T J
ch J(J+1)—L(L+1)+5(5+1)
2me 2J(J+1)
J(J+1) = L(L+1)+S(S+1)
=1
v { N 21+ 1)
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