PH 422: Quantum Mechanics II
Tutorial Sheet 3

This tutorial sheet contains problems related to the use of variational principle in quan-
tum mechanics.

1. Obtain the energy of the ground state of a one-dimensional (1D) simple-harmonic

oscillator (SHO) using the trial wave function 1 (z) = ce~**", where ¢ is the normal-
ization constant, and « is the variational parameter.
Soln: Let us estimate the ground state of one-dimensional simple harmonic oscillator
using the trial wave function of the form ¢ (x) = ce~** Because this function is of the
form exact wave function, the obtained energy should be exact ground state energy
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Thus, as expected, we recover the exact ground state energy and wave function for
this trial wave function

. In the variational prinmple as applied to quantum mechanics, one minimizes the inte-
gral I = (Y|H[Y) = [{—3 h *V2)+Vp*yp }dPr, subject to the normalization condition
[ *ypdPr = 1. Show usmg mtegration by parts, that one can also use the expression

[ = [{Evy* - vy + Vyrpydir.
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Let us consider the first integral and apply integration by parts
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the first term on the RHS vanishes because ¢*(z = £00,y, z) = 0, because wave func-
tion (and its complex conjugate) must vanish at infinity for it to be normalizable
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using Eq.(2),Eq.(3),Eq.(4) in Eq.(1), we have
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. Estimate the ground state energy of a 1D-SHO using the trial wave function of
the form 1 (x) = Ce ! treating o as a variational parameter. (Helpful integral:
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Soln: First we normalise ¢ (x)
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Y(z) = Vae

Because the slope of this wave function is discontinuous at z = 0, so ‘327%’ is not defined
there. Therefore, we use expression of Prob. 2 for computing energy expectation value
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4. Show that for a 1D-SHO, if one uses a trial wave function ¢ (x) = cze™** where ¢
is the normalization constant and « is the variational parameter, one obtains exact




energy E = %hw of the first excited state.
Soln: Let us first normalize the trial wave function
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We will use the expression of problem 2 to compute the energy expectation value
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which is exact result

. Here we derive the “linear-combination of basis functions approach”, quite commonly
used in quantum mechanics, using a variational principle. Suppose that the Hamilto-
nian of a system is given by H, and we assume that the state ket [¢)) corresponding
to its ground state can be approximated as

[v) = ZOj|j>a

where |j) denote the known basis kets, while C; are the unknown expansion coeffi-
cients which are also the variational parameters in this approach, and, in general, are
complex. In the r representation, the following notation is adopted 1 (r) = (r|¢)), and
¢(r) = (r|7). Using the variational principle, show that the ground state energy FE,
and the state ket [¢)) can be obtained by solving the generalized eigenvalue problem



where H and S denote the N x N matrices, representing the Hamiltonian and the
overlap, with elements defined as H;; = (i|H|j), Si; = (i|j), respectively, while C;
form the N elements of the column vector C, denoting the ground state eigenfunction.
Note that form an orthonormal basis set, (i|j) = §;; so that S = I, and the previous
generalized eigenvalue problem reduces to a normal eigenvalue problem.

Soln: According to the variational principle, we should minimize
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with respect to the variational coefficients Cj, ¢ = 1,2,3,... N. Using the given
expansion of |1¢), and the definitions of H;; = (i|H|j) and S;; = (i|j),we obtain
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The variational principle in the present case implies that the conditions
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must hold. Because Cy’s are Complex therefore, C; and C} are independent variables.
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The complex conjugate of the previous equation yields
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Using the fact that H and S are Hermitian matrices, we have H}, = H;;, and S}, = Six.
On substituting these in previous equation, we obtain
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This equation is called a generalized eigenvalue problem because of the presence of the
overlap matrix S on the RHS, and clearly reduces to the normal eigenvalue problem
HC = EC, for an orthonormal basis (S = I). Note that we obtained this equation by
taking the complex conjugate of the original equation 9, which actually is an eigenvalue
problem for the complex conjugates of the coefficients, C; or C1 (i.e., for (1]). You can
verify that if we start with the condition 2Z = 0, we will directly get the eigenvalue

problem of Eq. 10.

. This problem is a simple application of the linear-combination of basis functions ap-
proach. Suppose the wave function of a given quantum mechanical system can be
expanded in terms of three basis functions {|:),7 = 1,2, 3}, which form an orthonor-
mal set (i|j) = d;;. Defining the Hamiltonian matrix elements with respect to these
basis functions as H;; = (i|H|j), it is given that the only non-zero Hamiltonian matrix
elements are Hio = Hyy = Ho3 = Hso = Hy3 = H3y = t, where t is a real positive
number. Obtain the eigenvalues and eigenvectors of this Hamiltonian. How do the
results change when we set Hy3 = H3; = 07
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We note that in this case, eigenvalues are symmetrically placed about A = 0,
which is a sign of particle hole symmetry.

7. Estimate the ground state energy of a particle of mass m in a box with V' = 0, for
0 <z <a,and V = oo, otherwise, using variational principle. For the purpose, take
a wave function consisting of two linear components ¢ (z) and ¥o(z) defined by: (i)
1(0) =0, Y1(x=a)=Cfor 0 <z < a, and (ii) Yoz = @) = C, oz = a) =0, for
a < x < a, where C'is the normalization constant, and « is the variational parameter.
Soln: We estimate the ground state energy of a particle of mass m, in a one dimen-
sional box of length a. We consider the trial function to be a linear function which is
zero at x=0 and x=a, and is peaked at x=a, 0 < a < a, where « is the variational
parameter.
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is not valid here because ¢/(x) is discontinuous at x = «. For such cases one uses the
alternative expression
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which can be obtained by integrating by parts the first term and using the fact that
the wave function vanishes at infinity.For the present case 1¥* =1 and V' = 0, so that
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If we plot the true ground state wave function ¢y = \/g sin("*) along with the ap-

proximate wave function v (z) is obtained above, we have
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Figure 1: Comparison between the exact and the approximate wave functions
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We note that o = 5 obtained through variational principle ensures that the variational
wave function peaks at the same x = 3, as an exact wave function.

. Consider the Hamiltonian of a particle moving in a 1D Gaussian potential well H =
2% — Voe ®*” | with Vj and a > 0. Estimate its ground-state energy employing varia-
tional principle, with a trial wave function of the form ¢ (z) = C’e*““’”z, with « as the
variational parameter.
Soln: Let us compute
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After solving this equation for o, we can obtain the value of ground state energy F(«).

. Using the trial wave function ¢(r) = Ce ", where C' is the normalization constant,
and « is the variational parameter, estimate the ground state energy of the hydrogen
atom.
Soln:

ba(r) = Cem
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As there is no angular dependence of 1), (r) since the ground state functionis spherically
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symmetric, so the last two terms give us zero, so we are left with
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where ag = mh—; is the Bohr radius. Substituting Eq.(12) in Eq.(11), we get

g h? (m2e4) _me4

om \ Bt h?
_me* me'
T 2R R?
_ me’
o2
me*
Emin = =2

This is the exact value of the ground state energy of the hydrogen atom, obtained after
solving the Schrodinger equation.
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